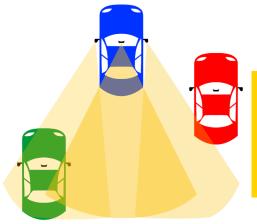


Blindspot Detection & Warning Educational Tool

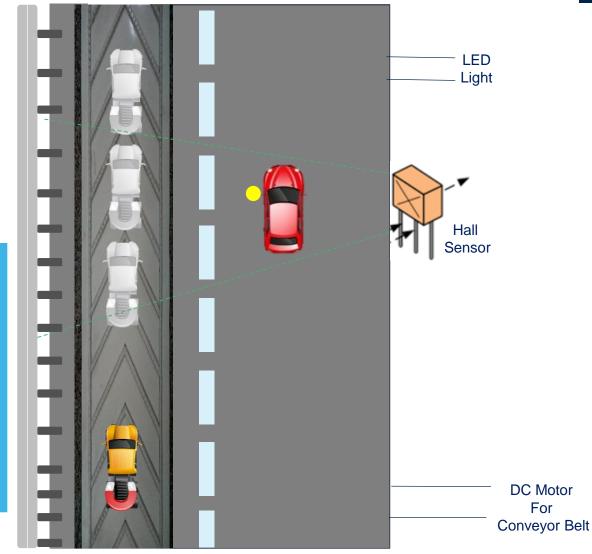
March 2020

What should I buy?

You need to order the following two kits which are part of ST's AutoDevKit development initiative:



Blindspot detection simulation kit AEKD-BLINDSPOTA1


Blindspot Detection Application Motivational

A **blindspot** in a vehicle is an area around the vehicle that cannot be directly observed by the driver while at the controls.

Simulation of a "Vehicle Blindspot"

- A car containing a magnet is carried by a conveyor belt
- A linear Hall effect sensor with output signal proportional to the magnetic field strength is placed in the stationary car.
- When the car with the magnet is in proximity of the stationary car, the Hall effect sensor detects a magnetic field variation and turns on a LED indicating a vehicle is present in the blindspot perimeter.

What is inside the box?

Blindspot detection simulation kit <u>AEKD-BLINDSPOTA1</u>

Set of assembled evaluation boards for the Blindspot detection simulation kit <u>AEKD-BLINDSPOTB1</u>

Mounting the demo

- 1. Place the car with adhesive tape next to the LED on the black panel. The LED represents the car's blind spot warning system.
- 2. Place the other car containing the magnets on the conveyor belt when you start the demo.
- 3. Connect the cable on the top side coming out of the black box to the AEKD-BLINDSPOTB1 assembly.
- 4. Connect the power supply from the AEK-MCU-C4MLIT1 board on the AEKD-BLINDSPOTB1 assembly to the AEKD-BLINDSPOTA1 simulator.

Actuator Hardware Details

Elements for Blindspot Demo

The following components are included:

Main Controller SPC58EC

AEK-MCU-C4MLIT1

LED Driver

AEK-LED-21DISM1

Conveyor belt driver (unidirectional)

VN7050AS

EV-VN7050AS

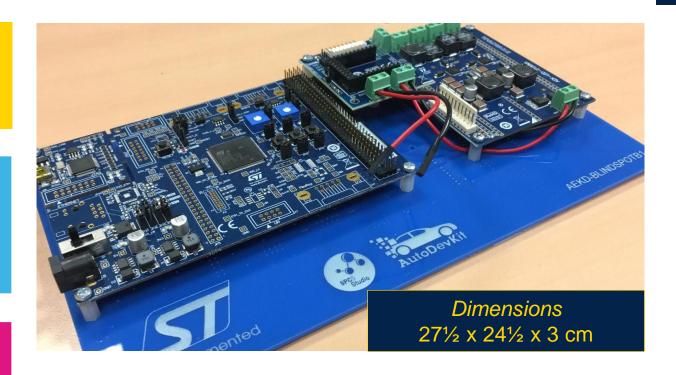
Hall effect sensor

Connector board for Blindspot demo

AEK-CON-BSPOTV1

Blindspot Demo Hardware Details

Hall effect sensor


- It has three pins: 5V, GND, and Signal
- The signal is read through an ADC

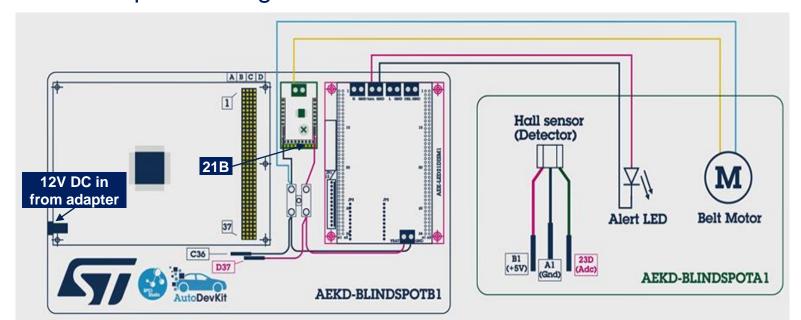
Conveyor belt

- It has two pins: GND and OUT
- The OUT pin from the motor is connected to the EV-VN7050AS board's OUT pin.

Power Supply Connections

- GND connections are available on the AEK-MCU-C4MLIT1 board's 4x37 connector
- The 12V power supply is connected to the AEK-MCU-C4MLT1 to power the complete system

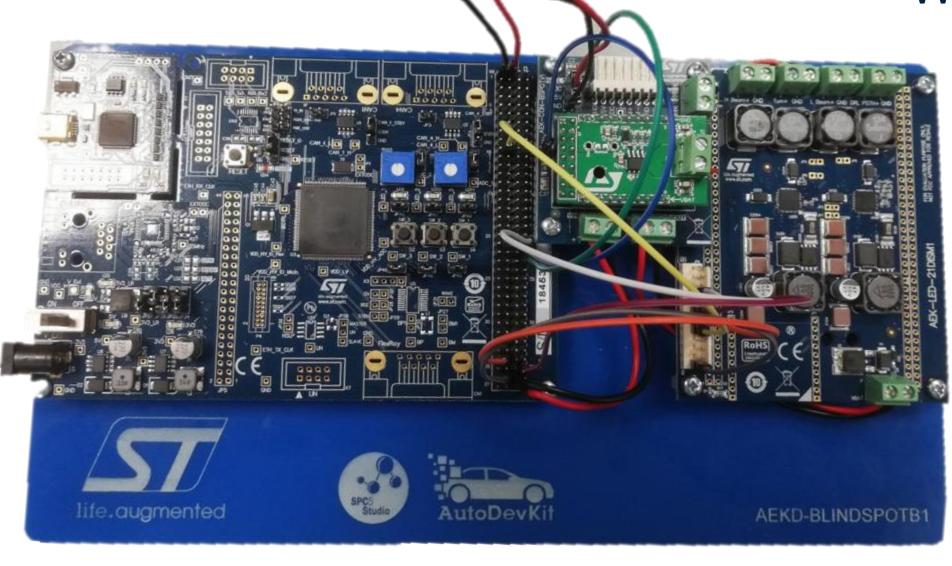
LED


- It has two pins: GND and VIN
- The VIN is connected to the one of the AEK-LED-21DISM12 board's buck outputs

Preloaded firmware test

Test pre-loaded firmware

- Using the single pin female-to-female wires provided connect the boards on AEKD-BLINDSPOTB1 according to the below table.
- Plug the power supply, turn on the switch on the AEK-MCU-C4MLIT1 and place the car with magnets on the initial extremity of the conveyor belt.
- Once the car with magnets is carried closed to the fix car the Blindspot warning LED shall turn-on.



SIGNAL	AEK-LED-21DISM1	AEK-MCU-C4MLIT1
SDI	#5	10B
SDO	#6	34B
SCK	#7	35D
CS	#9	21D
+5VSPI	#1	36B

SIGNAL	HALL SENSOR	AEK-MCU-C4MLIT1
+5V	RED	1B
GND	BLACK	1A
SENSOR	GREEN	23D

SIGNAL	EV-VN7050	AEK-MCU-C4MLIT1
12V	RED	37D
GND	BLACK	36C
INPUT	#13	21B

Wired Demo

Self-learning mode

Getting started and developer resources

- Download and install:
 - SPC5-Studio integrated development environment for SPC5 automotive MCUs
 - ∆utoDevKit[™] library plugin for SPC5-STUDIO
 - SPC5-UDESTK PLS Universal Debug Engine®) debugging software for Windows
- Watch our <u>YouTube video</u> to learn step-by-step how to create and build the Blindspot application demo.
- Visit ST's <u>AutoDevKit™ development initiative</u> for more information including user manuals and technical resources
- Join ST's <u>AutoDevKit™ community</u> to ask questions, propose suggestions and share insights

Self-learning steps

Creating and configuring a new SPC5-Studio project

- Create a new project in SPC5-Studio using an SPC58EC MCU platform
- Add standard components and the following AutoDevKit[™] components
 - Init package
 - AEK_LED_21DISM1 for LED
 - EV VNx7xxx for the DC motor
 - Linear_Hall_Effect_Sensor
- Generate code for low-level drivers
- Configure and generate code for each AutoDevKit™ component
- The Hall effect sensor component will allocate the ADC peripheral. Verify its configuration.
- Use BoardView to connect the hardware components.
- Write your main() function by checking the single component demo for #include information
- Download and debug your firmware using the SPC5-UDESTK debugging tool

Useful AutoDevKit APIs

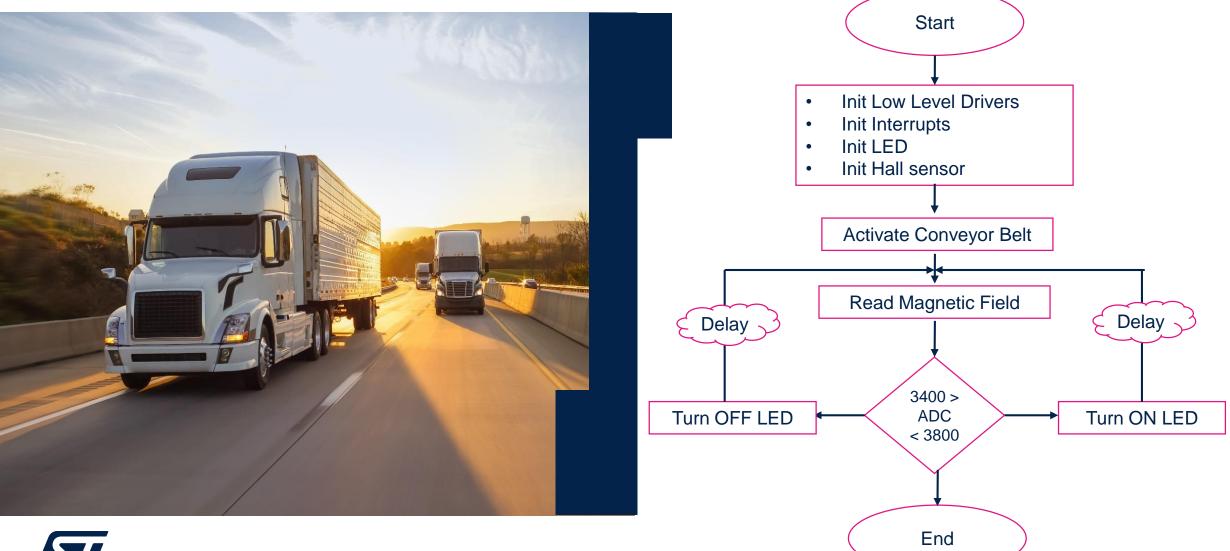
LED Board

- ClearAndTrigger(AEK_LED_21DISM1_DEV0); (Clean all registers status and activate the toggle on the Watchdog)
- ActivateBuckDev(AEK_LED_21DISM1_DEV0, DEV1, BUCK2);
 (Activate the Buck of the Boost/Device selected)
- DeActivateBuckDev(AEK_LED_21DISM1_DEV0, DEV1, BUCK2); (Deactivate the Buck of the Boost/Device selected)

DC Motor Board

• ActiveINChannel(int channel, EV_VNx7xxx_DEV0) (Activated the IN channel selected)

Hall Sensor


- LinearHallADCinit (LINEAR_HALL_DEVICE dev) (Initialization ADC)
- LinearHallADCstartConverison (LINEAR_HALL_DEVICE dev) (Start and stop a conversion of the ADC)

Pro tip:

- Use ADC values in [3400, 3800] range to turn on the LED
- osalThreadDelayMilliseconds(x) to delay execution by x milliseconds

Self-learning flowchart

Thank you

