

User manual

Getting started with the S2-LP Sigfox firmware

Introduction

The S2-LP Sigfox firmware framework provided by ST allows you to develop embedded applications on the STEVAL-FKI868V2, STEVAL-FKI915V1, the X-NUCLEO-S2868A2 and the X-NUCLEO-S2915A1 platforms.

The package also includes the support for the STEVAL-IDB007V2 and STEVAL-IDB008V2 kits to be used with the shields included in the above mentioned kits. This enables the support for BlueNRG-1 and BlueNRG-2 System-on Chip. STEVAL-FKI001V1 and the STDES-MONARCH are also supported with dedicated firmware binaries and configurations.

You should first read user manual UM2169 Getting started with the Sigfox S2-LP kit, which explains how to prepare the board with a Sigfox ID/PAC/KEY and to register the node on your backend account.

1 Hardware requirements

A Windows® PC with:

- 2 USB ports
- 135 MB free hard disk space

At least one of the following ST evaluation kits:

- STEVAL-FKI868V2 or X-NUCLEO-S2868A2 (for RC1, RC3, RC5 and RC6) kit with STM32 Nucleo-64 development board or STEVAL-IDB007V2/IDB008V2 board
- STEVAL-FKI915V1 or X-NUCLEO-S2915A1 (for RC2 and RC4) with STM32 Nucleo-64 development board or STEVAL-IDB007V2/IDB008V2 board
- STEVAL-FKI001V1 development kit

UM2173 - Rev 7 page 2/23

Firmware architecture

The firmware consists of stacked modules in a framework where each module demands the implementation of lower level functions from the module beneath it.

Figure 1. Sigfox firmware application **User Application** Sigfox APIs ST retriever Monarch rf_api nvm_api mcu api lib lib ST sw layer MCU + S2LP (Software Drivers) MCU + S2LP (Hardware)

2.1 RF_API

The rf ap library is responsible of the S2-LP configuration and implementation of the modulation scheme. This library drives the S2-LP according to the Sigfox modulation protocol:

- DBPSK for uplink (14dBm at 100bps for RC1/3/5, 22dBm at 600bps for RC2/4)
- 2GFSK. BT=1 for downlink

The channel frequency, datarate and other relevant parameters depend on the applicable radio control zone (RC). Exported callbacks are:

UM2173 - Rev 7 page 3/23

Name	Argument	Description
ST_RF_API_S2LP_IRQ_CB	None	The RF_API module configures the S2-LP to raise interrupts and to notify them on a GPIO. When the interrupt of this GPIO is raised, this function must be called
ST_RF_API_Timer_CB	state: 0 for timer start, 1 for timer stop	This callback must be called when the timer started by the MCU_API_timer_start expires.
ST_RF_API_Timer_Channel_Clear_CB	None	This callback must be called when the timer started by the MCU_API_timer_start_Carrier_sense expires

2.2 NVM API

This is the layer use to read/write in FLASH or EEPROM all the information handled by the Sigfox library (for example messages counter).

Main functions are:

Name	Argument	Description
	nAddress: read start address	
NVM_Read	cNbBytes: number of bytes to read pcBuffer: returned buffer	Read a buffer from NVM
	nAddress: write start address	
	cNbBytes: number of bytes to write	
NVM_Write	<pre>pcBuffer: data to write writeMode: write mode operation type (Writeover/Erase)</pre>	Writes a buffer into NVM
NVM_UpdateOffset	updateWhat: offset to update data: new value	Update Board Offsets (Frequency, RSSI and LBT offset)

2.3 MCU_API

If the platform changes, but the processor type remains the same, you only need to re-implement the MCU_API module. This means that the framework can easily be ported to another board equipped with a microprocessor of the same type but with a different pinout by simply re-implementing this module.

Main functions are:

UM2173 - Rev 7 page 4/23

Name	Argument	Description
MCU_API_delay	delay_type: the type of delay (SFX_DLY_INTER_FRAME_TRX, SFX_DLY_INTER_FRAME_TX, SFX_DLY_CS_SLEEP, SFX_DLY_OOB_ACK)	Inter stream delay, called between each RF_API_send
MCU_API_timer_start_carrie r_sense	time_duration_in_ms: Timer value in milliseconds	Start timer for carrier sense maximum window (used in ARIB standard)
MCU_API_timer_start	time_duration_in_s: Timer value in seconds	Start timer for in second duration
MCU_API_timer_stop	None	Stop the timer (started with MCU_API_timer_start)
MCU_API_timer_stop_carrier _sense	None	Stop the timer (started with MCU_API_timer_start_carrier_sense)
MCU_API_timer_wait_for_end	None	Blocking function to wait for interrupt indicating timer elapsed. This function is only used for the 20 seconds wait in downlink

2.4 ST retriever lib

This module is in charge of perform all the encryption routines and to retrieve the credentials from the device. Main funcions are:

Name	Argument	Description
	id: the ID stored in EEPROM	Retrieve the ID, PAC and RCZ number
enc_utils_retrieve_data	pac: the PAC stored in EEPROM rcz: the RC Zone stored in EEPROM	of the board stored into the EEPROM and returns it to the caller
enc_utils_retrieve_data_fr	nvmBoardData: ID, PAC, RCZ and offset stored into the FLASH	Retrieve the Sigfox credentials and all
om_flash	UIDAddress: address of the MCU UID	the offset stored in FLASH
	UIDLen: Length of the MCU ID	
enc_utils_set_test_key	en: 1 -> enable; 0 -> disable	Switch the to the test KEY 0x0123456789ABCDEF0123456789AB CDEF

2.5 ST Monarch lib

This module performs all the operation to scan the air and detect Sigfox Monarch beacons. Main functions are:

UM2173 - Rev 7 page 5/23

Name	Argument	Description
	rc_capabilities_bit_mask: Bit Mask (see table XX) of the RCx on which the scan has to be executed	
SIGFOX_MONARCH_API_execute _rc_scan	timer: Scan duration value	This function executes a scan of the air
	unit: Unit to be considered for the scan time computation app_callback_handler: this is the function that will be called by the Sigfox Library when the scan is completed	to detect a Sigfox Beacon
SIGFOX_MONARCH_API_stop_rc _scan	None	This function stops a RC scan which is on going

UM2173 - Rev 7 page 6/23

3 Application development

Embedded applications using the Sigfox framework call SIGFOX_APIs to manage communication.

Table 1. Application level Sigfox APIs

Name	Arguments	Description
SIGFOX API open	rc: pointer to sfx_rc_t type representing the RC number (1, 2,	This function opens the library initializing all the state machine parameters.
SIGPOX_AFT_OPEN	3 or 4).	This function does not involve the radio configuration.
	cust_data: pointer to the data to transmit	
	cust_data_size: size in bytes of the data to transmit (max 12)	
SIGFOX_API_send_frame	cust_response: pointer to the buffer where to store the received payload (only if initiate_downlink_flag=1, see below)	Section 3.2 Sending frames
	tx_mode: shall be set to 2	
	initiate_downlink_flag: wait for a response after transmitting.	
SIGFOX_API_close	None	Closes the Sigfox library, resetting its state.
SIGFOX API set std config	config_words_ptr: 3-config-word array to select the FCC channels to use.	Section 3.3 node_set_std_config
	sfx_bool timer_enable: enable timer feature for FH	command description
	version_ptr: pointer to the array where to store the lib version	
SIGFOX_API_get_version	version_size_ptr: size of the written version array	Returns the library version.
	type: The type of version (MCU, RF,)	
SIGFOX_API_get_info	info: array containing info	
SIGFOX_API_send_outofband	oob_type: Type of the OOB frame to send	Sends an out-of-band frame. These are test frames used to monitor the node parameters (voltage, temperature).
	bit_value: bit value to send	
SIGFOX_API_send_bit	cust_response: pointer to the buffer where to store the received payload (only if initiate_downlink_flag=1, see below) tx mode: tx mode shall be set to	This function is used to send a single bit. It is mainly used when the node seeks downlink data (and not to transmit).
	2	

UM2173 - Rev 7 page 7/23

Name	Arguments	Description
	initiate_downlink_flag: wait for a response after transmitting.	
SIGFOX_API_start_continuous_transmission	frequency: Frequency at which the signal has to be generated type: Type of modulation to use in continuous mode	Executes a continuous wave or modulation depending on the parameter type
SIGFOX_API_stop_continuous_transmission	None	Stop the current continuous transmission
	frequency : Frequency at which the wave is generated	This function builds a
GTGTOV ADT and back from	customer_data: Data to transmit	Sigfox Frame with the
SIGFOX_API_send_test_frame	customer_data_length: Data length in Bytes initiate_downlink_flag: Flag to initiate a downlink response	customer payload and send it at a specific frequency
	frequency : Frequency at which the wave is generated	
	mode: Mode (AUTHENTICATION_ON or AUTHENTICATION_OFF)	
SIGFOX_API_receive_test_frame	buffer: Depends of the Authentication mode: if AUTHENTICATION_OFF: buffer is used as input to check the bit stream of the received frame if AUTHENTICATION_ON: buffer is used as output to get the received Payload	This function waits for a valid downlink frame during timeout time and return in customer_data the data received.
	timeout: Timeout for the reception of a valid downlink frame rssi: RSSI of the received frame	
SIGFOX_API_get_device_id	dev_id: Pointer where to write the device ID	This function copies the ID of the device to the pointer given in parameter.
SIGFOX_API_get_initial_pac	initial_pac: Pointer to initial PAC	
SIGFOX_API_switch_public_key	use_public_key: Switch to public key if SFX_TRUE, private key else	Switch device on public or private key.
SIGFOX_API_set_rc_sync_period	rc_sync_period: Transmission period of the RC Sync frame (in number of 'normal' frames)	Set the period for transmission of RC Sync frame

The application should call a set of functions in order to instruct the RF_LIB to configure the radio in the proper way.

These are the main functions exported by the ST_RF_API header ($st_rf_api.h$) and are implemented into the Section 2.1 RF_API module.

Table 2. ST_RF_API

Name	Arguments	Description
ST_RF_API_set_xtal_freq	An integer with the XTAL value in Hz.	Sets the XTAL frequency of the S2-LP in Hertz (default is 50MHz).

UM2173 - Rev 7 ______ page 8/23

Name	Arguments	Description
ST_RF_API_set_freq_offset	An integer with the RF offset value in Hz.	Sets the RF frequency offset in Hertz (default is 0 Hz).
ST_RF_API_set_tcxo	1 for TCXO, 0 if XTAL	Instructs the library to configure the S2-LP for a TCXO or for a XTAL. This is needed to configure the S2-LP oscillator registers.
ST_RF_API_set_rssi_offset	An integer with the RSSI offset value in dB.	Set an RSSI offset for the RSSI. Very useful if the RF frontend has an LNA or to calibrate the RSSI measurement.
ST_RF_API_get_rssi_offset	A pointer to the variable where the RSSI value should be stored.	Get the RSSI offset for the RSSI
ST_RF_API_gpio_irq_pin	An integer representing the number of the GPIO to be set as an interrupt source.	Configures one of the S2-LP pin to be an IRQ pin.
ST_RF_API_gpio_tx_rx_pin	An integer representing the number of the GPIO to be set as a TX or RX state indication. 0xFF to configure no one of the S2-LP GPIO with this function.	Configures one of the S2-LP pin to be to be configured as (RX or TX) signal
ST_RF_API_gpio_rx_pin	An integer representing the number of the GPIO to be set as a RX state indication. 0xFF to configure no one of the S2-LP GPIO with this function.	Configures one of the S2-LP pin to be configured as RX signal.
ST_RF_API_gpio_tx_pin	An integer representing the number of the GPIO to be set as a TX state indication. 0xFF to configure no one of the S2-LP GPIO with this function.	Configures one of the S2-LP pin to be configured as TX signal.
ST_RF_API_reduce_output_power	Power reduction in half dB	Reduces the output power of the transmitted signal by a facor (reduction*0.5dB against the actual value)
ST_RF_API_smps	SMPS voltage word from 1 (1.2V) to 7 (1.8V).	Instructs the library to configure the S2-LP with a user defined smps frequency
ST_RF_API_set_pa	A boolean value (1 if a PA, 0 if not.).	Instructs the library to configure the S2-LP for a external PA (Power Amplifier).

UM2173 - Rev 7 page 9/23

Name	Arguments	Description
ST_RF_API_get_ramp_duration	None	Returns the duration of the initial (or final) ramp in ms.
ST_RF_API_Get_Continuous_TX_or_MONARCH_Scan_Flag	None	Returns information about the TX state of the MCU API
ST_RF_API_set_lbt_thr_offset	An integer representing the offset in dB	Set an offset (dB) for tuning the LBT mechanism

3.1 Opening the library

SIGFOX API open must be called to initialize the library before performing any other operation.

This API requires pointer to the Radio Configuration zone struct to be used.

Uplink frequencies are avilable at https://build.sigfox.com/sigfox-radio-configurations-rc

Note: As frequency hopping is implemented, the transmission frequency won't be fixed.

For radio control zones 2 and 4 (FCC), refer to Section 3.3 node_set_std_config command description for how to map the macro channels.

Downlink frequencies are available at: https://build.sigfox.com/sigfox-radio-configurations-rc

3.2 Sending frames

SIGFOX_API_send_frame is the core Sigfox library function; this blocking function handles message exchange between the node and the base-stations.

An important parameter of this function is initiate_downlink_flag:

• When the **initiate_downlink_flag** is **0**, the library only reads the first two parameters. The send frame is transmitted three times with a 500 ms pause.

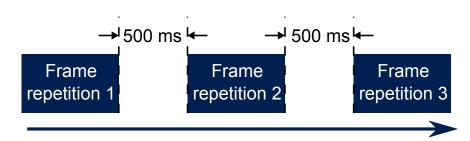
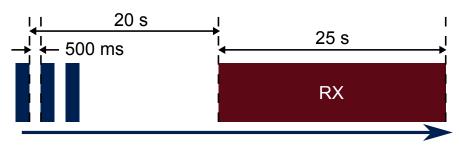



Figure 2. TX Frame timing

When the **initiate_downlink_flag** is **1**, the send frame is transmitted **tx_repetition** times + 1 (max. 3) with a 500 ms pause. A 25 s RX window then opens 20 s after the end of the first repetition.

Figure 3. TX/RX timings

UM2173 - Rev 7 page 10/23

If the reception is successful, the received 8-byte downlink frame is stored in the buffer location indicated by the **cust_response** input parameter.

The content of the frame can be set in the backend or by registering a callback to a website.

3.3 node_set_std_config command description

This function has different purposes according to the RC mode at which the serial port is open. FCC allows the transmitters to choose certain macro channels to implement a frequency hopping pattern allowed by the standard.

The channel map is specified in the first argument of $SIGFOX_API_set_std_config$, which consists of an array of three 32-bit configuration words.

Note: This API and its arguments are not applicable to RC1.

Each bit of the config_words [0,1,2] array represents a macro channel according to the following mapping:

Table 3. Macro channel mapping - config_words[0]

Macro Ch.	1	2	3	4	5	6	7	 32
Frequency (MHz)	902.2	902.5	902.8	903.1	903.4	903.7	904.0	 911.5
config_words[0] bit	0	1	2	3	4	5	6	 31

Table 4. Macro channel mapping - config_words[1]

Macro Ch.	33	34	35	36	37	38	39	 64
Frequency (MHz)	911.8	912.1	912.4	912.7	913.0	913.3	913.6	 921.1
config_words[1] bit	0	1	2	3	4	5	6	 31

Table 5. Macro channel mapping - config_words[2]

Macro Ch.	65	66	67	68	69	70	71	 86
Frequency (MHz)	921.4	921.7	922.0	922.3	922.6	922.9	923.2	 927.7
config_words[2] bit	0	1	2	3	4	5	6	 21

A macro channel is only enabled when the corresponding <code>config_words[]</code> bit is set to 1. At least 9 macro channels must be enabled to meet the FCC specifications.

The second argument is a boolean indicating whether to use a timer feature in RC2 or 4 to be sure fulfilling the FCC duty cycle requirements.

In RC3 the function is used to configure the LBT mode.

config word[0]: number of attempts to send the first frame (has to be greater or equal to 1)

config word[1]: maximum carrier sense sliding window (in ms) (greater than 6 ms)

config_word[2]: bit 8: set the value to 1 to indicate that the device will use the full operational radio band (192 kHz). bit 7-3: number of carrier sense attempts. bit 2-0: number of frames sent.

timer enable: unused

The delay between several attempts of carrier sense for the first frame is set by SFX DLY CS SLEEP

This setting only affects the uplink and should be called whenever <code>SIGFOX_API_open</code> is called to open the library.

UM2173 - Rev 7 page 11/23

3.4 Duty cycle

3.4.1 RC1

The European regulation governing the 868 MHz band enforces a transmission duty cycle of 1%. Since each message can last up to 6 seconds, it is possible to send up to 6 messages per hour.

Your application must take this duty cycle into account in order to comply with the ETSI regulation.

3.4.2 RC2/4

According to FCC 15.247, each device should ensure that continuous transmission never exceeds 400 ms and that a given frequency channel is not reused inside 20 seconds. These limits are ensured by defining at least 9 macro-channels via SIGFOX API set std config.

Each macro-channel is a group of 6 25 kHz bandwidth channels with which the library performs random frequency hopping. There must be at least 9 macro-channels to satisfy the minimum 50 channel limit set in FCC 15.247.

When the SIGFOX API send frame is called:

- 1. the device transmits 3 repetitions on 3 different channels of the default macro-channel hopping list
- 2. the second transmission takes place over the other 3 channels available on the same macro-channel
- 3. the third transmission hops to another listed macro-channel and uses 3 channels from that group
- 4. hopping and transmission continues according to the same logic

Since the transmission lasts between 200 and 350 ms and a minimum delay of 500 ms occurs between frames, the device never returns to a given channel inside 20 seconds.

The Sigfox base stations installed in RC2 are currently enabled to receive in the macro channel 1. The ones in the RC4 are enabled to receive on the 63rd channel.

Any transmission performed over a different macro channel from the default is lost.

UM2173 - Rev 7 page 12/23

3.5 Listen before talk

3.5.1 RC3/5

In RC3/5, the transmitter should sense the channel before starting to transmit.

For this reason, each TX phase into the figures 3 and 4 is preceded by a RX phase of variable duration.

The duration of the listen before talk is called carrier sense time.

This time can be in the range [cs_min, cs_max].

The timings cs_min is 5ms, cs_max is defined by the user into the config_word[1] argument of the SIGFOX_API_set_std_config.

The behavior of the LBT is the following:

- Enter in RX
- If no power >-80dBm is detected within the *cs_min* window, the LBT exits with success allowing a new transmission
- If a power > -80dBm is detected and no *cs_min* time has elapsed with the power <-80dBm, the LBT exits with error, preventing a new transmission.

Case no power detected:

Figure 4. Behavior of the LBT above -80dBm is detected within the cs_min window

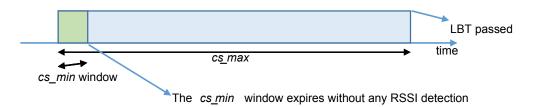
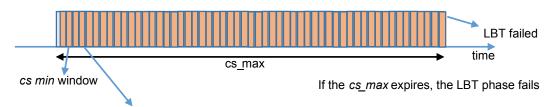



Figure 5. Behavior of the LBT -80dBm is detected and no cs_min time has elapsed with the power below -80dBm

The RSSI is detected and the *cs_min* window is shifted ahead until the cs min expires without RSSI detection

If the channel is found busy for the cs_max time, the transmission will fail with error code 0x7D.

The LBT is implemented by the ST RF_API in the following way.

When a LBT cycle must be done, the lib will call the function MCU_API_timer_stop_carrier_sense.

This timer will start to count the cs_max time.

Then, the library will call the *RF_API_wait_for_clear_channel* function. In its implementation, the MCU will program the S2-LP as follows:

- Set the RSSI_THRESHOLD=-80dBm (this is an argument of the function)
- Register the 2 interrupts RX_TIMEOUT and RSSI_ABOVE THRESHOLD.
- Program the RX TIMEOUT to the cs_min (passed to the function as an argument)
- Set the device in RX and go into low power mode.

UM2173 - Rev 7 page 13/23

 If the RX timeout arises, it means that one cs_min window has elapsed without any RSSI_ABOVE_THRESHOLD (no RSSI detected) for the current cs_min window. Return without error after having disabled all the IRQs on the S2-LP.

If the RSSI_THRESHOLD is raised, stop the RX and restart it again. If the channel becomes free at some point within the *cs_max* and it is kept free for a time equal to *cs_min*, the RX_TIMEOUT interrupt will be raised and the function will return with no error. Otherwise the radio will be continuously stopped until the *cs_max* timeout (started by the *MCU_API_timer_stop_carrier_sense*) occurs, in this case the function returns with error.

3.6 Application example

To develop an application on the supported platforms, the application should:

- 1. Initialize the hardware:
 - System clock
 - S2-LP SPI initialization
 - S2-LP SDN pin initialization
- 2. Retrieve the crystal frequency and the carrier offset from the manufacturer data E2PROM, via the function S2LPManagementIdentificationRFBoard().
- 3. Retrieve the Sigfox ID, PAC and RC via the function <code>enc_utils_retrieve_data or enc_utils_retrieve_data_from_flash</code>. Assume that this function will return the ID of the board in the variable uint32 t id.

The procedure for opening and setting the library differs slightly for each radio control zone and is described by the ST_Sigfox_Open_RCZ function in the St_Sigfox_Init.c file of the SDK.

Assuming you have the 4-byte customer data buffer to send and no downlink request:

• SIGFOX API send frame(customer data, 4, customer resp, 0, 0);

With donwnlink request:

• SIGFOX API send frame (customer data, 4, customer resp, 0, 1);

The function will return after about 50 seconds and, in the absence of errors (error code = 0), the customer_resp buffer will be filled with an 8-byte response.

For further details, refer to the SigFox_PushButton_Project or the SigFox_CLI_Demo_Project example code and corresponding doxygen documentation in the ST-Sigfox package.

3.7 Test mode

The test modes are available in the separate library ADDON RF PROTOCOL API.

In order to access the test modes, it is necessary to close the Sigfox library.

The test mode API is the following:

sfx_error_t ADDON_SIGFOX_RF_PROTOCOL_API_test_mode (sfx_rc_enum_t rc_enum, sfx_test_mode_t test_mode)

where:

- rc enum is a number representing the number of RC.
- test mode is a number representing the test mode.

Please see the doxygen documentation included in the package STSW-S2LP-SFX-DK.

The test mode should be used to perform the Sigfox verified certification using the SDR Dongle and the RSA Environment. For more information visit https://build.sigfox.com/sdr-dongle.

UM2173 - Rev 7 page 14/23

4 Current consumption on ST reference design

4.1 Current consumption for the STEVAL-FKI868V2 (for RC1/3)

The current consumption of the S2-LP and of the STM32L152 is given below for both TX and RX phases. In the non-active phases, the S2-LP is maintained in shutdown mode with negligible current consumption.

4.1.1 Transmission

During transmission, the averaged current on the S2-LP on the STEVAL-FKI868V2 is about 17 mA.

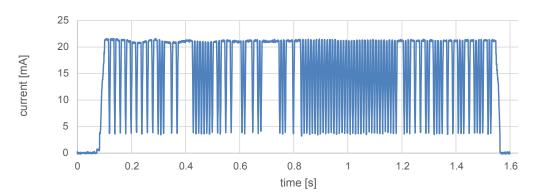


Figure 6. S2-LP TX current profile for STEVAL-FKI868V2

The current on the STM32 side is much lower because the microcontroller is set in low power mode for most of the transmission phase: it is only woken during transmission when the TX FIFO must be filled with new data. The resulting current profile shows some 7 mA spikes every 10 ms, with troughs in between representing the sleep current below 10 μ A.

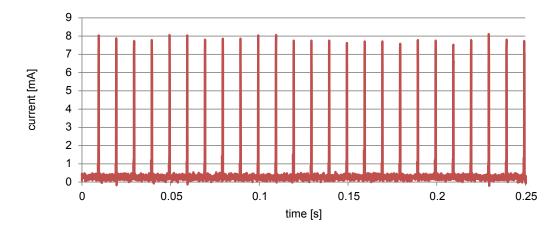


Figure 7. microcontroller TX current profile for STEVAL-FKI868V2

UM2173 - Rev 7 page 15/23

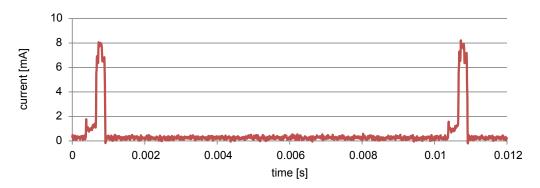


Figure 8. microcontroller TX current profile - zoom

4.1.2 Reception

According to the Sigfox protocol, reception lasts a maximum of 25 seconds. During this time, the S2-LP current consumption remains around 7.5 mA and the STM32 is maintained in stop mode with a current below 10 μ A.

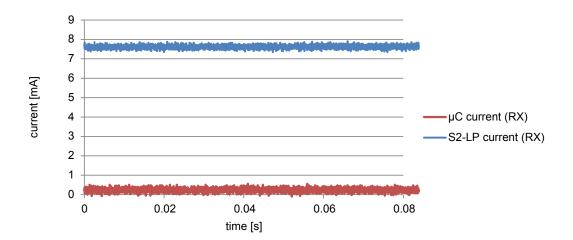


Figure 9. S2-LP and microcontroller RX current profile for STEVAL-FKI868V2

4.2 Current consumption for the STEVAL-FKI915V1 (for RCZ2/4)

For the STEVAL-FKI915V1, we need only consider the current on the S2-LP and on the FEM (Skyworks-SE2435L) as the current consumption of the STM32 is the same as for the STEVAL-FKI868V2. In the non-active phases both the S2-LP and FEM are kept under shutdown and their current consumption is negligible.

4.2.1 Transmission

The average current consumption of the S2-LP during frame transmission is about 5 mA.

UM2173 - Rev 7 page 16/23

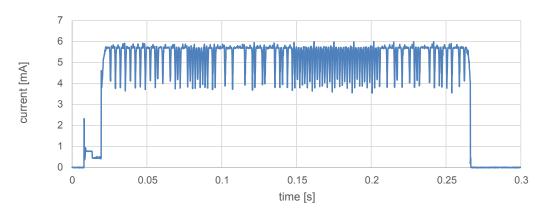
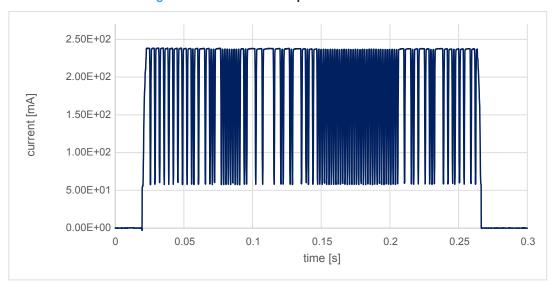
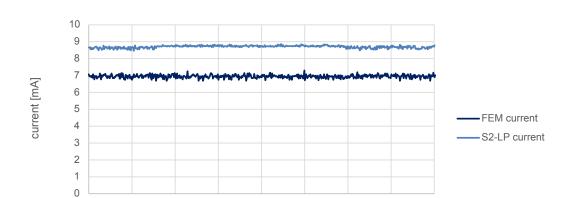


Figure 10. S2-LP TX current profile for FKI915V1

The 22 dBm power is provided by the FEM, with the following current shown below.




Figure 11. FEM TX current profile for FKI915V1

4.2.2 Reception

According to the Sigfox protocol, the reception lasts a maximum of 25 seconds. During this time, the current consumption of the S2-LP is constant, at about 8.7 mA, while the FEM has a consumption of 7 mA.

UM2173 - Rev 7 page 17/23

0.05

0.06

0.07

0.08

0.03

0.04

time [s]

0

0.01

0.02

Figure 12. S2-LP and FEM RX current profile for STEVAL-FKI915V1

UM2173 - Rev 7 page 18/23

Revision history

Table 6. Document revision history

Date	Version	Changes
08-Feb-2017	1	Initial release.
01-Jun-2017	2	Minor text edits Updated Table 1: MCU API
		Updated Table 3: Retriever API
01-Dec-2017	3	Updated:
		Figure 1, Section 1, Section 2.1, section 2.2, Section 3.1 and Section 3.4.2
		Added:
		Test mode section.
		Minor text edits.
22-May-2018	4	Updated API description.
		Minor text edits.
10-Sep-2018	5	Updated Introduction, MCU_API, ST retriver lib, Application development and application example.
13-Mar-2019	6	Updated Firmware architecture
		Added NVM API and ST Monarch lib
		Minor text edits
16 Apr 2020	7	Updated Section 2 Firmware architecture
16-Apr-2020		Minor text edits

UM2173 - Rev 7 page 19/23

Contents

1	Har	dware description	2
2	Firm	nware architecture	3
	2.1	RF_API	
	2.2	NVM API	4
	2.3	MCU_API	4
	2.4	ST retriever lib	5
	2.5	ST Monarch lib	5
3	Арр	lication development	7
	3.1	Opening the library	10
	3.2	Sending frames	10
	3.3	Set standard configuration	11
	3.4	Duty cycle	12
		3.4.1 RC1	12
		3.4.2 RC2/4	12
	3.5	Listen before talk	13
		3.5.1 RC3/5	13
	3.6	Application example	14
	3.7	Test mode	14
4	Cur	rent consumption on ST reference design	15
	4.1	Current consumption for the STEVAL-FKI868V2 (for RC1/3)	
		4.1.1 Transmission	15
		4.1.2 Reception	16
	4.2	Current consumption for the STEVAL-FKI915V1 (for RCZ2/4)	16
		4.2.1 Transmission	16
		4.2.2 Reception	17
Rev	vision	history	19

List of tables

List of tables

Table 1.	Application level Sigfox APIs	. 7
Table 2.	ST_RF_API	. 8
Table 3.	Macro channel mapping - config_words[0]	11
Table 4.	Macro channel mapping - config_words[1]	11
Table 5.	Macro channel mapping - config_words[2]	11
Table 6.	Document revision history	19

UM2173 - Rev 7 page 21/23

List of figures

Figure 1.	Sigfox firmware application	. 3
Figure 2.	TX Frame timing	10
Figure 3.	TX/RX timings	10
Figure 4.	Behavior of the LBT above -80dBm is detected within the cs_min window	13
Figure 5.	Behavior of the LBT -80dBm is detected and no cs_min time has elapsed with the power below -80dBm	13
Figure 6.	S2-LP TX current profile for STEVAL-FKI868V2	15
Figure 7.	microcontroller TX current profile for STEVAL-FKI868V2	15
Figure 8.	microcontroller TX current profile - zoom	16
Figure 9.	S2-LP and microcontroller RX current profile for STEVAL-FKI868V2	16
Figure 10.	S2-LP TX current profile for FKI915V1	. 17
Figure 11.	FEM TX current profile for FKI915V1	. 17
Figure 12.	S2-LP and FEM RX current profile for STEVAL-FKI915V1	. 18

UM2173 - Rev 7 page 22/23

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2020 STMicroelectronics - All rights reserved

UM2173 - Rev 7 page 23/23