

SPC58xx Voltage monitor configuration

Introduction

The SPC58xx devices are a wide family of Power Architecture® based microcontrollers that offer the needed scalability to be used in different automotive applications (like vehicle body, gateway, automotive powertrain controllers and so on).

These microcontrollers include a robust power management infrastructure that enables the applications to monitor internal voltages for high- and low-voltage conditions. The monitoring capability is also used to ensure the supply voltages and the internal voltages are within the required ranges before the microcontroller can leave the reset.

This document describes how to configure the SPC58xx voltage monitoring in two different ways:

- By Hardware, using the Device Configuration Format (DCF) Record
- By Software, using the registers of the Power management controller (PMC)

After a brief introduction that describes the Power Management Controller Digital interface (PMC_Dig) and the DCF client, some configuration examples are given.

The concepts and topics shown in this document are common to all SPC58xx families.

1 Voltage monitoring

1.1 Overview

In the SPC58xx family four types of voltage monitoring circuits are implemented:

- Low voltage detection circuit (LVD)
- High voltage detection circuit (HVD)
- Upper Voltage Detector (UVD)
- Minimum Voltage Detector (MVD)

Note: *While MVDs/UVDs are not configurable, the LVDs/HVDs can be configured via SW by the user.*

Low Voltage Detectors (LVDs) and High Voltage detectors (HVDs) are used to ensure the transition to a Safe state before a device failure due to voltage variation.

A further usage of the LVDs is to generate a Power-on Reset ensuring known safe state of the device during and after power-on/off sequence.

All LVDs and HVDs can generate either a RGM (Reset Generation Module) functional or a destructive reset event and/or an FCCU (Fault Collection and Control Unit) event and/or an interrupt event.

Therefore, LVDs/HVDs can:

- be used in 'monitor' only mode
- generate a safe event
- generate an interrupt event
- be disabled

The LVDs/HVDs can be selected and enabled during the reset sequence (loading the value of DCF client, PMC_REE_BUS) or after the device initialization (programming the PMU_Dig registers) preventing reset to happen when the supply crosses the LVD threshold, effectively providing a higher voltage operating range. It is the responsibility of the application to ensure that the device remains in the functional range.

Note: *The high low voltage thresholds of LVD and HVD can vary their value during the power on phases up, due to the trimming, to the operating mode.*

The following Table 1 provides the monitor status depending on configuration.

Table 1. Voltage monitors configurability

Monitor type	Reset Event Enable	Reset Event Select	Event Pending register	Interrupt Enable	FCCU Event Enable	Reset Event Enable DCF
MVDs	No	No	No	No	No	No
LVDs	Yes	Yes	Yes	Yes	Yes	Yes
HVDs	Yes	Yes	Yes	Yes	Yes	Yes
UVDs	No	No	No	No	No	No

More details are shown in the following paragraphs.

1.2

LVD and HVD

The default strategy is to generate a reset event on boundary LVDs/HVDs events.

For the correct configuration of voltage detection, the user has two options:

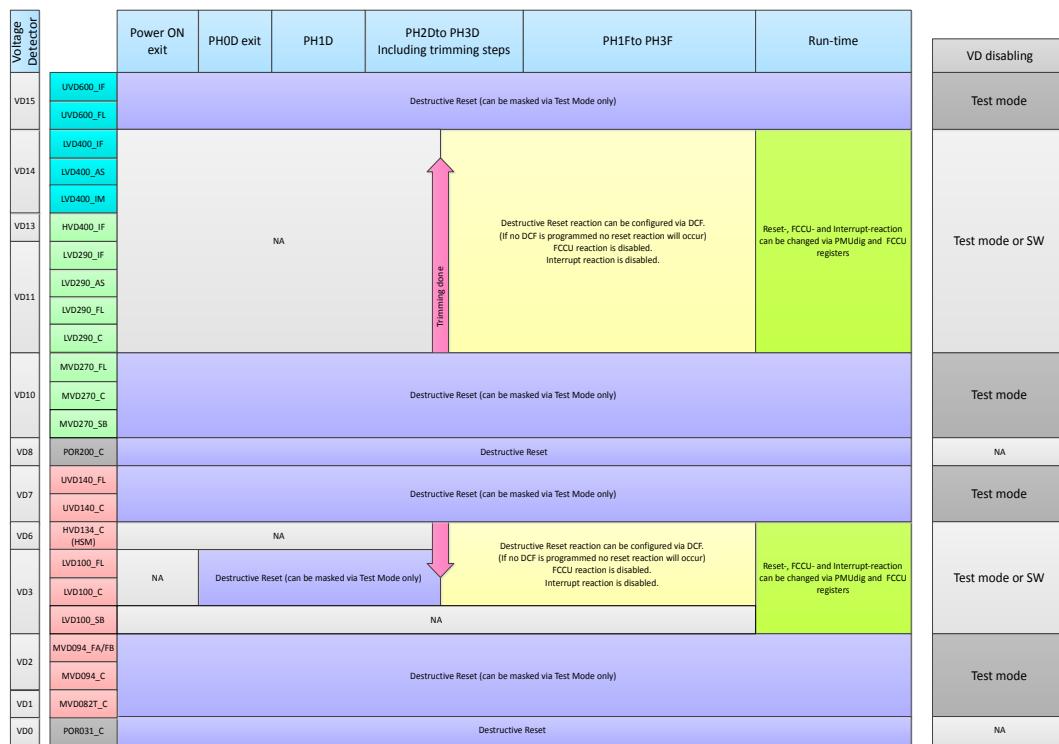
- DCF client (PMC_REE_BUS)
- PMU_Dig registers (Power management unit digital interface)

The main differences in these 2 approaches are:

- programming PMC_REE_BUS DCF in UTEST to enable the configurable VDs. In this way, as soon as the microcontroller leaves PHASE3[DEST] (PH3D) of the boot sequence, the new value is dispatched to the application registers and the voltage monitoring is already ON.
 - the enabled VDs cannot be disabled during application via SW (this device configuration is maintained until the next internal power-on reset).
- programming the PMU_Dig registers. The user can decide when the voltage monitoring has to be enabled/ disabled running the application.

The LVD and HVD implementation on SPC58xx family includes the following features:

- All LVDs and HVDs can generate either an RGM event and/or an FCCU event and/or an interrupt event.
- All LVDs and HVD configured for reset generation can cause a functional or destructive reset.
 - MC_RGM PHASE0 is not exited until all destructive reset conditions are cleared.
- The appropriate bits in the PMC_Dig registers are set by LVD and HVD events.
- PMC_REE_BUS (Reset event enable) DCF records “configurable” LVDs/HVDs to a RESET event. This is a write mechanism managed by SSCM during the device initialization phase:
 - when a RESET event is selected through PMC_REE_BUS DCF record, it cannot be disabled by software programming of PMC_Dig (by PMC REE register).
 - When a RESET event is not selected through PMC_REE_BUS DCF record, LVDs/HVDs trigger event reaction depends on the programming of the PMC REE/RES/IE/FEE registers (PMC_Dig interface).
- When the LVD or the HVD is enabled for destructive reset generation and a subsequent trigger event is detected, the external PORST pin is driven low.


The [Figure 1](#) sums up the voltage monitors functionalities, showing the VDs activation and configuration modes with respect to each device boot phase and running modes. It highlights:

- the possibility of disabling the VD or if there are limitations:
 - for example, in case of two internal power-on reset circuits, POR031_C and POR200_C, that cannot be disabled.
- the possible reaction during the power-up sequence and the running mode:
 - via DCF or PMCDig and FCCU registers.

With regards to the voltage detector VD11 as reported in [Figure 1](#), the voltage detector functionality from the Power ON exit to Run-time is as follows:

the LVD290_IF (low voltage monitor of IO ETHERNET supply) monitoring is OFF at power-up and it can be enabled only after Phase 3 of boot sequence after that the PMC_REE_BUS DCF value has been loaded. During the next phases of boot sequence and till the run mode the only reaction is the destructive reset (no configurable). In Run-Time, it is possible to configure a reset (Destructive or Functional), an interrupt or FCCU event in correspondence with LVD290_IF voltage detector crossing the relative threshold by means of PMC_DIG and FCCU interfaces.

Figure 1. Voltage monitors functionality

1.3

How to configure the LVDs/HVDs

The HVD/LVD can be configured in two different ways:

- By hardware, configuring the PMC_REE_BUS DCF client
- By software, setting specific registers of the PMU_Dig interface

This choice is application dependent.

1.3.1

Hardware solution via PMC_REE_BUS DCF

The SPC58xx family supports a mechanism developed to handle the settings of the device parameters via data stored in a OTP flash memory (UTEST Flash memory) and loaded during system boot, when the reset signal is still asserted. At this scope the DCF records are used.

Note:

OTP means One-Time-Programmable.

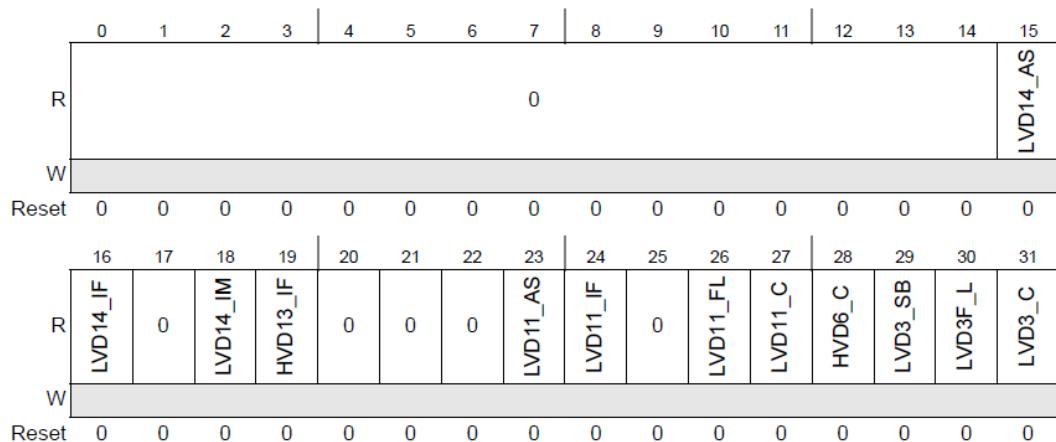
A DCF record consists of 2 of 32bit contiguous words:

1. the data to be written to a specific register
2. a pointer to the location of this register (DCF Chip Select [14:0] | DCF address [16:2] | 2b00)

All details about DCF and how it is used can be found at the section “Device Configuration Format (DCF) Records” of the device Reference Manual (see [Section A.1 Reference documents](#))

To unmask the LVDs/HVs reaction, the SPC58xx microcontrollers implement a specific Device Configuration Format client: the PMC_REE_BUS, reset event enable.

Like other User DCF Records, the PMC_REE_BUS DCF record can be programmed by the user in UTEST memory so to load the new device configuration right after Phase3[DEST] of the microcontroller boot sequence, processed at the next reset event.


The PMC_REE_BUS DCF enables the generation of Reset event when the selected voltage passes the voltage detection threshold.

Note:

The voltage monitors and their associated levels for each device are given in device datasheet (see [Section A.1 Reference documents](#)) referring to label "VD name".

Just as an example, the [Figure 2](#) shows the PMC_REE_BUS client and its bit fields for SPC58ECxx device. Setting to “1” one of the available bitfields, the correspondent voltage threshold violation triggers a system reset event.

Figure 2. PMC_REE_BUS client

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	
R								0							LVD14_AS	
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	
R	LVD14_IF	0	LVD14_IM	HVD13_IF	0	0	0	LVD11_AS	LVD11_IF	0	LVD11_FL	LVD11_C	HVD6_C	LVD3_SB	LVD3F_L	LVD3_C
W									0			0	0	0	0	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

The PMC REE_BUS pointer is 0x0100_0124 (CS|ADDR), in [Section 2 LVD/HVD configuration examples](#) an example is available.

[Table 2](#) describes the correspondence between the VD name (used in DS) and the bit name (LVDx_yy) of PMC_REE_BUS DCF shown in [Figure 2](#).

Table 2. VD number versus PMC_REE_BUS DCF

DCF bit name	VD Name	VD Meaning
LVD3_C	LVD100_C	LV detector asserts when PMU supply < 1.0 V
LVD3_C	LVD100_FL	LV detector asserts when FLASH supply < 1.0 V
LVD3_C	LVD100_SB	LV detector asserts when standby supply < 1.0 V
HVD6_C	HVD134_C	LV detector asserts when PMU supply > 1.34 V
LVD11_C	LVD290_C	HV detector asserts when PMU supply < 2.90 V
LVD11_FL	LVD290_FL	HV detector asserts when FLASH supply < 2.90 V
LVD11_IF	LVD290_IF	HV detector asserts when IO FLEXRAY supply < 2.90 V
LVD11_as	LVD290_AS	HV detector asserts when SAR ADC supply < 2.90 V
LVD13_IF	HVD400_IF	HV detector asserts when IO FLEXRAY supply > 4.00 V
LVD14_AS	LVD400_AS	HV detector asserts when SAR ADC supply < 4.00 V
LVD14_IF	LVD400_IF	HV detector asserts when IO FLEXRAY supply < 4.00 V
LVD14_IM	LVD400_IM	HV detector asserts when IO MAINS supply < 4.00 V

Particular attention must be given at the correct programming of PMC_REE_BUS DCF, considering that when RESET event is enabled by programming in UTEST, it cannot be disabled by software programming the corresponding PMCDIG_REE_xx register.

When some bits of the PMC_REE DCF are set to “1” then the corresponding bits of PMCDIG_REE_LVx/PMCDIG_REE_HVx registers in the PMC_Dig interface ([Figure 3](#) shows PMCDIG_REE_LV0 register) are updated based on the PMC_REE_BUS DCF value after the next boot sequence and these bits become “read only” bit, writing to 0 these bits have no effect.

In the aforementioned case, the voltage monitoring can be still disabled. The PMC_REE_BUS DCF must be reprogrammed to mask the VDs and the new device configuration must be reloaded by a new boot sequence.

Loading the new value of PMC_REE_BUS DCF to disable the VDs, the corresponding bits of PMCDIG_REE_LVx/PMCDIG_REE_HVx registers go back to be “read/write bit”.

Figure 3. Reset Event Enable (REE_LV0)

	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
R	0	0	0	REE3_SB	0	REE3_FL	0	REE3_C	0	0	0	0	0	0	0	0
W					0	0	0	0	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

1.3.2 Software solution via PMC_DIG interface

By default, the PCM_REE_BUS DCF does not enable any voltage detection:

- Reset value: PCM_REE_BUS DCF = **0x000_0000_00000_000**

Therefore, the SW can program the voltage detection for each “configurable” LVD/HVD and its reaction (a RESET event, FCCU event or interrupt) by means of control registers available in the Power Management Controller digital interface (PMC_Dig).

The PMU_Dig interface includes the following registers for configuring LVD and HVD voltage detection:

- Reset Event Enable registers low voltage and High voltage (**REE_LVx /REE_HVx**, x = 0,1) that control whether the voltage detect signal causes a reset.
- Reset Event Select registers low voltage and High voltage (**RES_LVx/ RES_HVx** x = 0,1) that select whether the voltage detect signal causes a destructive or functional reset.
- FCCU Event Enable registers low voltage and High voltage (**FEE_LVx/ FEE_HVx** x = 0,1) that enable the sending of event signal to the FCCU (Fault Collection and Control Unit) whether the voltage detect signal is triggered.
- Interrupt Enable registers low voltage and High voltage (**IE_LVx/IE_HV** x = 0,1) that enable an interrupt in case of the voltage detect signal event. A '0' indicates that no interrupt is enabled, a '1' indicates that an interrupt is enabled.

Note: The PMCDIG_REE_LVx/HVx registers are not reset by a Destructive Reset but only by a POR reset event.

In details, the influence of reset on PMCDIG_YYY_xxx registers is:

- The POR reset is used on EPR_LVx, EPR_HVx, REE_LVx, REE_HVx, RES_LVx and RES_HVx registers.
- The destructive reset is used on REE_TD, RES_TD, FEE_LVx, FEE_HVx and FEE_TD registers.
- The functional reset is used on IE_HVx, IE_LVx, IE_G, CTL_TD registers.

Note: Temperature registers (xxx_TD) are not present on the SPC582Bxx device.

The present state of the voltage detect events for each of the supplies is reported in the Supply Gauge Status Register (GR_S). Each bit is asserted when any of the voltage level falls below/rises above the corresponding LVD/HVD threshold and clears when the supply rises above/falls below its corresponding LDV/HVD threshold.

1.4

PMC_REE_BUS DCF vs PMCDIG registers

The relationship between bits of the PMC_REE_BUS DCF record and PMCDIG_REE_xxx registers is summarized in the [Table 3](#).

Table 3. PMC_REE_DCF vs PMCDIG_REExx

PMC_REE_BUS Bit	PMC_REE_BUS Bit name	PMCDIG_REE_xxx Bit name	VD Name ⁽¹⁾	VD Meaning
15	LVD14_AS	REE_HV1[REE14_AS]	LVD400_AS	HV detector asserts when SAR ADC supply < 4.00 V
16	LVD14_IF	REE_HV1[REE14_IF]	LVD400_IF	HV detector asserts when IO FLEXRAY supply < 4.00 V
18	LVD14_IM	REE_HV1[REE14_IM]	LVD400_IM	HV detector asserts when IO MAINS supply < 4.00 V
19	HVD13_IF	REE_HV1[REE13_IF]	HVD400_IF	HV detector asserts when IO FLEXRAY supply > 4.00 V
23	LVD11_AS	REE_HV0[REE11_AS]	LVD290_AS	HV detector asserts when SAR ADC supply < 2.90 V
24	LVD11_IF	REE_HV0[REE11_IF]	LVD290_IF	HV detector asserts when IO FLEXRAY supply < 2.90 V
26	LVD11_FL	REE_HV0[REE11_FL]	LVD290_FL	HV detector asserts when FLASH supply < 2.90 V
27	LVD11_C	REE_HV0[REE11_C]	LVD290_C	HV detector asserts when PMU supply < 2.90 V
28	HVD6_C	REE_LV1[REE6_C]	HVD134_C	LV detector asserts when PMU supply > 1.34 V
29	LVD3_SB	REE_LV0[REE3_SB]	LVD100_SB	LV detector asserts when standby supply < 1.0 V
30	LVD3_FL	REE_LV0[REE3_FL]	LVD100_FL	LV detector asserts when FLASH supply < 1.0 V
31	LVD3_C	REE_LV0[REE3_C]	LVD100_C	LV detector asserts when PMU supply < 1.0 V

1. For more details and the whole list of voltage monitors, check the section "Voltage Monitors" in SPC58xx DSS (see [Section A.1 Reference documents](#)).

2 LVD/HVD configuration examples

In this chapter some basic configuration examples of PMC_REE_BUS DCF and PMC_Dig interface for voltage detection are given.

Programming LVD/HVD via PCM_REE_BUS

Example 1: PCM_REE_BUS record set to **0x0100_0124_0000_0001** (CS|ADDR|DATA)

Programming the PCM_REE_BUS DCF (see [Figure 1](#)) equal to **0x0100_0124_0000_0001**, only the LVD3_C VD is set. The result is to enable only the threshold for LVD100_C detector (refer to [Table 2](#)). The DCF client configuration takes effect after the next boot sequence and in case the PMU supply is less than the relative threshold value shown in the DS (for example 1.06 V < LVD100_C < 1.11 V), a reset event will be generated without any programming of the PMC_Dig interface.

After loading the previous mentioned DCF configuration, the value of the PMCDIG_REE_LV0 register and the PMCDIG_RES_LV0 register at POR is:

- **PMCDIG_REE_LV0 = to 0x0000_0001_0000_0000 (REE3_C bit is set to 1)**
- **PMCDIG_RES_LV0 = to 0x0000_0000_0000_0000 (RES3_C bit is clear)**

The **REE3_C** bit results “only readable”, while the other bits of PMCDIG_REE_LV0 register, REE3_SB and REE3_FL are still programmable (writable) by SW. The Reset Event Select register (RES_LV0) selects by default a destructive reset.

To sum up, in the Example 1:

- DCF client enables only the **LVD3_C** reset event and all other configurable LVD/HVD reset events are still disabled by DCF.
- After next POR sequence (DCF configuration is loaded) the default value of PMU_Dig registers are:
 - **PMCDIG_REE_LV0[REE3_C] = 1 (it cannot cleared → bit only read)**
 - **PMCDIG_REE_LV0[LVDxx] = 0 (bit writable) and**
 - **PMCDIG_RES_LV0[LVDxx] = 0 (bit writable)**

Note:

- *In this example the user can still select the kind of reset, destructive or functional, configuring the PMCDIG_RES_LV0 register, for more details refer to the register description in the device reference manual.*
- *When a RESET event is enabled through the PCM_REE_BUS DCF record, it cannot be disabled by clearing the correspondent bit in the PMC REE_XX register.*

Programming VD via PMC_Dig.

Here below three examples assuming PCM_REE_BUS DCF at default value (equal to 0x0000_0000).

The PMC_Dig interface has the full control of voltage monitoring and the LVDs/HVDs trigger event reaction depends on the programming of the PMC REE/RES/FEE/IE registers.

The User can enable the VD monitoring and select the kind of reset (functional or destructive reset) and/or enable the reporting to FCCU and/or interrupt event.

Example 2: LVD100_C VD monitoring

A destructive reset is configured as reaction in case that the LVD100_C threshold is crossed. FCCU and interrupt are disabled.

- **PMCDIG_REE_LV0[REE3_C] = 1 (REE3_C reset enable, LVD100_C VD)**
- **PMCDIG_RES_LV0[RES3_C] = 0 (Destructive Reset Generated)**
- **PMCDIG_FEE_LV0[FEE3_C] = 0 (FEE3_C FCCU event disable)**
- **PMCDIG_IE_LV0[VD3IE3_C] = 0 (Interrupt disabled)**

Example 3: LVD100_C VD FCCU event

A FCCU event is configured in case the LVD100_C threshold is crossed. The reset reaction and interrupt are disabled.

- **PMCDIG_REE_LV0[REE3_C] = 0 (REE3_C reset disable, LVD100_C VD)**
- **PMCDIG_RES_LV0[RES3_C] = 0 (Destructive Reset Generated)**
- **PMCDIG_FEE_LV0[FEE3_C] = 1 (FEE3_C FCCU⁽¹⁾ event enable)**
- **PMCDIG_IE_LV0[VD3IE3_C] = 0 (Interrupt disabled)**

1. Refer to table “FCCU failure inputs” in the device Reference Manual (see [Section A.1 Reference documents](#)).

Note: The FCCU reaction (IRQ, Short/Long Functional FCCU reset) must be configured by the FCCU module.

Example 4: LVD100_C VD Interrupt event

An interrupt event is configured in case the LVD100_C threshold is crossed. The reset reaction and FCCU event are disabled.

- **PMCDIG_REE_LV0[REE3_C] = 0 (REE3_C reset disable, LVD100_C VD)**
- **PMCDIG_RES_LV0[RES3_C] = 0 (Destructive Reset Generated)**
- **PMCDIG_FEE_LV0[FEE3_C] = 0 (FEE3_C FCCU event disabled)**
- **PMCDIG_IE_LV0[VD3IE3_C] = 1 (Interrupt⁽¹⁾ enabled)**

1. Refer to table “Interrupt sources” in the device Reference Manual (see [Section A.1 Reference documents](#)).

Appendix A Other information

A.1 Reference documents

Table 4. Reference documents

Doc Name	ID	Title
DS11597	029210	SPC58 2B Line - 32 bit Power Architecture automotive MCU Single core 80Mhz, 1MByte Flash, ASIL-B
DS11701	029439	32-bit Power Architecture microcontroller for automotive ASIL-B applications
DS11620	029264	SPC58 C Line - 32 bit Power Architecture automotive MCU Dual z4 cores 180 MHz, 4 MBytes Flash, HSM, ASIL-B
DS11758	029572	32-bit Power Architecture microcontroller for automotive ASIL-D applications
DS11646	029333	32-bit Power Architecture microcontroller for automotive ASIL-D applications
DS12304	031027	SPC58 H Line - 32 bit Power Architecture automotive MCU Triple z4 cores 200 MHz, 10 MBytes Flash, HSM, ASIL-D
DS11734	029507	32-bit Power Architecture microcontroller for automotive ASIL-D applications
RM0403	027949	SPC58 2B Line - 32 bit Power Architecture automotive MCU z2 core 80 MHz, 1 MByte Flash, ASIL-B
RM0449	030699	SPC584Bx 32-bit MCU family built on the Power Architecture for automotive body electronics applications
RM0407	028117	SPC584Cx/SPC58ECx 32-bit MCU family built on the Power Architecture for automotive body electronics applications
RM0391	027214	SPC58 E/G Line - 32 bit Power Architecture automotive MCU Triple z4 cores 180 MHz, 6 MBytes Flash, HSM, ASIL-D
RM0452	031241	SPC58 H Line - 32 bit Power Architecture automotive MCU Triple z4 cores 200 MHz, 10 MBytes Flash, HSM, ASIL-D
RM0421	028528	SPC58xNx 32-bit Power Architecture microcontroller for automotive ASILD applications

A.2 Acronyms

Table 5. Acronyms

Acronym	Name
DCF	Device Configuration Format
PMC_Dig	Power Management Controller digital interface
LVD	Low voltage detection circuit
HVD	High voltage detection circuit
UVD	Upper Voltage Detector
MVD	Minimum Voltage Detector
RGM	Reset Generation Module
FCCU	Fault Collection and Control Unit

Revision history

Table 6. Document revision history

Date	Version	Changes
11-Feb-2021	1	Initial release.

Contents

1	Voltage monitoring	2
1.1	Overview	2
1.2	LVD and HVD	3
1.3	How to configure the LVDs/HVDs	4
1.3.1	Hardware solution via PMC_REE_BUS DCF	4
1.3.2	Software solution via PMC_DIG interface	6
1.4	PMC_REE_BUS DCF vs PMCDIG registers	7
2	LVD/HVD configuration examples	8
Appendix A	Other information	10
A.1	Reference documents	10
A.2	Acronyms	10
Revision history		11

List of tables

Table 1.	Voltage monitors configurability	2
Table 2.	VD number versus PMC_REE_BUS DCF	5
Table 3.	PMC_REE_DCF vs PMCDIG_REExx	7
Table 4.	Reference documents	10
Table 5.	Acronyms	10
Table 6.	Document revision history	11

List of figures

Figure 1.	Voltage monitors functionality	4
Figure 2.	PCM_REE_BUS client.	5
Figure 3.	Reset Event Enable (REE_LV0)	6

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2021 STMicroelectronics – All rights reserved