

HSP series portfolio overview

High-speed port ESD protection

Is this presentation suited for you?

Where do you stand with high-speed port protection?

Beginner?

I am not familiar with this subject. I am in the discovery phase and would like an overview and a basic understanding of the technology.

Click here to continue to next slide

Overview

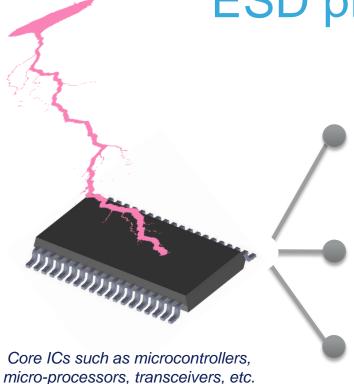
Intermediate?

I have a basic understanding of this subject. I would like to go deeper in details and tackle more aspects of this subject.

Click here to open new presentation

Basic

Advanced?


I am very familiar with this subject. I would like to deepen my knowledge and become an expert.

Click here to open new presentation

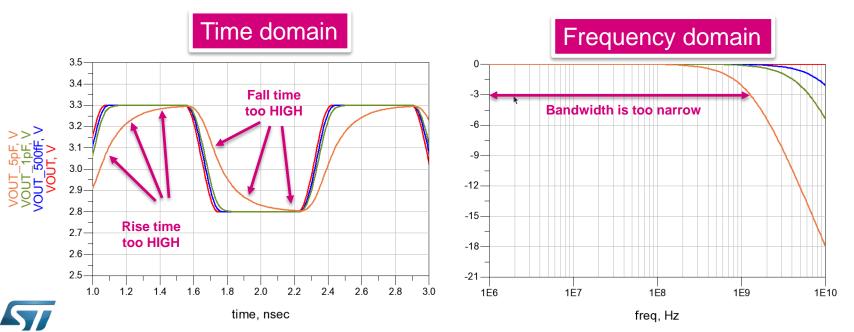
In depth

ESD protection is needed for 3

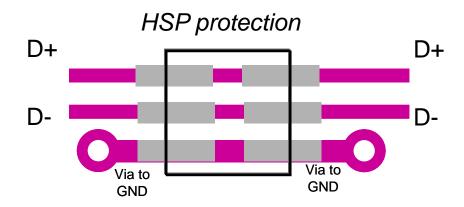
Advanced technology with very thin lithography and gate oxide highly vulnerable to ESD

Integrated electronics systems with **PCBs** having a high component density facilitate ESD coupling and propagation

IC manufacturers reluctant to make robust embedded ESD protection diodes that would require a significant active area of their advanced and expensive technology.

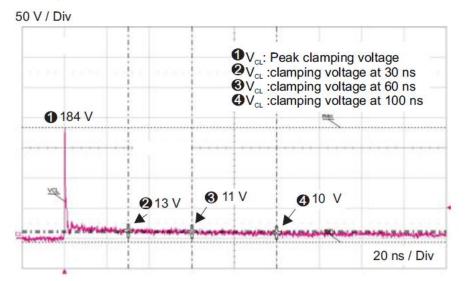

When the application uses RF (Wi-Fi or Bluetooth), a common-mode filter is required, in addition to ESD protection, to avoid RF performance decrease due to the EMI generated by the high-speed link.

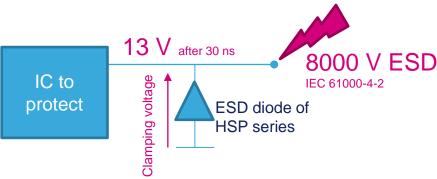
Dedicated to high-speed ports Ultra-low capacitance


- The parasitic capacitance of ESD protection devices must be low enough to allow highspeed signals to be transmitted without degradation.
- A high parasitic capacitance of the ESD protection devices would increase too much the signal rise/fall time and prevent the communication.

Example of the impact of parasitic capacitance on an HDMI signal simulated with discrete capacitance

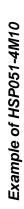
Dedicated to high-speed ports Flow-through layout


- To make the design and PCB layout easier and simpler
- To preserve the symmetry between the 2 lines of the differential lane
 - → High-speed port protection must be flow-through

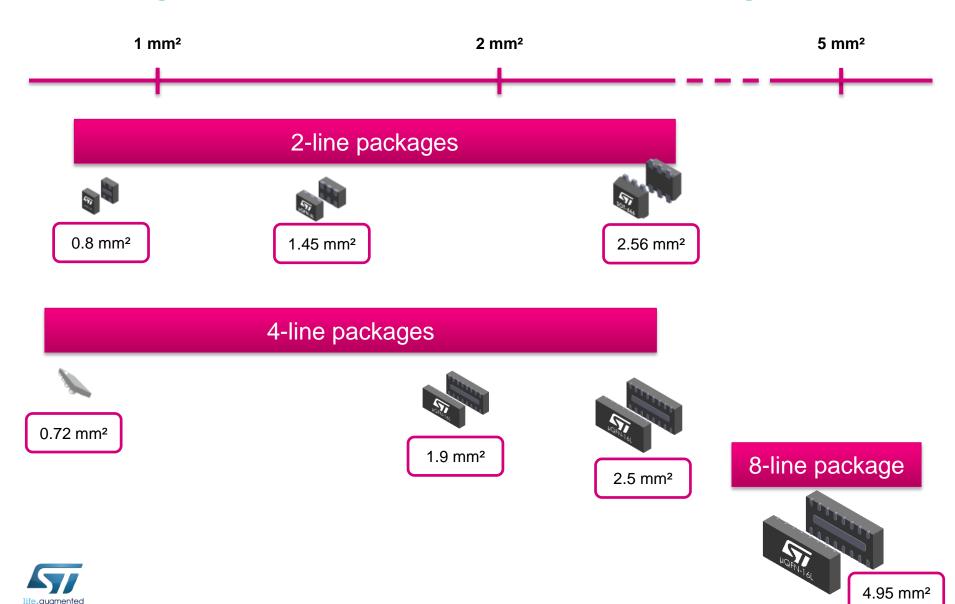


Clamping voltage

ESD response to IEC 61000-4-2 (+8 kV contact discharge) Example of HSP051-4M10


- The quality of protection lies in the clamping voltage of the ESD diodes
- It is measured after 30 ns (the first peak voltage is in the nanosecond range; too fast to be significant)
- HSP protection devices can clamp 8000 V ESD strikes down to 13 V!

Main selection criteria


- V_{BR} Breakdown voltage higher than operating signal Above this voltage, the ESD protection devices will enter Clamping mode
- f_c Cut-off frequency higher than high-speed signal bandwidth defined by the rise time value
- C_{I/O to GND} Low parasitic capacitance (a consequence of high bandwidth) minimizing the impact on transmission line impedance
- R_d Dynamic resistance & V_{CL} Clamping voltage to keep the protected IC safe

Symbol	Test conditions		Min.	Тур.	Мах.	Unit
V_{BR}	I _R = 1 mA		4.5	5.8		٧
I _{RM}	V _{RM} = 3.6 V			10	100	nΑ
V _{CL}	I _{PP} = 1 A, 8/20 μs				10	V
V_{CL}	IEC 61000-4-2, +8 kV contact (I_{PP} = 16 A), measured at 30 ns			13		V
Rd	Dynamic resistance, pulse duration 100 ns	I/O to GND		0.48		Ω
		GND to I/O		0.96		
C _{I/O - I/O}	V _{I/O} = 0 V, F = 200 MHz to 9 GHz			0.2	0.3	pF
C _{I/O - GND}	V _{I/O} = 0 V	F = 200 MHz to 2.5 GHz		0.4	0.55	рF
		F = 2.5 GHz to 9 GHz		0.35	0.45	рF
$f_{\mathbb{C}}$	-3dB			10		GHz
Z _{diff}	Time domain reflectometry: t_r = 200 ps (10 - 90%), Z_0 = 100 Ω		85	100	115	Ω

High-speed port protection package offer

High-speed port protection portfolio

μQFN-4L 400-μm pitch HSP061-2N4 Size: 1 x 0.8 x 0.5 mm 2 lines μQFN-6L 500-μm pitch HSP062-2M6 Size: 1 x 1.45 x 0.55 mm SOT-666 HSP062-2P6 Size: 1.6 x 1.6 x 0.52 mm Flip Chip / WLCSP HSP061-4F4 6 bumps – 300-µm pitch Size: 0.6 x 1.2 x 0.38 mm

4 lines

HSP051-4N10

HSP051-4M10

DFN-10L 400-µm pitch Size: 1 x 1.9 x 0.3 mm

DFN-10L 500-µm pitch Size: 1 x 2.5 x 0.48 mm

lines ∞

HSP061-8M16

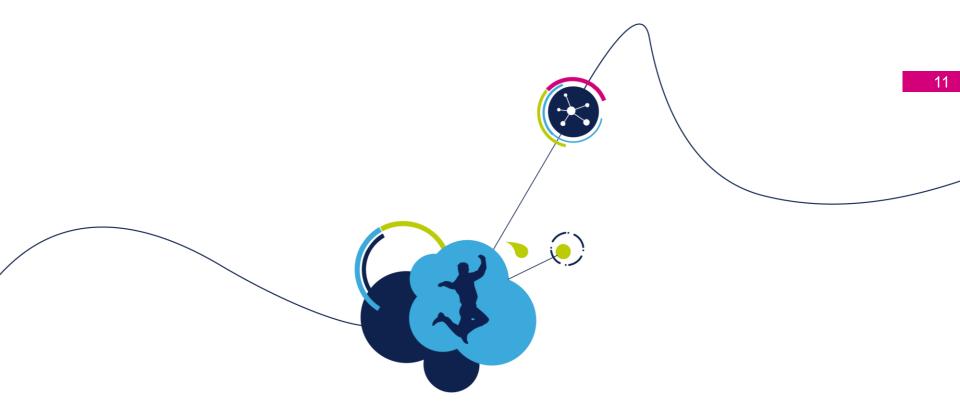
DFN-16L 400-µm pitch Size: 1.5 x 3.3 x 0.55 mm

Let's go further 10

Basic presentation

Intermediate product presentation soon available: 'Understanding ST's HSP series specification'

In-depth information


Application Notes:

- HSP06x-2 high-speed line protection on HDMI 1.4 link (AN4138)
- HSP061-8M16 high-speed line protection on HDMI 1.4 link (AN3357)
- TVS short-pulse dynamic resistance measurement ... (AN4022)
- IEC 61000-4-2 standard testing (AN3353)

Selection

- Selection guide [pdf]
- www.st.com/hsp-protection

Thank you

