

Discovery kit for IoT node, multi-channel communication with STM32L4+ Series

Introduction

The B-L4S5I-IOT01A Discovery kit for the IoT node allows the user to develop applications with a direct connection to the cloud servers.

The B-L4S5I-IOT01A Discovery kit for the IoT node enables a wide diversity of applications by exploiting low-power multilink communication (Bluetooth® Low Energy, Wi-Fi®, NFC), multiway sensing (detection, environmental awareness) and Arm® Cortex®-M4 core-based STM32L4+ Series features.

ARDUINO[®] Uno V3 and Pmod[™] connectivity provide unlimited expansion capabilities with a large choice of specialized add-on boards.

The B-L4S5I-IOT01A Discovery kit for the IoT node includes an ST-LINK debugger/programmer and comes with the comprehensive STM32CubeL4 MCU Package, which provides an STM32 comprehensive software HAL library as well as various software examples to seamlessly connect to cloud servers.

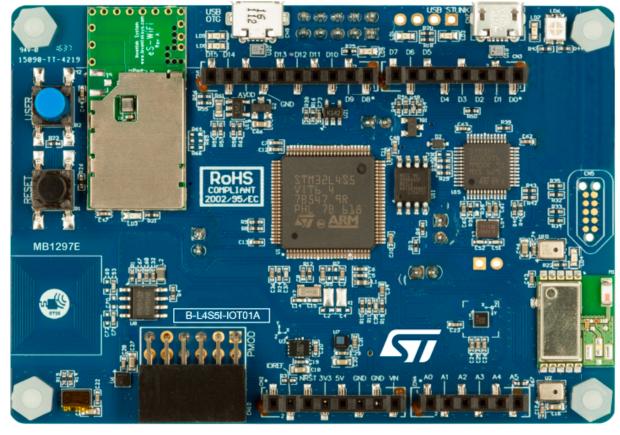


Figure 1. B-L4S5I-IOT01A Discovery kit for the IoT node

Picture is not contractual.

1 Features

- Ultra-low-power STM32L4+ Series STM32L4S5VIT6 microcontroller based on the Arm[®] Cortex[®]-M4 core with 2 Mbytes of Flash memory and 640 Kbytes of RAM in LQFP100 package
- 64-Mbit Quad-SPI Flash memory from Macronix[™]
- Bluetooth[®] 4.1 module (SPBTLE-RF) from STMicroelectronics
- 802.11 b/q/n compliant Wi-Fi[®] module (ISM43362-M3G-L44) from Inventek Systems
- Dynamic NFC TAG based on ST25DV04K with its printed NFC antenna
- 2 digital omnidirectional microphones ((I)MP34DT0x) from STMicroelectronics
- · Capacitive digital sensor for relative humidity and temperature (HTS221) from STMicroelectronics
- High-performance 3-axis magnetometer (LIS3MDL) from STMicroelectronics
- 3D accelerometer and 3D gyroscope (LSM6DSL) from STMicroelectronics
- 260-1260 hPa absolute digital output barometer (LPS22HB) from STMicroelectronics
- Time-of-flight and gesture-detection sensor (VL53L0X) from STMicroelectronics
- Highly-secure solution (STSAFE-A110) from STMicroelectronics
- 2 push-buttons (user and reset)
- USB OTG FS with Micro-AB connector
- ARDUINO® Uno V3 expansion connector
- Pmod[™] expansion connector
- Flexible power-supply options: ST-LINK USB V_{BUS}, USB connector, or external sources
- On-board ST-LINK/V2-1 debugger/programmer with USB re-enumeration capability: mass storage, Virtual COM port, and debug port
- Comprehensive free software libraries and examples available with the STM32Cube MCU Package
- Support of a wide choice of Integrated Development Environments (IDEs) including IAR Embedded Workbench[®], MDK-ARM, and STM32CubeIDE

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

UM2708 - Rev 2 page 2/41

2 Ordering information

To order the B-L4S5I-IOT01A Discovery kit for the IoT node, refer to Table 1. Additional information is available from the datasheet and reference manual of the target STM32.

Table 1. Ordering information

Order code	Board reference	Target STM32
B-L4S5I-IOT01A	MB1297	STM32L4S5VIT6

2.1 Codification

The meaning of the codification is explained in Table 2.

Table 2. Codification explanation

B-L4S5I-IOT01A	Description	B-L4S5I-IOT01A
В	Discovery kit with a variety of sensors	Sensor node
L4S5	MCU product line in STM32 32-bit Arm Cortex MCUs	STM32L4R5/S5 in the STM32L4+ Series
I	STM32 Flash memory size: I for 2 Mbytes	2 Mbytes
IOT	Dedicated to IoT applications	Discovery kit for IoT applications

UM2708 - Rev 2 page 3/41

3 Development environment

The B-L4S5I-IOT01A Discovery kit for the IoT node runs with the STM32L4S5VI 32-bit microcontroller based on the Arm® Cortex®-M4 core.

3.1 System requirements

- Multi-OS support: Windows® 10, Linux® 64-bit, or macOS®
- USB Type-A or USB Type-C[®] to Micro-B cable

Note: macOS[®] is a trademark of Apple Inc. registered in the U.S. and other countries.

Linux[®] is a registered trademark of Linus Torvalds.

All other trademarks are the property of their respective owners.

3.2 Development toolchains

- IAR Systems $^{\text{@}}$ IAR Embedded Workbench $^{\text{@}(1)}$
- Keil® MDK-ARM⁽¹⁾
- STMicroelectronics STM32CubeIDE
- 1. On Windows® only.

3.3 Demonstration software

The demonstration software, included in the STM32Cube MCU Package corresponding to the on-board microcontroller, is preloaded in the STM32 Flash memory for easy demonstration of the device peripherals in standalone mode. The latest versions of the demonstration source code and associated documentation can be downloaded from www.st.com.

UM2708 - Rev 2 page 4/41

4 Conventions

Table 3 provides the conventions used for the ON and OFF settings in the present document.

Table 3. ON/OFF convention

Convention	Definition	
Jumper JPx ON	Jumper fitted	
Jumper JPx OFF	Jumper not fitted	
Jumper JPx [1-2]	Jumper fitted between Pin 1 and Pin 2	
Solder bridge SBx ON	SBx connections closed by 0 Ω resistor	
Solder bridge SBx OFF	SBx connections left open	
Resistor Rx ON	Resistor soldered	
Resistor Rx OFF	Resistor not soldered	

UM2708 - Rev 2 page 5/41

5 Delivery recommendations

Before first use, check the board for any damage that might have occurred during shipment, that all socketed components are firmly fixed in their sockets and that none are loose in the plastic bag.

UM2708 - Rev 2 page 6/41

6 Hardware layout and configuration

The B-L4S5I-IOT01A Discovery kit for the IoT node is designed around the STM32L4S5VIT6 target microcontroller in a 100-pin LQFP package. The hardware block diagram (Refer to Figure 2) illustrates the connection between the STM32 and peripherals: embedded ST-LINK, ARDUINO[®] Uno V3 shields, Pmod[™] connector, Quad-SPI Flash memory, USB OTG connectors, digital microphones, various ST-MEMS sensors, and the three RF modules (Wi-Fi[®], Bluetooth[®], and NFC). Figure 3 and Figure 4 help users to locate these features on the B-L4S5I-IOT01A Discovery kit for the IoT node. Figure 5 gives the mechanical dimensions of the B-L4S5I-IOT01A Discovery kit for the IoT node.

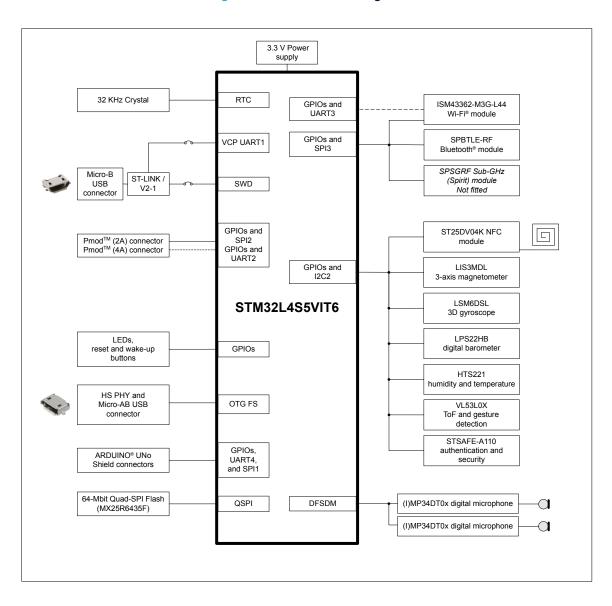


Figure 2. Hardware block diagram

UM2708 - Rev 2 page 7/41

UM2708

Microphone MEMs (U2)
Arduino_A[0..5] (CN4)

Arduino_[power] (CN2)

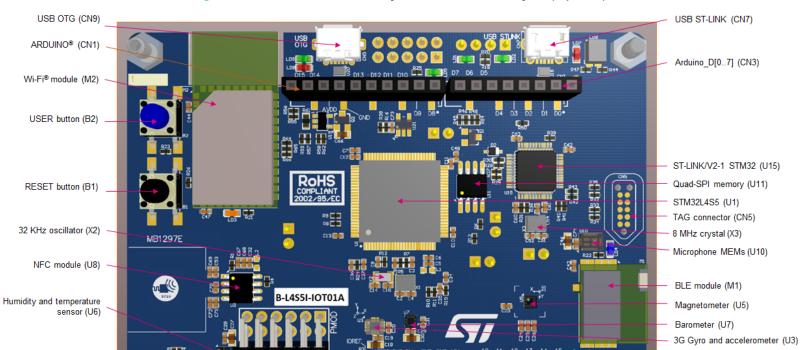


Figure 3. B-L4S5I-IOT01A Discovery kit for the IoT node layout (top view)

Pmod[™] connector (CN10)

ToF & gesture detection

UM2708

ST-LINK debug (CN8)

Power selection (JP4)

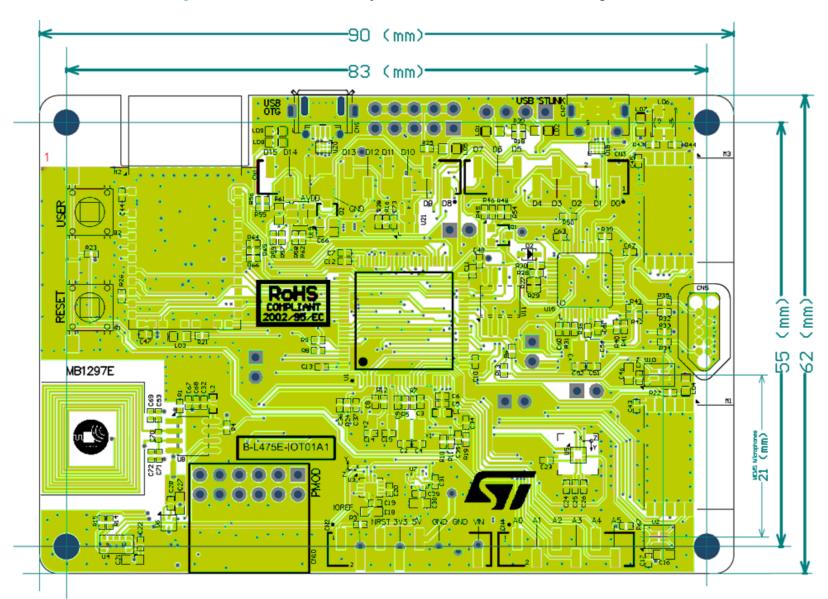
ST-LINK USB power switch (U17)

3V3 regulator (U14)

JTAG test point for WV-Fi ® firmware flashing

www.st.com/stm32cpp—discovery

3V3 regulator (U12)


SV regulator (U13)

STSAFE (U9)

Figure 4. B-L4S5I-IOT01A Discovery kit for the IoT node layout (bottom view)

Figure 5. B-L4S5I-IOT01A Discovery kit for the IoT node mechanical drawing in millimeters

6.1 Embedded STLINK/V2-1

The ST-LINK/V2-1 programming and debugging tool is integrated on the B-L4S5I-IOT01A Discovery kit for the IoT node. Compared to the ST-LINK/V2 the changes are listed below.

The new features supported on the ST-LINK/V2-1 are:

- USB software re-enumeration
- Virtual COM port interface on USB
- Mass storage interface on USB
- USB power management request for more than 100 mA power on USB

The following features are no more supported on the ST-LINK/V2-1:

- SWIM interface
- Application voltage lower than 3 V

For all general information concerning debugging and programming features common between V2 and V2-1 versions, refer to user manual *ST-LINK/V2 in-circuit debugger/programmer for STM8 and STM32* (UM1075) at the www.st.com website.

6.1.1 Drivers

The ST-LINK/V2-1 requires a dedicated USB driver, which, for Windows 7[®], Windows 8[®] and Windows 10[®], is found at www.st.com.

In case the B-L4S5I-IOT01A Discovery kit for the IoT node is connected to the PC before the driver is installed, some Discovery board interfaces may be declared as "Unknown" in the PC device manager. In this case, the user must install the dedicated driver files, and update the driver of the connected device from the device manager as shown in Figure 6.

Note: Prefer using the "USB Composite Device" handle for a full recovery.

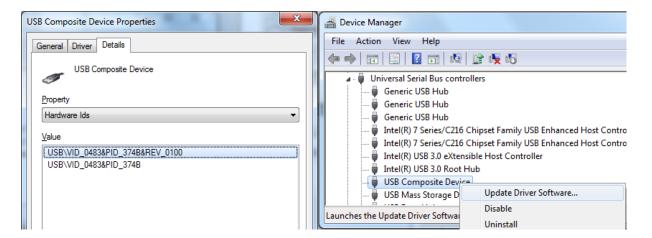


Figure 6. USB composite device

6.1.2 ST-LINK/V2-1 firmware upgrade

The ST-LINK/V2-1 embeds a firmware upgrade mechanism for the in-situ upgrade through the USB port. As the firmware may evolve during the lifetime of the ST-LINK/V2-1 product (for example new functionalities, bug fixes, support for new microcontroller families), it is recommended to visit the *www.st.com* website before starting to use the B-L4S5I-IOT01A Discovery kit for the IoT node and periodically, to stay up-to-date with the latest firmware version.

UM2708 - Rev 2 page 11/41

6.2 Power supply

The B-L4S5I-IOT01A Discovery kit for the IoT node is designed to be powered by a 5 V DC power supply. It is possible to configure the B-L4S5I-IOT01A Discovery kit for the IoT node to use any of the following five sources for the power supply: 5V ST LINK, 5V ARD, 5V USB FS, 5V VBAT, and 5V USB CHARGER.

In the case of an external 5 V DC power adapter, the B-L4S5I-IOT01A Discovery kit for the IoT node must be powered by a power supply unit or by a piece of auxiliary equipment complying with the standard EN-60950-1: 2006+A11/2009, and must be SELV (Safety extra-low voltage) with limited power capability.

5V_ST_LINK

(Refer to Figure 7)

This is a 5V DC power with limitation from CN7, the USB type Micro-B connector of ST-LINK/V2-1. In this case, the JP4 jumper must be fitted between pin 1 and pin 2 to select the 5V_ST_LINK power source on the JP4 silkscreen. This is the default setting. If the USB enumeration succeeds, the 5V_ST_LINK power is enabled, by asserting the PWR_ENn signal (from STM32F103CBT6). This pin is connected to a power switch ST890, which powers the board. This power switch features also a current limitation to protect the PC in case of an onboard short-circuit (Current higher than 750 mA). The B-L4S5I-IOT01A Discovery kit for the IoT node can be powered from the ST-LINK USB connector CN7, but only the ST-LINK circuit has the power before USB enumeration because the host PC only provides 100 mA to the board at that time. During the USB enumeration, the B-L4S5I-IOT01A Discovery kit for the IoT node asks for the 500 mA power to the host PC. If the host can provide the required power, the enumeration finishes by a *SetConfiguration* command, and then, the power transistor ST890 is switched ON, the red LED LD7 is turned ON, thus the B-L4S5I-IOT01A Discovery kit for the IoT node consumes up to 500 mA current, but no more. If the host cannot provide the requested current, the enumeration fails. Therefore the ST890 remains OFF and the MCU part including the extension board is not powered. As a consequence, the red LED LD7 remains turned OFF. In this case, it is mandatory to use an external power supply.

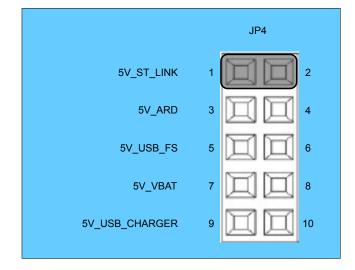
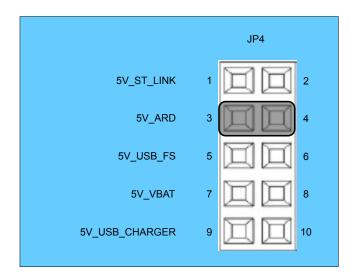


Figure 7. JP4: 5V_ST_LINK selection

5V ARD


(Refer to Figure 8)

This is the 7 to 12 V DC power from ARDUINO® CN2 pin 8 (named VIN on ARDUINO® connector silkscreen). In this case, the JP4 jumper must be fitted between pin 3 and pin 4 to select the 5V_ARD power source on the JP4 silkscreen and the DC power comes from the power supply through the ARDUINO® Uno V3 battery shield (compatible with Adafruit PowerBoost 500 shield).

UM2708 - Rev 2 page 12/41

Figure 8. JP4: 5V_ARD selection from CN6 (VIN)

5V_USB_FS

(Refer to Figure 9)

This is the DC power with a 500 mA limitation from CN9, the USB OTG FS Micro-AB connector. In this case, the JP4 jumper must be fitted between pin 5 and pin 6 to select the 5V_USB_FS power source on the JP4 silkscreen.

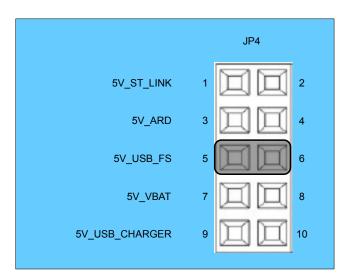
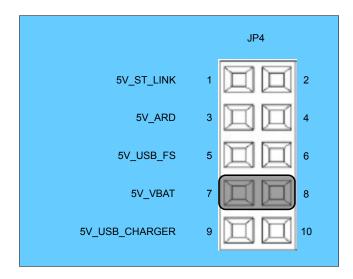


Figure 9. JP4: 5V_USB_FS

5V_VBAT


(Refer to Figure 10)

This is the DC power coming from an external source. In this case, the JP4 jumper must be fitted between pin 7 and pin 8 to select the 5V_VBAT power source on JP4 silkscreen.

UM2708 - Rev 2 page 13/41

Figure 10. JP4: 5V_VBAT

5V_USB_CHARGER

(Refer to Figure 11)

This is the DC power charger connected to the USB ST-LINK (CN7). To select the 5V_USB_CHARGER power source on the JP4 silkscreen, the JP4 jumper must be fitted between pin 9 and pin 10. In this case, if the B-L4S5I-IOT01A Discovery kit for the IoT node is powered by an external USB charger, then the debug is not available. If the PC is connected instead of the charger, the limitation is no longer effective and the PC may be damaged.

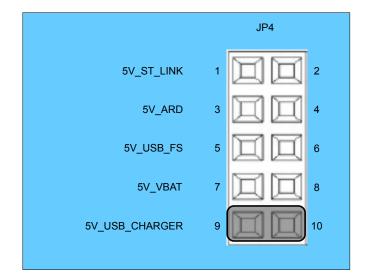
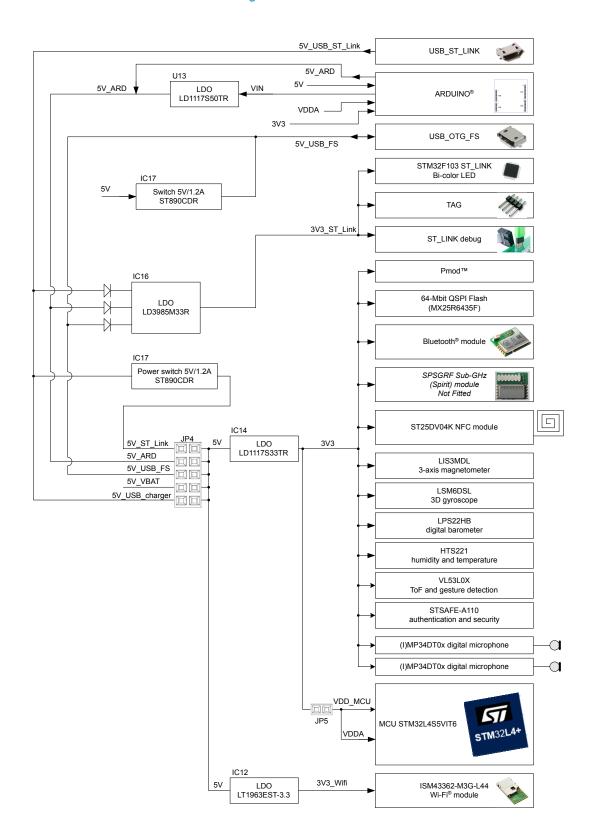


Figure 11. JP4: 5V_USB_CHARGER selection

Note:

If the board is powered by a USB charger, there is no USB enumeration, so the LD7 LED remains OFF permanently and the board is not powered. In this specific case only, the resistor R30 must be soldered, to allow the board to be powered anyway.


Caution:

Do not connect the PC to the ST-LINK (CN7) when R30 is soldered. The PC may be damaged or the board may not be powered correctly.

UM2708 - Rev 2 page 14/41

The green LED LD5 is lit when the B-L4S5I-IOT01A Discovery kit for the IoT node is powered by the 5 V correctly. The power tree is shown in Figure 12. Power tree.

Figure 12. Power tree

UM2708 - Rev 2 page 15/41

6.3 Programming and debugging when the power supply is not from ST-LINK (5V ST LINK)

It is mandatory to power the board first using CN2 (VIN) or CN9 (USB_FS_OTG), then to connect the USB cable to the PC. Proceeding this way ensures that the enumeration succeeds, thanks to the external power source. The following power sequence procedure must be respected:

- 1. Connect the jumper JP4 on (5V ARD) or (5V USB FS).
- Connect the external power source to CN2 in case of an ARDUINO[®] shield or to CN9 in case of a USB FS
 host interface.
- 3. Check that the red LED LD5 is turned ON.
- 4. Connect the PC to the USB connector CN7.

If this sequence is not respected, the board may be powered by V_{BUS} first from ST-LINK, and the following risks may be encountered:

- 1. If more than 500 mA current is needed by the board, the PC may be damaged or the current can be limited by the PC. As a consequence, the board is not powered correctly.
- 2. 500 mA is requested at the enumeration, so there is a risk that the request is rejected and enumeration does not succeed if the PC cannot provide such current.

6.4 Clock source

Three clock sources are described below:

- X1 8 MHz oscillator for the STM32L4S5VI microcontroller. This clock is not implemented in a basic configuration.
- X2 32.768 kHz crystal for the STM32L4S5VI embedded RTC
- X3 8 MHz clock from the ST-LINK MCU for the STM32L4S5VIT6 microcontroller.

6.5 Reset sources

The reset signal of the B-L4S5I-IOT01A Discovery kit for the IoT node is active LOW and the reset sources include:

- A reset button B1
- An ARDUINO® Uno V3 shield board from CN2
- An embedded ST-LINK/V2-1

6.6 USB OTG FS

The B-L4S5I-IOT01A Discovery kit for the IoT node supports USB OTG full-speed communications via the CN9 USB Micro-AB connector.

To do this, the following components must be added by the user:

- 8 MHz crystal (at X1 position). Reference is NX3225GD-8.00M
- 8.2 pF capacitor (0402 size) at the C2 position
- 8.2 pF capacitor (0402 size) at the C4 position
- 0-ohm resistor (0402 size) at the R5 position
- 0-ohm resistor (0402 size) at the R7 position

The B-L4S5I-IOT01A Discovery kit for the IoT node can be powered by the USB connectors at 5 V DC with 500 mA current limitation. A USB power switch (IC19) is also connected to V_{BUS} and provides power to CN9. The green LED LD9 is lit when either:

- The power switch is ON and the B-L4S5I-IOT01A Discovery kit for the IoT node works as a USB host,
- Or V_{BUS} is powered by another USB host when the B-L4S5I-IOT01A Discovery kit for the IoT node works as a USB device.

The red LED LD8 is lit when an over-current occurs.

6.7 Quad-SPI NOR Flash memory

64-Mbit Quad-SPI NOR Flash memory is connected to the Quad-SPI interface of the STM32L4S5VI microcontroller.

UM2708 - Rev 2 page 16/41

6.8 Virtual COM port

The serial interface USART1 is directly available as a Virtual COM port of the PC connected to the ST-LINK/V2-1 USB connector CN7. The Virtual COM port settings are configured with 115200 bps, 8-bit data, no parity, one-stop bit, and no flow control.

6.9 RF modules

Three RF interfaces are available on the B-L4S5I-IOT01A board:

- 1. Bluetooth® (V4.1 compliant) SPBTLE-RF module,
- 2. 802.11 b/g/n compliant Wi-Fi® module ISM43362-M3G-L44 from Inventek Systems,
- 3. Dynamic NFC TAG based on ST25DV04K with its printed NFC antenna (Double layer inductive antenna etched on the PCB).

6.9.1 Bluetooth® module

An M1 Bluetooth[®] module is implemented on the top side of the B-L4S5I-IOT01A Discovery kit for the IoT node. This Bluetooth[®] module can be either:

- An SPBTLE RF module on MB1297-L4S5VI-E02 revision (BL4S5IIO01A\$CU2),
- Or a BlueNRG-M0 module on MB1297-L4S5VI-E03 revision (BL4S5IIO01A\$CU3).

These Bluetooth[®] modules are easy to use Bluetooth[®] smart master-slave network processor modules, respectively compliant with Bluetooth[®] V4.1 for the SPBTLE RF module and Bluetooth[®] V4.2 for the BlueNRG-M0 module. These Bluetooth[®] modules simultaneously support multiple roles and can act at the same time as Bluetooth[®] Smart sensor and hub device.

The entire Bluetooth[®] low-energy stack and protocol are embedded into the modules. The external host application processor, where the application resides, is connected to the Bluetooth[®] module through a standard SPI interface (SPI3 of STM32L4S5VI).

The Bluetooth® modules provide a complete RF platform in a tiny form factor (Footprint of this module is 13.5 mm x 11.5 mm). Radio, antenna, high frequency, and LPO oscillators are integrated to offer a certified solution to optimize the time to market of the final applications.

Figure 13. SPBTLE-RF module

Figure 14. BlueNRG-M0 module

UM2708 - Rev 2 page 17/41

6.9.2 Inventek Systems ISM43362-M3G-L44 (802.11 b/g/n compliant Wi-Fi® module)

The Inventek Systems ISM43362-M3G-L44 module (M2) is implemented on the top side of the B-L4S5I-IOT01A Discovery kit for the IoT node This module is an embedded (eS-WiFi) wireless Internet Connectivity device. The Wi-Fi® hardware module consists of an Arm® Cortex®-M3 STM32 host processor, an integrated antenna (or optional external antenna), and a Broadcom Wi-Fi device. The module uses either a UART or an SPI interface (UART3 or SPI3 of STM32L4S5VI). By default, an SPI interface is used, as the corresponding firmware (for SPI capability) is downloaded on the Wi-Fi® ISM43362-M3G-L44 module. The Wi-Fi® module requires no operating system and has a completely integrated TCP/IP stack that only requires AT commands to establish connectivity for a wireless product. The footprint of this module is 14.5 mm x 30 mm.

Figure 15. ISM43362-M3G-L44 module

On MB1297 revision E, the firmware revision inside the Wi-Fi[®] module must be C3.5.2.5.STM. The Wi-Fi[®] module maximum output power is limited to 9 dBm to fulfill FCC/IC/CE requirements. A Wi-Fi[®] output power higher than 9 dBm at the Wi-Fi[®] antenna is prohibited.

Note: Since Wi-Fi[®] and Bluetooth[®] Low Energy modules are using the same frequency ISM band (2.4 GHz to 2.485 GHz), the simultaneous activity of both modules may affect the RF performances of Wi-Fi[®] or Bluetooth[®] Low Energy (in terms of range or throughput).

6.9.3 Dynamic NFC TAG based on ST25DV04K with its printed NFC antenna

The ST25DV04K device is an NFC RFID TAG offering 4 Kbit of electrically erasable programmable memory (EEPROM). ST25DV04K offers two interfaces. The first one is an I²C serial link and can be operated from a DC power supply. The second one is an RF-link activated when ST25DV04K acts as a contactless memory powered by the received carrier electromagnetic wave.

In I 2 C mode, the ST25DV04K user memory contains up to 512 bytes which could be split into four flexible and protectable areas. In RF mode, following ISO/IEC 15693 or NFC forum type 5 recommendations, ST25DV04K user memory contains up to 128 blocks of 4 bytes which can be split into four flexible and protectable areas.

Note: The hardware layout is ready to support a Sub-GHz low-power-programmable RF module (SPSGRF-868 or SPSGRF-915). The footprint is implemented (M3 designation), but no module is soldered.

UM2708 - Rev 2 page 18/41

6.10 STMicroelectronics sensors

Several STMicroelectronics sensors are available on the B-L4S5I-IOT01A Discovery kit for the IoT node and are listed below:

- Two on-board ST-MEMS audio sensor omnidirectional digital microphones (MP34DT01)
- Capacitive digital sensor for relative humidity and temperature (HTS221)
- High-performance 3-axis magnetometer (LIS3MDL)
- 3D accelerometer and 3D gyroscope (LSM6DSL)
- 260 hPa to 1260 hPa absolute digital output barometer (LPS22HB)
- Time-of-Flight and gesture detection sensor (VL53L0X)

6.10.1 Two on-board ST-MEMS microphones ((I)MP34DT0x)

The microphones implemented on the B-L4S5I-IOT01A Discovery kit for the IoT node can be either:

- MP34DT01 on MB1297-L4S5VI-E02 revision (BL4S5IIO01A\$CU2),
- Or IMP34DT05 on MB1297-L4S5VI-E03 revision (BL4S5IIO01A\$CU3).

These microphones are ultra-compact, low-power, omnidirectional, digital ST-MEMS microphones built with a capacitive sensing element and an IC interface.

On the B-L4S5I-IOT01A Discovery kit for the IoT node, there are two (I)MP34DT0x microphones: one with LR pulled to VDD and the second with LR pulled Iow. DFSDM1_CKOUT and DFSDM1_DATIN2 are connected to both. In addition, both microphones are spaced at 21 mm apart for the beamforming algorithm to work. Indeed, several algorithm configurations are available for the user to find the best trade-off between audio output quality and resource consumption. For more details, refer to the user manual STEVAL-IHM038V1: 3-phase BLDC/PMSM motor drive up to 50 W, suitable for fan controllers (UM1697) on the www.st.com website.

The (I)MP34DT0x microphones are available in an HCLGA (3 mm x 4 mm x 1 mm) 4LD package, in a top-port design, SMD-compliant, EMI-shielded package, and are guaranteed to operate over an extended temperature range from -40 to +85 °C.

6.10.2 Capacitive digital sensor for relative humidity and temperature (HTS221)

HTS221 is an ultra-compact sensor for relative humidity and temperature. It includes a sensing element and a mixed-signal ASIC to provide the measurement information through digital serial interfaces.

The HTS221 is available in a small top-holed cap land grid array (HLGA-6L 2 mm \times 2 mm \times 0.9 mm) package guaranteed to operate over a temperature range from -40 to +120 °C.

6.10.3 High-performance 3-axis magnetometer (LIS3MDL)

LIS3MDL is an ultra-low-power high-performance three-axis magnetic sensor.

LIS3MDL includes an I²C serial bus interface, that supports standard and fast mode (100 and 400 kHz), and an SPI serial standard interface. On the B-L4S5I-IOT01A Discovery kit for the IoT node, the I2C2 bus from STM32L4S5VIT6 is used. LIS3MDL is available in a small thin plastic land grid array LGA-12 package (2.0 mm x 2.0 mm x 1.0 mm) and is guaranteed to operate over an extended temperature range of -40 to +85 °C.

6.10.4 3D accelerometer and 3D gyroscope (LSM6DSL)

LSM6DSL is a system-in-package featuring a 3D digital accelerometer and a 3D digital gyroscope performing at 0.65 mA in high-performance mode and enabling always-on low-power features for an optimal motion experience for the consumer.

The registers embedded inside the LSM6DSL may be accessed through both the I²C and SPI serial interfaces. On the B-L4S5I-IOT01A Discovery kit for the IoT node, the I2C2 bus from STM32L4S5VIT6 is used.

LSM6DSL is available in a plastic land grid array LGA-14L (2.5x3x0.83mm).

6.10.5 260 hPa to 1260 hPa absolute digital output barometer (LPS22HB)

The absolute pressure-sensing device LPS22HB is an ultra-compact piezoresistive sensor that functions as a digital output barometer.

The device comprises a sensing element and an IC interface that communicates from the sensing element to the application through I2C or SPI. On the B-L4S5I-IOT01A Discovery kit for the IoT node, the I2C2 bus from STM32L4S5VIT6 is used.

UM2708 - Rev 2 page 19/41

6.10.6 Time-of-Flight and gesture detection sensor (VL53L0X)

VL53L0X is a new generation Time-of-Flight (ToF) laser-ranging module housed in a small package, providing accurate distance measurement whatever the target reflectance, unlike conventional technologies. It can measure absolute distances up to two meters, setting a new benchmark in ranging performance levels, opening the door to various new applications.

VL53L0x is a Class 1 laser device compliant with the latest standard IEC 60825-1:2014 - 3rd edition. The laser output remains within Class 1 limits as long as the STMicroelectronics recommended device settings are used and the operating conditions, specified in the STM32L4+ datasheets, are respected. The laser output power must not be increased by any means and no optics may be used to focus the laser beam. Figure 16 shows the warning label for Class 1 laser products.

Figure 16. Label for Class 1 laser products

6.11 STSAFE-A110

STSAFE-A110 is a highly secure solution that acts as a secure element, providing authentication and data management services to a local or remote host. It consists of a full turnkey solution with a secure operating system running on the latest generation of secure microcontrollers. STSAFE-A110 can be integrated into IoT (Internet of things) devices, smart-home, smart-city and industrial applications, consumer electronics devices, consumables, and accessories.

6.12 Buttons and LEDs

The black button (B1) located on the middle left side is the reset of the STM32L4S5VIT6 microcontroller. Refer to Figure 3. B-L4S5I-IOT01A Discovery kit for the IoT node layout (top view).

The blue button (B2) located on the top left side is available to be used as a digital input or as an alternate wake-up function.

When the button is depressed the logic state is LOW, otherwise, the logic state is HIGH.

Two green LEDs (LD1 and LD2), located on the top middle side are available for the user. To light a LED a high logic state HIGH must be written in the corresponding GPIO. Table 2 gives the assignment of the control ports to the LED indicators.

UM2708 - Rev 2 page 20/41

Two LEDs located on the top side, the red LD2 and the green LD1 (Refer to Figure 2), are available for the user. To light a LED, a low-logic state HIGH must be written in the corresponding GPIO register. Table 4 shows the assignment of the control ports to the LED indicators.

Reference Color Name Comment В1 Black Reset B2 Blue Wake-up Wake-up alternate function PA5 (Alternate with ARD.D13) LD1 Green LED1 LED2 PB14 LD2 Green LD3 Yellow LED3 (Wi-Fi®) PC9, Wi-Fi® activity LD4 Blue LED4 (BLE) PC9, Bluetooth® activity LD5 Green 5V Power 5 V available ST-LINK COM LD6 Bicolor (Red and green) Green during communication Fault Power Current higher than 750 mA LD7 Red V_{BUS} OCRCR PE3 LD8 Red 5 V USB available LD9 Green V_{BUS} OK

Table 4. Button and LED control port

6.13 I²C addresses of modules used on MB1297

Table 5 displays the I²C read and write addresses for the modules that are connected to the I2C2 bus.

Modules	Description	SAD[6:0] + R/W	I2C write address	I2C read address
HTS221	Capacitive digital sensor for relative humidity and temperature	1011111x	0xBE	0xBF
LIS3MDL	3-axis magnetometer	0011110x	0x3C	0x3D
LPS22HB	MEMS nano pressure sensor	1011101x	0xBA	0xBB
LSM6DSL	3D accelerometer and 3D gyroscope	1101010x	0xD4	0xD5
VL53L0X	Time-of-Flight ranging and gesture detection sensor	0101001x	0x52	0x53
ST25DV04K	Dynamic NFC/RFID TAG IC	1010x11x	0xAE for system area	0xAF for system area
0123DV04K	Dynamic NPC/RPID TAG IC	10100110	0xA6 for user memory	0xA7 for user memory
STSAFE-A110	Highly secure solution	0100000x	0x40	0x41

Table 5. I²C addresses for each module

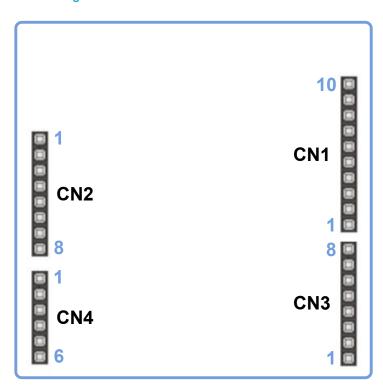
UM2708 - Rev 2 page 21/41

7 Connectors

Nine connectors are implemented on the B-L4S5I-IOT01A Discovery kit for the IoT node:

- CN1, CN2, CN3, and CN4 for ARDUINO® Uno V3 connector
- CN5: TAG connector
- CN7: ST-LINK USB connector
- CN8: ST-LINK debug connector
- CN9: USB_OTG_FS connector
- CN10: Pmod[™] connector.

In addition, one jumper JP5 is used for I_{DD} measurements.


7.1 ARDUINO® Uno V3 connectors

CN1, CN2, CN3, and CN4 are female connectors (SMD component devices) compatible with ARDUINO[®] Uno V3. Most shields designed for ARDUINO[®] can fit the B-L4S5I-IOT01A Discovery kit for the IoT node.

Example connector references (Refer to Figure 17):

- CN4: Header 6X1 Female SMD
- CN3: Header 8X1_Female_SMD
- CN2: Header 8X1_Female_SMD
- CN1: Header 10X1_Female_SMD

Figure 17. ARDUINO® Uno V3 connectors

UM2708 - Rev 2 page 22/41

Table 6. ARDUINO® connector pinout

Connector	Pin number	Pin name	Signal name	STM32L 4+ pin	Function
	1	E5V	-	-	-
	2	IOREF	-	-	3.3 V reference
	3	NRST	STM_NRST	NRST	Reset
ONO	4	3.3V	-	-	3.3 V I/O
CN2	5	5V	-	-	5 V
	6	GND	-	-	GND
	7	GND	-	-	GND
	8	VIN	-	-	Power input
	1	A0	ARD.A0-ADC	PC5	ADC
	2	A1	ARD.A1-ADC	PC4	ADC
CNIA	3	A2	ARD.A2-ADC	PC3	ADC
CN4	4	A3	ARD.A3-ADC	PC2	ADC
	5	A4	ARD.A4-ADC	PC1	ADC / I2C3_SDA
	6	A5	ARD.A5-ADC	PC0	ADC / I2C3_SCL
	10	SCL / D15	ARD.D15-I2C1_SCL	PB8	I2C1_SCL
	9	SDA / D14	ARD.D14-I2C1_SDA	PB9	I2C1_SDA
	8	AVDD	VDDA	-	VDDA
	7	GND	GND	-	Ground
CN1	6	SCK / D13	ARD.D13-SPI1_SCK / LED1	PA5	SPI1_SCK / LED1
CIVI	5	MISO / D12	ARD.D12-SPI1_MISO	PA6	SPI1_MISO
	4	PWM / MOSI / D11	ARD.D11-SPI1_MISO / PWM	PA7	SPI1_MOSI / TIMxx
	3	PWM / CS / D10	ARD.D10-SPI_SSN / PWM	PA2	TIM2_CH3
	2	PWM / D9	ARD.D9-PWM	PA15	TIM2_CH1
	1	D8	ARD.D8	PB2	GPIO
	8	D7	ARD.D7	PA4	GPIO
	7	PWM / D6	ARD.D6-PWM	PB1	TIM3_CH4
	6	PWM / D5	ARD.D5-PWM	PB4	TIM3_CH1
CNIS	5	D4	ARD.D4	PA3	TIMxx
CN3	4	PWM / D3	ARD.D3-PWM / INT1_EXTI0	PB0	TIM3_CH3 / EXTI0
	3	D2	ARD.D2-INT0_EXTI14	PD14	EXTI14
	2	TX / D1	ARD.D1-UART4_TX	PA0	UART4_TX
	1	RX / D0	ARD.D0-UART4_RX	PA1	UART4_RX

UM2708 - Rev 2 page 23/41

7.2 CN5 TAG connector

The TAG connector is implemented on the B-L4S5I-IOT01A Discovery kit for the IoT node. The TAG connector is a 10-pin footprint supporting SWD mode, which is shared with the same signals as the ST-LINK. The TC2050-IDC-NL cable is used to link ST-LINK and TAG connector on the B-L4S5I-IOT01A Discovery kit for the IoT node so that the STM32L4+ can be easily programmed and debugged without any extra accessory.

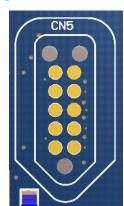


Figure 18. TAG connector

Figure 19. TC2050-IDC-NL cable

Table 7. TAG connector pinout

Connector	Pin number	Pin name	Signal name	STM32L 4+ pin	Function
	1	3.3V	3V3_ST_LINK	-	Power
	2	SWD	SYS_JTMS-SWDIO	PA13	Serial wire data I/O
	3	GND	-	-	Ground
	4	SWCLK	SYS_JTCK-SWCLK	PA14	Serial wire clock
CN5	5	GND	-	-	Ground
CNS	6	SWO	STLINK_JTDO_SWO	PB3	Serial wire output
	7	NC	-	-	-
	8	NC	-	-	-
	9	NC	-	-	-
	10	NRST	STM_NRST	NRST	RESET

UM2708 - Rev 2 page 24/41

Ground

7.3 ST-LINK/V2-1 USB Micro-B

The USB connector is used to connect the embedded ST-LINK/V2-1 to the PC to program and debug the STM32L4S5VIT6 microcontroller.

STM32L Pin Connector Pin name Signal name **Function** number 4+ pin 5V power and 5V_USB_ST_LINK 1 V_{BUS} detection USB differential pair 2 DM USB_STLK_N **PA11** M CN7 USB differential pair 3 DP USB_STLK_P PA12 **USB** identification 4 ID USB_STLK_ID

Table 8. USB Micro-B connector pinout

7.4 ST-LINK debug connector CN8

5

GND

The ST-LINK debug connector is a 1x4-pin, 2.54 mm pitch male connector. It provides access to the embedded SWJ-DP interface of the STM32F103CBT6 MCU. This SWJ-DP interface is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe, to be connected to the target.

Connector	Pin number	Pin name	STM32F103CBT6	Function
	1	3V3_ST_LINK	$V_{BAT}, V_{DDA}, V_{DD_1}, V_{DD_2}, V_{DD_3}$	3.3 V voltage supply
CN7	2	STM_JTCK		TCK / SWCLK
OIV/	3	GND		GND
	4	STM_JTMS		JTMS / SWDIO

Table 9. ST-LINK debug connector pinout

7.5 USB OTG FS Micro-AB

Connector	Pin number	Pin name	Signal name	STM32L 4+ pin	Function
	1	V _{BUS}	USB_OTG_5V_VBUS	PA9	5V power and detection
	2	DM	USB_OTG_FS_DM	PA11	USB differential pair M
CN9	3	DP	USB_OTG_FS_DP	PA12	USB differential pair P
	4	ID	USB_OTG_FS_ID	PA10	USB identification
	5	GND	-	-	Ground

Table 10. USB OTG FS Micro-AB connector pinout

Table 11. USB OTG FS power management

Pin number	Pin name	Signal name	STM32L4+ pin	Function
IC19-3	FAULTn	USB_OTG_FS_OVRCR_EXTI3	PE3	Overcurrent IT
IC19-4	ENn	USB_OTG_FS_PWR_EN	PD12	USB power enable

UM2708 - Rev 2 page 25/41

7.6 Pmod™ connector CN10

On the B-L4S5I-IOT01A Discovery kit for the IoT node, the Pmod $^{\text{TM}}$ connector provides flexibility in small form factor applications. Based on Digilent's Pmod $^{\text{TM}}$ standard popular in connectivity, the Pmod $^{\text{TM}}$ connector is implemented in types 2A and 4A. The related STM32L475VG I/Os for the Pmod $^{\text{TM}}$ function are listed in Table 12. The Pmod $^{\text{TM}}$ connector is 2x6-pin with a 2.54 mm pitch and right angle female connector.

UM2708 - Rev 2 page 26/41

UM2708

7.7 Jumper JP5 for I_{DD} measurements

The STM32 current measurement can be done on JP5. By default, a jumper is placed on JP5. For the current measurement configuration, the jumper on JP5 must be removed and an amp-meter must be placed on JP5.

UM2708 - Rev 2 page 28/41

B-L4S5I-IOT01A Discovery kit for the IoT node information

8.1 Product marking

The stickers located on the top or bottom side of the PCB provide product information:

- Product order code and product identification for the first sticker
- · Board reference with revision, and serial number for the second sticker

On the first sticker, the first line provides the product order code, and the second line the product identification.

On the second sticker, the first line has the following format: "MBxxxx-Variant-yzz", where "MBxxxx" is the board reference, "Variant" (optional) identifies the mounting variant when several exist, "y" is the PCB revision and "zz" is the assembly revision, for example B01. The second line shows the board serial number used for traceability.

Evaluation tools marked as "ES" or "E" are not yet qualified and therefore not ready to be used as reference design or in production. Any consequences deriving from such usage will not be at ST charge. In no event, ST will be liable for any customer usage of these engineering sample tools as reference designs or in production.

"E" or "ES" marking examples of location:

- On the targeted STM32 that is soldered on the board (For an illustration of STM32 marking, refer to the STM32 datasheet "Package information" paragraph at the www.st.com website).
- Next to the evaluation tool ordering part number that is stuck or silk-screen printed on the board.

Some boards feature a specific STM32 device version, which allows the operation of any bundled commercial stack/library available. This STM32 device shows a "U" marking option at the end of the standard part number and is not available for sales.

In order to use the same commercial stack in his application, a developer may need to purchase a part number specific to this stack/library. The price of those part numbers includes the stack/library royalties.

8.2 B-L4S5I-IOT01A product history

8.2.1 Product identification BL4S5IIO01A\$CU2

This product identification is composed of the MB1297 revision E02 B-L4S5I-IOT01A board with an SPBTLE RF Bluetooth® module.

This product embeds the STM32L4S5VI device with revision code "W". The limitations of this revision are detailed in the errata sheet STM32L4Rxxx and STM32L4Sxxx device errata (ES0393).

Product limitations

The maximum output power of the Wi-Fi[®] is limited to 9 dBm to fulfill FCC, ISED, and CE requirements. A Wi-Fi[®] output power higher than 9 dBm at the Wi-Fi[®] antenna is prohibited.

8.2.2 Product identification BL4S5IIO01A\$CU3

This product identification is composed of the MB1297 revision E03 B-L4S5I-IOT01A board with a BlueNRG-M0 Bluetooth® module.

This product embeds the STM32L4S5VI device with revision code "W". The limitations of this revision are detailed in the errata sheet STM32L4Rxxx and STM32L4Sxxx device errata (ES0393).

Product limitations

The maximum output power of the Wi-Fi[®] is limited to 9 dBm to fulfill FCC, ISED, and CE requirements. A Wi-Fi[®] output power higher than 9 dBm at the Wi-Fi[®] antenna is prohibited.

8.3 Board revision history

8.3.1 Board MB1297 revision E02

The revision E02 is the first official release of the MB1297 board with an SPBTLE RF Bluetooth® module.

UM2708 - Rev 2 page 29/41

Board limitations

No limitation identified for this board revision.

8.3.2 Board MB1297 revision E03

The revision E03 is the first official release of the MB1297 board with a BlueNRG-M0 Bluetooth $^{\circledR}$ module.

Board limitations

No limitation identified for this board revision.

UM2708 - Rev 2 page 30/41

Appendix A B-L4S5I-IOT01A Discovery kit for the IoT node I/O assignment

Table 13. B-L4S5I-IOT01A Discovery kit for the IoT node I/O assignment

Pin number	nber Pin name Feature / comment		Signal / label
1	PE2	GPIO_Output	ST25DV04K RF_DISABLE
2	PE3	GPIO_EXTI3	USB_OTG_OVRCR_EXTI3
3	PE4	GPIO_EXTI4	ST25DV04K GPO
4	PE5	GPIO_EXTI5	SPSGRF-915-GPIO3_EXTI5
5	PE6	GPIO_EXTI6	SPBTLE-RF-IRQ_EXTI6
6	V_{BAT}	Voltage supply	V_{BAT}
7	PC13	GPIO_EXTI13	BUTTON_EXTI13
8	PC14 / OSC32_IN	RTC CLK	RCC_OSC32_IN
9	PC15 / OSC32_OUT	RTC CLK	RCC_OSC32_OUT
10	V _{SS}	GND	GND
11	V_{DD}	3.3 V	V _{DD_MCU}
12	PH0 / OSC_IN	8 MHz CLK	RCC_OSC_IN
13	PH1 / OSC_OUT	8 MHz CLK	RCC_OSC_OUT
14	NRST	Reset	STM_NRST
15	PC0	ADC1_IN1	ARD.A5-ADC
16	PC1	ADC1_IN2	ARD.A4-ADC
17	PC2	ADC1_IN3	ARD.A3-ADC
18	PC3	ADC1_IN4	ARD.A2-ADC
19	V _{SSA}	GND	GND
20	V _{REF-}	GND	GND
21	V _{REF+}	3.3 V	V_{DDA}
22	V_{DDA}	3.3 V	V_{DDA}
23	PA0	UART4-TX	ARD.D1-UART4_TX
24	PA1	UART4-RX	ARD.D0-UART4_RX
25	PA2	TIM2_CH3	ARD.D10-SPI_SSN/PWM
26	PA3	GPIO_Output	ARD.D4
27	V _{ss}	GND	V _{SS}
28	V _{DD}	3.3 V	V _{DD_MCU}
29	PA4	GPIO_Output	ARD.D7
30	PA5	SPI1_SCK	ARD.D13-SPI1_SCK / LED1
31	PA6	SPI1_MISO	ARD.D12-SPI1_MISO
32	PA7	SPI1_MOSI	ARD.D11-SPI1_MOSI / PWM
33	PC4	ADC1_IN13	ARD.A1-ADC
34	PC5	ADC1_IN14	ARD.A0-ADC
35	PB0	TIM3_CH3	ARD.D3-PWM / INT1_EXTI0
36	PB1	TIM3_CH4	ARD.D6-PWM
37	PB2	GPIO_Output	ARD.D8

UM2708 - Rev 2 page 31/41

n number	Pin name	Feature / comment	Signal / label
38	PE7	MEMS microphone	DFSDM1_DATIN2
39	PE8	GPIO_Output	ISM43362-RST
40	PE9	MEMS microphone	DFSDM1_CKOUT
41	PE10	QSPI NOR Flash memory	QUADSPI_CLK
42	PE11	QSPI NOR Flash memory	QUADSPI_NCS
43	PE12	QSPI NOR Flash memory	QUADSPI_BK1_IO0
44	PE13	QSPI NOR Flash memory	QUADSPI_BK1_IO1
45	PE14	QSPI NOR Flash memory	QUADSPI_BK1_IO2
46	PE15	QSPI NOR Flash memory	QUADSPI_BK1_IO3
47	PB10	I2C2_SCL	INTERNAL-I2C2_SCL
48	PB11	I2C2_SDA	INTERNAL-I2C2_SDA
49	V _{SS}	GND	V _{SS}
50	V_{DD}	3.3 V	V _{DD_MCU}
51	PB12	GPIO_Output	ISM43362-BOOT0
52	PB13	GPIO_Output	ISM43362-WAKEUP
53	PB14	GPIO Output	LED2
54	PB15	GPIO_Output	SPSGRF-915-SDN
55	PD8	USART3_TX	INTERNAL-UART3_TX
56	PD9	USART3_RX	INTERNAL-UART3_RX
57	PD10	GPIO_EXTI10	LPS22HB_INT_DRDY_EXTI10
58	PD11	GPIO_EXTI11	LSM6DSL_INT1_EXTI11
59	PD12	GPIO_EXTI12	USB_OTG_FS_PWR_EN
60	PD13	GPIO_Output	SPBTLE-RF-SPI3_CSN
61	PD14	GPIO_EXTI14	ARD.D2-INT0_EXTI14
62	PD15	GPIO_EXTI15	HTS221_DRDY_EXTI15
63	PC6	GPIO_Output	VL53L0X_XSHUT
64	PC7	GPIO_EXTI17	VL53L0X_GPIO1_EXTI7
65	PC8	GPIO_EXTI18	LIS3MDL_DRDY_EXTI8
66	PC9	GPIO_EXTI9	LED3 (Wi-Fi®) & LED4 (BLE)
67	PA8	GPIO_Output	SPBTLE-RF-RST
68	PA9	USB_OTG	USB_OTG_FS_VBUS
69	PA10	USB_OTG	USB_OTG_FS_ID
70	PA11	USB_OTG	USB_OTG_FS_DM
71	PA12	USB_OTG	USB_OTG_FS_DP
72	PA13	ST-LINK	SYS_JTMS-SWDIO
73	V _{DDUSB}	3.3 V	V _{DD_MCU}
74	V _{SS}	GND	GND
75	V _{DD}	3.3 V	
			V _{DD_MCU}
76	PA14	ST-LINK	SYS_JTCK-SWCLK
77	PA15	TIM2_CH1	ARD.D9-PWM

UM2708 - Rev 2 page 32/41

Pin number	Pin name	Feature / comment	Signal / label
79	PC11	SPI3_MISO	INTERNAL-SPI3_MISO
80	PC12	SPI3_MOSI	INTERNAL-SPI3_MOSI
81	PD0	GPIO_Output	PMOD-RESET
82	PD1	GPIO_Output	PMOD-SPI2_SCK
83	PD2	GPIO_EXTI2	PMOD-IRQ_EXTI2
84	PD3	USART2_CTS	PMOD-UART2_CTS/SPI2_MISO
85	PD4	USART2_RTS	PMOD-UART2_RTS/SPI2_MOSI
86	PD5	USART2_TX	PMOD-UART2_TX/SPI2_CSN
87	PD6	USART2_RX	PMOD-UART2_RX
88	PD7	GPIO_Output	STSAFE-A110-RESET
89	PB3	ST-LINK	SYS_JTDO-SWO
90	PB4	TIM3_CH1	ARD.D5-PWM
91	PB5	GPIO_Output	SPSGRF-915-SPI3_CSN
92	PB6	USART1_TX	ST-LINK-UART1_TX
93	PB7	USART1_RX	ST-LINK-UART1_RX
94	BOOT0	Boot	воото
95	PB8	I2C1_SCL	ARD.D15-I2C1_SCL
96	PB9	I2C1_SDA	ARD.D14-I2C1_SDA
97	PE0	GPIO_Output	ISM43362-SPI3_CSN
98	PE1	GPIO_EXTI1	ISM43362-DRDY_EXTI1
99	V _{SS}	GND	GND
100	V_{DD}	3.3 V	V _{DD_MCU}

UM2708 - Rev 2 page 33/41

Appendix B Federal Communications Commission (FCC) and Innovation, Science and Economic Development Canada (ISED) Compliance Statements

Applicable for IoT node Discovery kit products with order code B-L4S5I-IOT01A.

B.1 FCC Compliance Statement

FCC Compliance Statement

MB1297-L4S5VI-E02 revision (BL4S5IIO01A\$CU2):

- Contains FCC ID: O7P-362
- Contains FCC ID: S9NSPBTLERF

MB1297-L4S5VI-E03 revision (BL4S5IIO01A\$CU3):

- Contains FCC ID: O7P-362
- Contains FCC ID: S9NBNRGM0AL

This device complies with Part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) this device may not cause harmful interference, and (2) this device must accept any interference received, including interference that may cause undesired operation.

Part 15.21

Any changes or modifications to this equipment not expressly approved by STMicroelectronics may cause harmful interference and void the user's authority to operate this equipment.

Part 15.105

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates uses and can radiate radio frequency energy and, if not installed and used in accordance with the instruction, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception which can be determined by turning the equipment off and on, the user is encouraged to try to correct interference by one or more of the following measures:

- Reorient or relocate the receiving antenna.
- Increase the separation between the equipment and receiver.
- Connect the equipment into an outlet on circuit different from that to which the receiver is connected.
- Consult the dealer or an experienced radio/TV technician for help.

Note: Use only shielded cables.

Responsible party (in the USA)

Terry Blanchard

Americas Region Legal | Group Vice President and Regional Legal Counsel, The Americas

STMicroelectronics, Inc.

750 Canyon Drive | Suite 300 | Coppell, Texas 75019

Telephone: +1 972-466-7845

B.2 ISED Compliance Statement

ISED Compliance Statement

MB1297-L4S5VI-E02 revision (BL4S5IIO01A\$CU2):

- Contains/Contient IC: 10147A-362
- Contains/Contient IC: 8976C-SPBTLERF

UM2708 - Rev 2 page 34/41

MB1297-L4S5VI-E03 revision (BL4S5IIO01A\$CU3):

- Contains FCC ID: O7P-362
- Contains FCC ID: S9NBNRGM0AL

Compliance Statement

ISED Canada ICES-003 Compliance Label: CAN ICES-3 (B) / NMB-3 (B).

Licence-Exempt Radio Apparatus (ISED) This device contains licence-exempt transmitter(s)/receiver(s) that comply with Innovation, Science and Economic Development Canada's licence-exempt RSS(s). Operation is subject to the following two conditions:

- 1. This device may not cause interference.
- This device must accept any interference, including interference that may cause undesired operation of the device.

Déclaration de conformité

Étiquette de conformité à la NMB-003 d'Industrie Canada: CAN ICES-3 (B) / NMB-3 (B).

Appareils radio exempts de licence (ISDE) L'émetteur/récepteur exempt de licence contenu dans le présent appareil est conforme aux CNR d'Innovation, Sciences et Développement économique Canada applicables aux appareils radio exempts de licence. L'exploitation est autorisée aux deux conditions suivantes:

- 1. L'appareil ne doit pas produire de brouillage;
- 2. L'appareil doit accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.

RF exposure statement

To satisfy FCC and ISED Exposure requirements for mobile devices, a separation distance of 20 cm or more should be maintained between the antenna of this device and persons during operation. To ensure compliance, operation at closer than this distance is not recommended. This transmitter must not be co-located or operating in conjunction with any other antenna or transmitter.

Pour satisfaire aux exigences FCC et ISED concernant l'exposition aux champs RF pour les appareils mobiles, une distance de séparation de 20 cm ou plus doit être maintenu entre l'antenne de ce dispositif et les personnes pendant le fonctionnement. Pour assurer la conformité, il est déconseillé d'utiliser cet équipement à une distance inférieure. Cet émetteur ne doit pas être co-situé ou fonctionner conjointement avec une autre antenne ou un autre émetteur.

B.3 RED Compliance Statement

Déclaration de conformité CE simplifiée :

STMicroelectronics déclare que l'équipement radioélectrique du type "B-L4S5I-IOT01A Discovery kit" est conforme à la directive 2014/53/UE. Le texte complet de la déclaration UE de conformité est disponible à l'adresse internet suivante: www.st.com/en/product/b-l4s5i-iot01A.

Bande de fréquence utilisée en transmission et puissance maximale rayonnée dans cette bande :

- Bande de fréquence : 2400-2483.5 MHz (Bluetooth[®], Wi-Fi[®])
- Puissance maximale: 100 mW p.i.r.e

Simplified EC compliance statement

Hereby, STMicroelectronics declares that the radio equipment type "B-L4S5I-IOT01A Discovery kit" is in compliance with Directive 2014/53/EU. The full text of the EU declaration of conformity is available at the following internet address: www.st.com/en/product/b-l4s5i-iot01A.

Frequency range used in transmission and maximal radiated power in this range:

- Frequency range: 2400-2483.5 MHz (Bluetooth[®], Wi-Fi[®])
- Maximal power: 100 mW e.i.r.p

UM2708 - Rev 2 page 35/41

Revision history

Table 14. Document revision history

Date	Revision	Changes
17-Apr-2020	1	Initial release.
2-Dec-2021	2	Updated: Figure 2. Hardware block diagram Figure 12. Power tree Data brief detailed descriptions removed from sensor sections Section B.1 FCC Compliance Statement Section B.2 ISED Compliance Statement Added: Figure 14. BlueNRG-M0 module Section 8 B-L4S5I-IOT01A Discovery kit for the IoT node information Section B.3 RED Compliance Statement

UM2708 - Rev 2 page 36/41

Contents

1	Feat	ures		2
2	Orde	ring inf	ormation	3
	2.1	Codific	ation	3
3	Deve	elopmer	nt environment	4
	3.1	System	n requirements	4
	3.2	Develo	pment toolchains	4
	3.3	Demon	stration software	4
4	Conv	ventions	S	5
5	Deliv	ery rec	ommendations	6
6		-	yout and configuration	
	6.1		ded STLINK/V2-1	
		6.1.1	Drivers	
		6.1.2	ST-LINK/V2-1 firmware upgrade	11
	6.2	Power	supply	12
	6.3	Progra	mming and debugging when the power supply is not from ST-LINK (5V_ST_LINK	.) 16
	6.4	Clock s	source	16
	6.5	Reset s	sources	16
	6.6	USB O	TG FS	16
	6.7	Quad-S	SPI NOR Flash memory	16
	6.8	Virtual	COM port	17
	6.9	6.9 RF modules		
		6.9.1	Bluetooth® module	17
		6.9.2	Inventek Systems ISM43362-M3G-L44 (802.11 b/g/n compliant Wi-Fi® module)	18
		6.9.3	Dynamic NFC TAG based on ST25DV04K with its printed NFC antenna	18
	6.10	STMicr	oelectronics sensors	19
		6.10.1	Two on-board ST-MEMS microphones ((I)MP34DT0x)	19
		6.10.2	Capacitive digital sensor for relative humidity and temperature (HTS221)	19
		6.10.3	High-performance 3-axis magnetometer (LIS3MDL)	19
		6.10.4	3D accelerometer and 3D gyroscope (LSM6DSL)	19
		6.10.5	260 hPa to 1260 hPa absolute digital output barometer (LPS22HB)	
		6.10.6	Time-of-Flight and gesture detection sensor (VL53L0X)	
	6.11		E-A110	
	6.12	Buttons	s and LEDs	20
	6.13	I ² C add	dresses of modules used on MB1297	21

7	Con	nectors	8	22
	7.1	ARDU	JINO® Uno V3 connectors	22
	7.2	CN5 T	AG connector	24
	7.3	ST-LIN	NK/V2-1 USB Micro-B	25
	7.4	ST-LIN	NK debug connector CN8	25
	7.5	USB OTG FS Micro-AB		
	7.6	Pmod	™ connector CN10	26
	7.7	Jumpe	er JP5 for I _{DD} measurements	28
8	B-L4	IS5I-IO	T01A Discovery kit for the IoT node information	29
	8.1	Produ	ct marking	29
	8.2	B-L4S	5I-IOT01A product history	29
		8.2.1	Product identification BL4S5IIO01A\$CU2	29
		8.2.2	Product identification BL4S5IIO01A\$CU3	29
	8.3	Board	revision history	29
		8.3.1	Board MB1297 revision E02	29
		8.3.2	Board MB1297 revision E03	30
App	endix	A B-	L4S5I-IOT01A Discovery kit for the IoT node I/O assignment	31
App	endix Ecoi		deral Communications Commission (FCC) and Innovation, Some Development Canada (ISED) Compliance Statements	
	B.1	FCC (Compliance Statement	34
	B.2	ISED	Compliance Statement	34
	B.3	RED (Compliance Statement	35
Revi	ision	history	· ·	36
		-		
l ist	of fig	ures.		40

List of tables

Table 1.	Ordering information	. 3
Table 2.	Codification explanation	
Table 3.	ON/OFF convention	. 5
Table 4.	Button and LED control port	21
Table 5.	I ² C addresses for each module	21
Table 6.	ARDUINO® connector pinout	23
Table 7.	TAG connector pinout.	24
Table 8.	USB Micro-B connector pinout	25
Table 9.	ST-LINK debug connector pinout	25
Table 10.	USB OTG FS Micro-AB connector pinout	25
Table 11.	USB OTG FS power management	25
Table 12.	Pmod [™] solder bridge configuration	27
Table 13.	B-L4S5I-IOT01A Discovery kit for the IoT node I/O assignment	31
Table 14.	Document revision history	36

List of figures

Figure 1.	B-L4S5I-IOT01A Discovery kit for the IoT node	. 1
Figure 2.	Hardware block diagram	. 7
Figure 3.	B-L4S5I-IOT01A Discovery kit for the IoT node layout (top view)	. 8
Figure 4.	B-L4S5I-IOT01A Discovery kit for the IoT node layout (bottom view)	. 9
Figure 5.	B-L4S5I-IOT01A Discovery kit for the IoT node mechanical drawing in millimeters	10
Figure 6.	USB composite device	11
Figure 7.	JP4: 5V_ST_LINK selection	12
Figure 8.	JP4: 5V_ARD selection from CN6 (VIN)	13
Figure 9.	JP4: 5V_USB_FS	13
Figure 10.	JP4: 5V_VBAT	14
Figure 11.	JP4: 5V_USB_CHARGER selection	14
Figure 12.	Power tree	15
Figure 13.	SPBTLE-RF module	17
Figure 14.	BlueNRG-M0 module	17
Figure 15.	ISM43362-M3G-L44 module	18
Figure 16.	Label for Class 1 laser products	20
Figure 17.	ARDUINO® Uno V3 connectors	22
Figure 18.	TAG connector	24
Figure 19.	TC2050-IDC-NL cable	24

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics - All rights reserved

UM2708 - Rev 2 page 41/41