

SLLIMMTM- nano Series

Small Low-Loss Intelligent Molded Module

July 10, 2018 Version 1.0

SLLIMMTM - nano series 2

Discover the ST's IPM SLLIMM- nano series, specifically designed for high performances and best efficiency in 3-phase inverter motor drives and in general, in home appliances application.

You will learn:

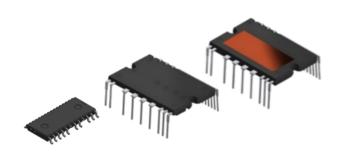
What's make the SLLIMMs very interesting

Features and Benefits of SLLIMM- nano series

Different package options to target a wider power range and different applications

Power and thermal performances of SLLIMM- nano 2nd series vs Competitor

Tools and software dedicated to our IPMs



Power Transistor Division

Power Product Portfolio

From Discrete to Power Modules, ST leads the innovation

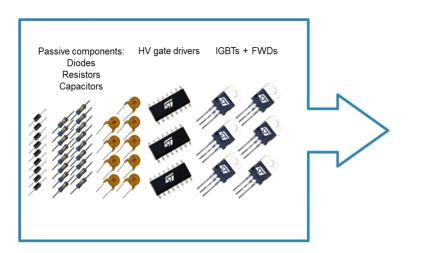
Discrete & Drivers & SIP

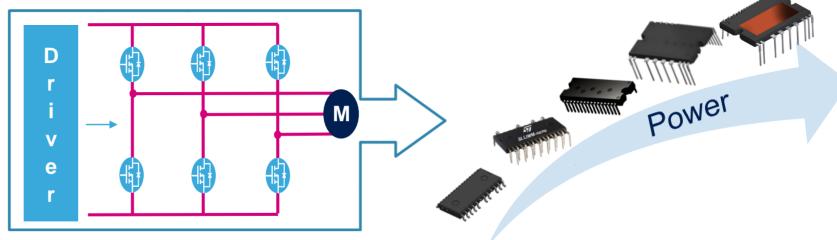
Typical power: 10 W to 5 kW

Typical power: 20 W to 3 kW

ACEPACK™ Power Modules

Typical power: 3 to 30 kW





Discrete vs. IPM 4

Integration as a fundamental requirement to address the market needs


High Power dissipation 1 Lower losses and EMI noise Reduced design time Improved reliability Improved manufacturability and PCB routing

SLLIMM -nano Series

Small Low-Loss Intelligent Molded Modules

The best IPM offer for Home Appliances 3-phase inverter

- ☐ Technology & Flexibility to address market needs
- □ 100% controlled by ST for silicon (Driver IC, MOSFET, IGBT and Diode)
- ☐ Current level from 1 A to 8 A
- □ Package compactness and thermal performance

SLLIMM –nano Series 6

High flexibility & Enhanced efficiency

IGBT, **MOSFET** & SJ MOSFET based technology

Current availability up to 8A at 25°C

Through hole (TH) and SMD packages

NTC thermistor option

Very high robustness and reliability

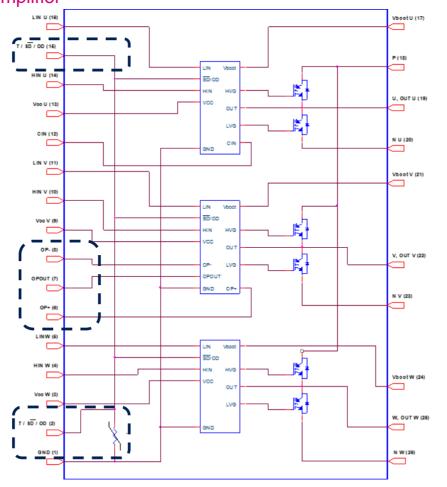
Protections embedded inside power module

Package compactness and thermal performance

Cover a larger customer's PCB solutions

3-phase inverter for motor drives as Fan, Roller shutter, Refrigerator, Compressor, Washing machine up to 500W

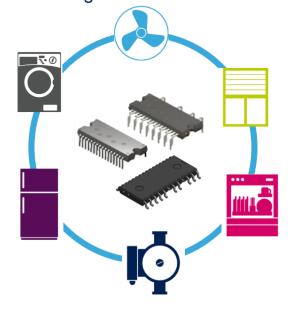
SLLIMM -nano Series


Technology & Flexibility to address market needs

Main Features

- Optimized voltage drop in conduction
- IGBT (planar, TFS) and Mosfet (UltraFast, SJ-Mosfet) based
- 600V and 500V breakdown voltage
- Current availability up to 8 A at 25°C
- Comparator for fault protection
- OpAmp for advanced current sensing
- Open emitter configuration for individual phase current sensing
- Internal bootstrap diodes
- Interlocking function and undervoltage lockout
- Through hole and SMD packages
- Mounted slots package options
- In line and zig-zag leads options (w/wo stand-off)

Topology in SLLIMM - nano Series


NTC shares the same SD pin, three pins for Operational amplifier

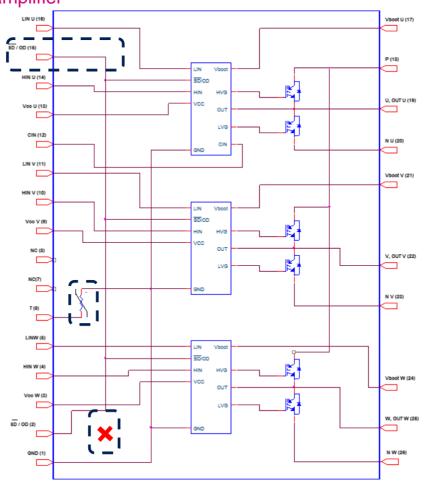
Ideal for

3-phase inverters for motor drives

- Small fans
- Roller shutters
- Dish washer
- Compressor
- Pumps
- Refrigerators
- Washing machine

SLLIMM -nano Series

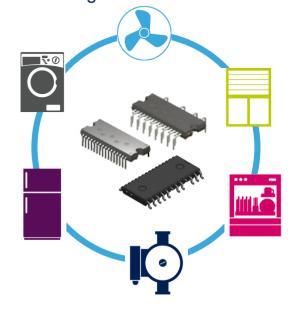
Technology & Flexibility to address market needs


Main Features

- Optimized voltage drop in conduction
- IGBT (planar,TFS) and Mosfet (UltraFast, SJ-Mosfet) based
- 600V and 500V breakdown voltage
- Current availability up to 8 A at 25°C
- Comparator for fault protection
- OpAmp for advanced current sensing
- Open emitter configuration for individual phase current sensing
- Internal bootstrap diodes
- Interlocking function and undervoltage lockout
- Through hole and SMD packages
- Mounted slots package options
- In line and zig-zag leads options (w/wo stand-off)

life,augmented

Topology in SLLIMM - nano Series


NTC and SD are separated, no for Operational amplifier

Ideal for

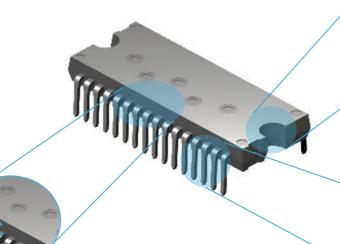
3-phase inverters for motor drives

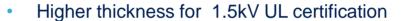
- Small fans
- Roller shutters
- Dish washer
- Compressor
- Pumps
- Refrigerators
- Washing machine

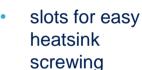
SLLIMM -nano Through Hole

What's new!?

SLLIMM -nano 2nd series to boost power capability


SLLIMM nano TH





- expanded line-up to 5 A and 8 A respectively with SJ-MOSFET and trench field stop (TFS) IGBT technologies for efficiency improvement
- improved isolation voltage rating to 1.5 kVrms/min

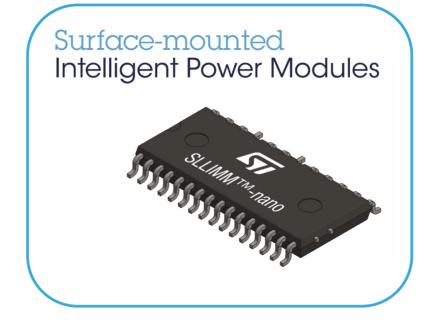
double stand-off option:

No Stand-off

with Stand-off

SLLIMM -nano SMD 10

Save Space in Energy-Efficient Motor Drives


IGBT and **MOSFET** based

600 V and 500 V breakdown voltage

Current availability up to 3 A at 25°C

Optimized voltage drop in conduction

Optimized for low electromagnetic interference

High energy efficiency and excellent reliability

Space-saving device

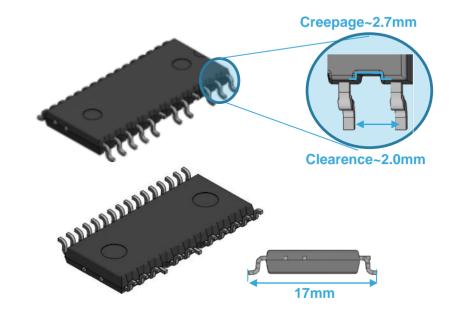
Heatsink-free design

Safety isolation

Low-noise performance

SLLIMM -nano SMD

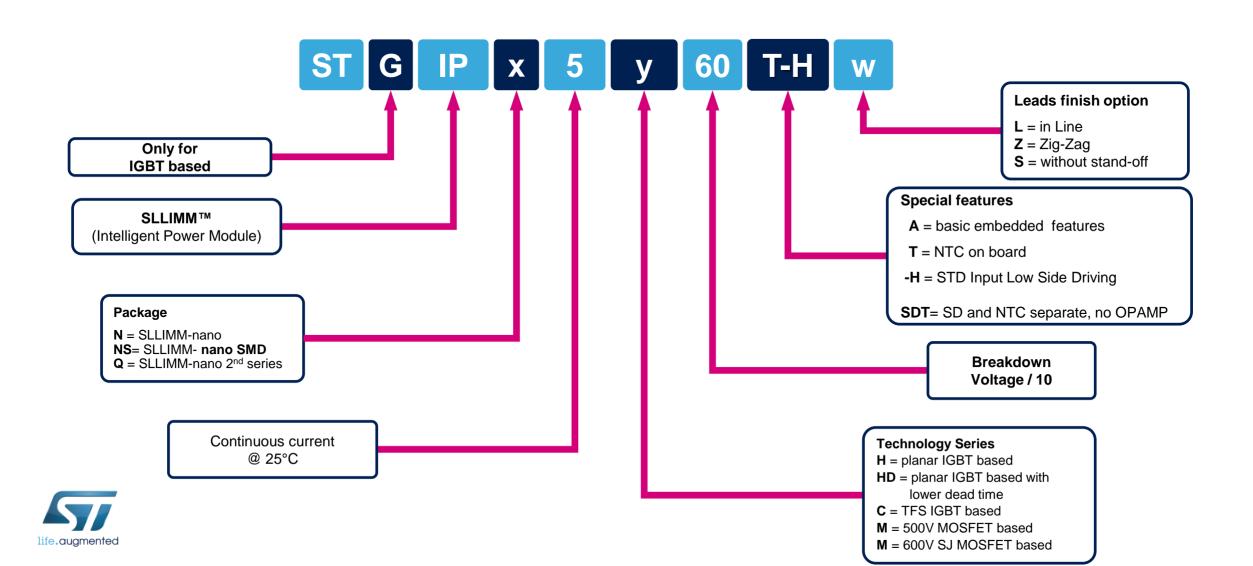
Package compactness and thermal performance for low power rating

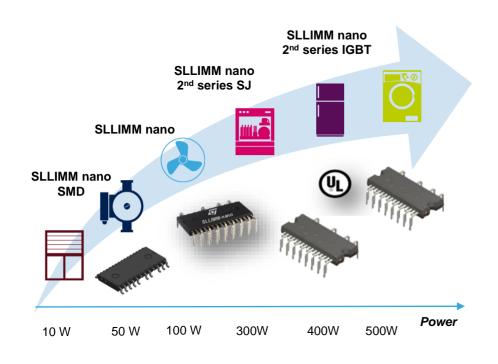


Surface Mounted Device (SMD)

The thermally efficient package enhances reliability and allows heatsink-free design, while 2.7 mm creepage and 2 mm clearance ensure safety isolation within the compact dual-inline **SMD** footprint.

The compact dual-inline SMD footprint is ideal for application boards where reflow and/or wave soldering processes are mandatory




SLLIMM -nano

Nomenclature

SLLIMM -nano

Products Table

Leads finish option

Z = zig zag leads

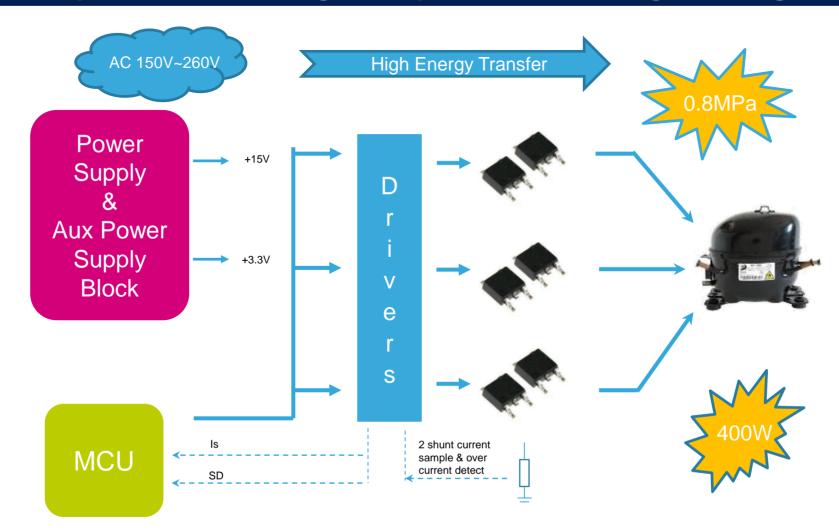
L = in line

S = without stand-off option

Special Features

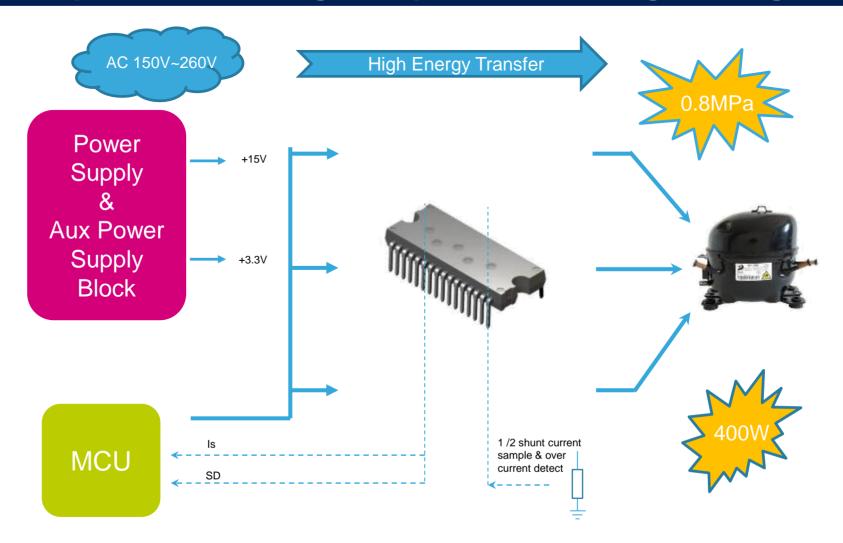
T = NTC on board

-H = STD Input Low Side Driving


SDT= SD and NTC separate

Product PN	Package type	Switch type	BV	I _{CN}	V _{cesat} typ /Max R _{DS(on)}	t _{dead} min
STIPNS1M50T-H	SMD	MOSFET	500 V	1A	3.6Ω	1µs
STIPNS1M50SDT-H				1A	3.6Ω	1 µs
STIPNS2M50(T)-H				2A	1.7Ω	1µs
STGIPNS3H60T-H		IGBT	600 V	3A	2.15 V	1.5 µs
STGIPNS3HD60-H				ЗА	2.15 V	1µs
STIPN1M50T-H	TH	MOSFET	500 V	1A	3.6Ω	1µs
STIPN2M50T-H/L				2A	1.7Ω	1µs
STGIPN3H60(A)(T)-(H)		IGBT	600 V	3A	2.15 V	1.5 µs
STGIPN3HD60-H				ЗА	2.15 V	1µs
STIPQ3M60T-HZ/L	TH nano 2 nd series	SJ-MOSFET	600 V	3A	1,6Ω	1 µs
STIPQ5M60T-HZ/L				5A	1Ω	1 µs
STGIPQ3H60T-HZ/L(S)		IGBT	600 V	ЗА	2.15 V	1.5 µs
STGIPQ3HD60-HZ/L				3A	2.15 V	1 µs
STGIPQ5C60T-HZ/L(S)				5A	1.65V	1.5 µs
STGIPQ8C60T-HZ				8A	2 V	1 µs

Application Example

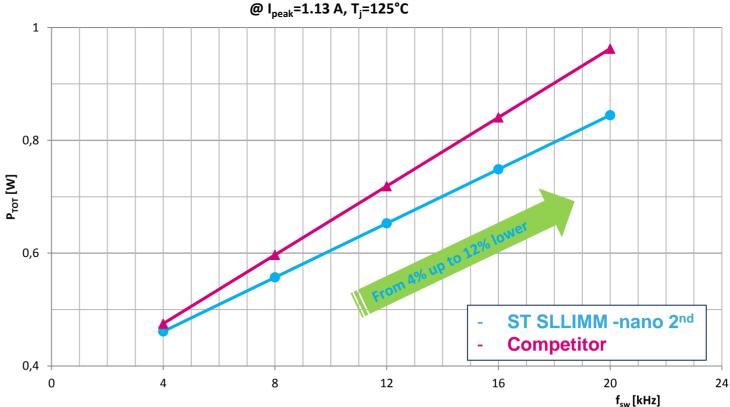

Compressor for Fridge – 3-phase Motor High Voltage

Application Example

Compressor for Fridge – 3-phase Motor High Voltage

Application Benchmark- Simulations 16

Simulation Conditions


- ma= 0.9
- PF= 0.9
- $f_{sine} = 60Hz$
- f_{sw} = up to 20kHz
- I_{peak}= 1.13A
- V_{CFsat}, VF= typical values measured @ 25°C & 125°C
- E_{ON}, E_{OFF}= typical values measured @ 25°C & 125°C

IGBT + FW Diode power loss:

ST IPM shows best overall performance, saving around 12% of power per switch over the competition, at maximum frequency.

Application Benchmark- Simulations

IGBT + FW Diode power loss:

@ I_{neak}=4.9 A, T_i=125°C

Simulation Conditions

- V_{bus}= 320V
- ma= 1
- PF= 0.98
- $f_{sine} = 60Hz$
- f_{sw} = up to 20kHz
- I_{peak}=4.9A
- V_{CFsat}, VF= typical values measured @ 25°C & 125°C
- E_{ON}, E_{OFF}= typical values measured @ 25°C & 125°C

f_{sw} [kHz] ST IPM shows best overall performance, saving around 6.5% of power per switch over the competition.

12

ST SLLIMM nano 2nd

20

24

Competitor

16

IGBT or MOSFET? 18

Real case study – how to decide where to use IGBT and SJ MOSFET

STGIPQ3H60T-HL

IGBT - Saturation voltage

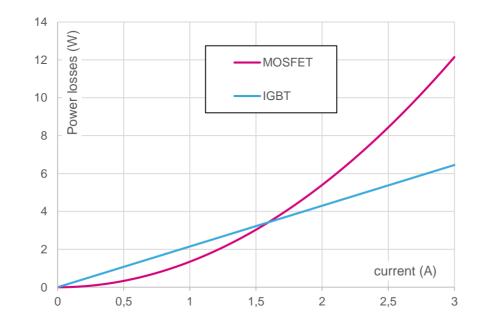
Different power losses on current dependence:

$$P = V_{CE} \cdot I_{E}$$

Power losses of IGBT are linear to emitter current

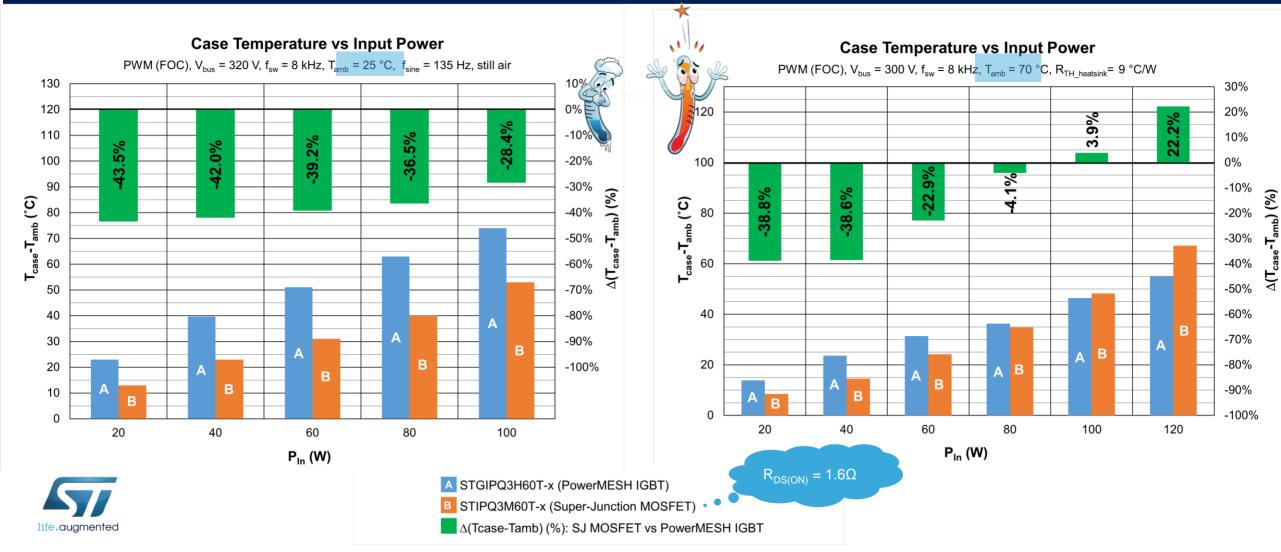
STIPQ3M60T-HL

MOSFET - Drain source resistance


Different power losses on current dependence:

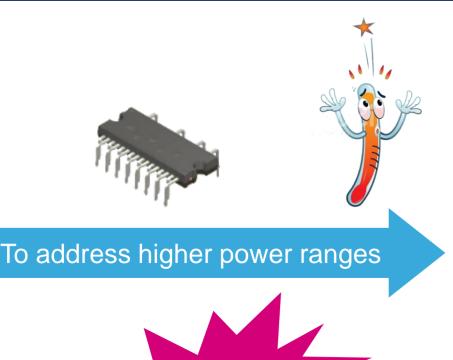
$$P = R_{DSon} \cdot I_D^2$$

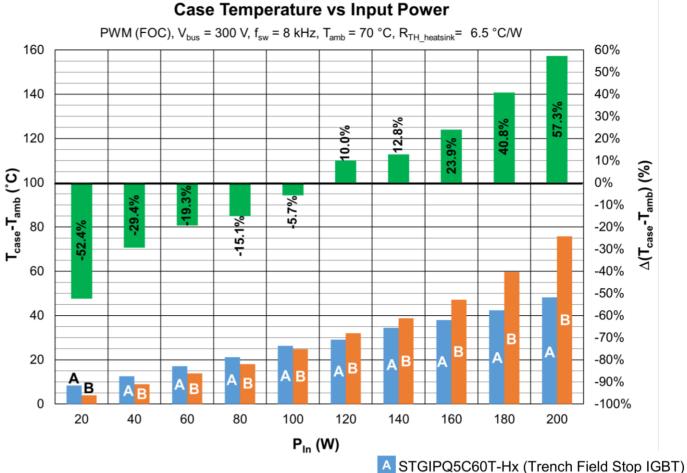
Power losses of SJ MOSFET are exponential to drain-source current

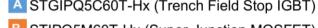


SLLIMM -nano

from conventional switches to SJ MOSFET

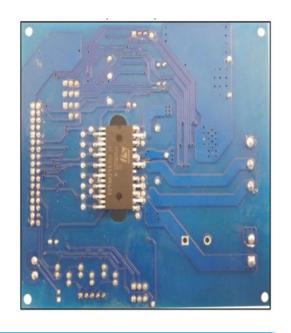

Thermal performances improvements in fridge compressor


SLLIMM -nano


from conventional switches to SJ MOSFET

Thermal performances improvements in fridge compressor

B STIPQ5M60T-Hx (Super-Junction MOSFET)


∆(Tcase-Tamb) (%): SJ MOSFET vs TFS IGBT

ST Power Board

The easy way to get familiar with **SLLIMM™**

STEVAL-IPMx motor control power board based on the SLLIMM -nano series

Board includes:

interface circuit (BUS and Vcc connectors), bootstrap capacitors, snubber capacitor, short-circuit protection, fault event circuit, temperature monitoring, single/three shunt resistors and filters for input signals, hall sensor

easy-to-use solution for driving low-medium power motors

Minimal BOM and high efficiency

Overvoltage and Overload protections

IPM temperature monitoring and protection

Interfacing with ST MCU boards

ST PowerStudio

0.65

0.30

101.64

98.31

1.15

6.90

90.00

5.79

0.13

0.07

0.20

93.80

92.61

- T1 - D1

The dynamic electro-thermal simulation software dedicated to ST power devices

* Available in the next releases

life.auamented


STSW-POWERSTUDIO ST PowerStudio Product Information Conduction Loss (avg) (W) Reset Switching Loss (avg) (W) Configuration: IGBT 3-phase 2-leve Package: N2DIP-26L Total Loss (avg) (W) Package: N2DII = 202 Package size (mm²): 32.15*12.45*4.10 Package technology: FM substrate Junction Temp. (Max) (°C) 2-phase 2-level Junction Temp. (avg) (°C) T1+D1 Total Loss (avg) (W) Integrated Bootstrap Diodes: YES System Total Loss (avg) (W) SD (enable/fault) Function: YES Op-amp for Advanced Current Sensing: YES Case Temp. (Max)(°C) - Comparator for Fault Protection: YES Heatsink+TIM Rth (°C/W) Input signal: Active High (HS)/Active High (LS) Graph 1: Junction Temperature vs. time Family SLLIMM-nano 2nd series Device (15) (mandatory field) Heatsink 7th Parameters Static Load Fixed Tcase (With Heatsink R1 2 τ1 100 O Dynamic Load R2 0 τ2 0 ○ Fixed Heatsink Rth (°C/W) R3 0 τ3 0 ON/OFF -- --R4 0 τ4 0 Graph 2: T1-D1 Power Loss vs. time 0.001 ÷ 15 216.37 Tcase: Case Temperature (°C) 0.6 0.7 0.8 0.9

Support Material 23

- Flyers and Technical notes
- Evaluation Tool Software
- Promotional plastic panels
- Presentations and e-presentations
- Reference designs

STEVAL-IHMx/IPMx

Plastic Panels

Technical Literature

Promotional Boards STDEMOSLLIMM161

For additional information, please visit the web site www.st.com

