

ST automotive PMICs and SBCs

October 2025

What is a power management IC for automotive systems?

PMICs and SBCs integrate essential power control elements into a single chip, reducing the component count and board space.

They allow an easy and cost-effective managing of automotive applications.

A PMIC is an integrated circuit designed to manage the power requirements of automotive electronic systems

Combines multiple power functions in a single chip: DC-DC converters, linear regulators, monitoring, sequencing, and safety features

Streamlines power distribution from the vehicle battery to various subsystems, ensuring efficient and reliable operation

SBCs complement PMICs with support features for the MCU (supervision, communication) and often CAN and/or LIN transceivers

Why use automotive PMICs and SBCs?

Reduce component count and PCB space

Enhance energy efficiency and reduce standby power consumption

Accelerate development time with integrated functions

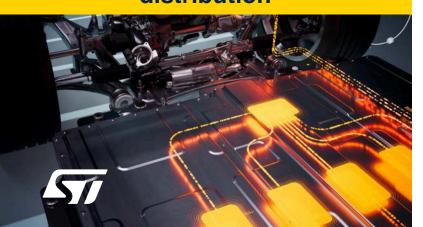
Improve system reliability through built-in safety and monitoring

What are the advantages of ST automotive PMICs?

What are the advantages of ST automotive SBCs?

Where are PMICs and SBCs used in vehicles?

ADAS systems: camera module, radar, domain controllers


Electronic control units (ECU) and microcontroller units (MCU)

Infotainment: instrument clusters, telematics control units (TCU)

Zonal architecture power distribution

Braking, steering, powertrain systems

And more...

ST automotive PMIC product portfolio

For battery protection

Hot swap and ideal diode controllers

STPM801

For flexible power regulation

Buck-Boost controllers

STPM802

STPM802A

For ADAS and ECU power rails

Multirail batterycompatible PMICs

L5965

SPSA068

STPM066S STPM066S

SPSA068

For high-current processors and GPUs

High-performance multiphase controllers

For general electrification

Dual switching and linear regulators

L5963

L9001

Support

evaluation boards, design resources, and technical support

ST automotive SBC product portfolio

STM32xA and Cost-champions MCUs

General purpose

General purpose and Performance

Stellar E line and Mainstream MCUs

Electrification (OBC, DC-DC, ...)

Stellar P line and Performance-class MCUs

Electrification (Xin1, ...)

Stellar G line and Performance-class MCUs

High end body / zonal vehicle architecture

L99PMx

SPSB081

<u>L9396</u>

SPSB100B

SPSB100B

SPSB081

L9396

SPSA068

SPSB100G

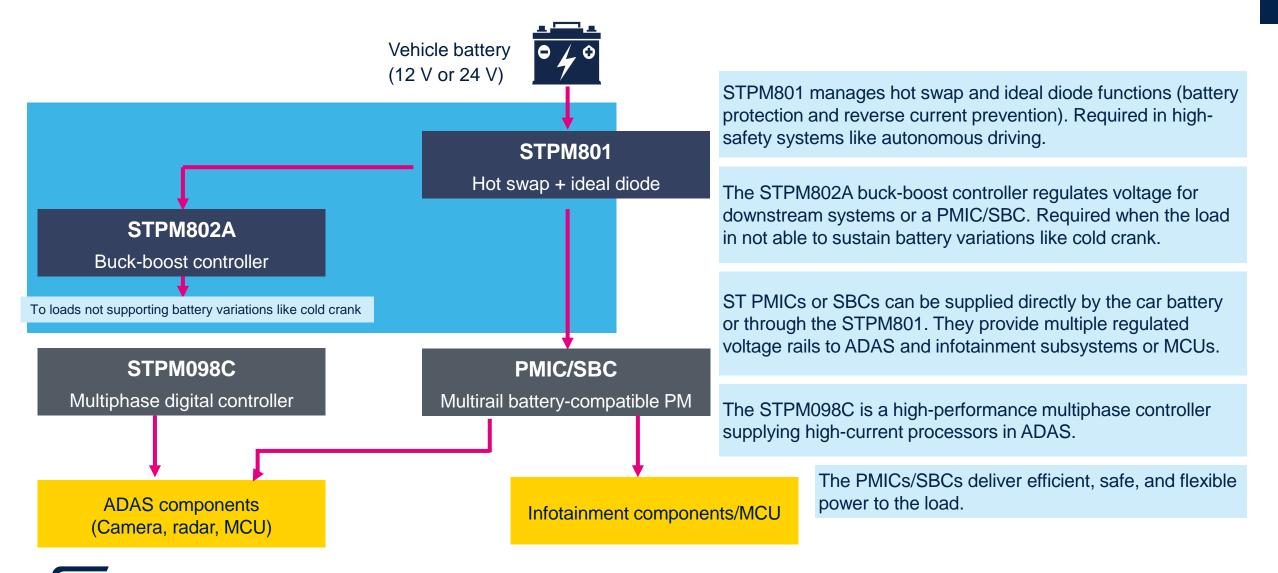
SPSB100G

Support

evaluation boards, design resources, and technical support

What is the difference between PMIC/SBC and PMU?

PMIC is a single integrated circuit that handles multiple power management tasks on-chip. SBC manages the MCU


- An integrated circuit that manages power functions such as voltage regulation, sequencing, monitoring, and protection within a device
- Typically, a single chip integrating multiple power management functions
- Regulates voltages, controls power sequencing, protects against faults, and often includes communication interfaces (SPI, I²C)
- Focused on integrated power regulation and control at the chip level
- Used in electronic subsystems to efficiently manage power rails and MCUs in all their working conditions, ensuring system safety

A power management unit (PMU) is a higher system-level unit and may include PMICs, SBCs & other components

- A broader functional block or module that manages power distribution and control, often consisting of multiple ICs or components, including PMICs
- It can be a system-level block that may include one or more PMICs, regulators, controllers, and interfaces
- Coordinates overall power management strategy and may include system-level power sequencing, battery management, and power distribution
- Encompasses system-level power management, possibly involving software control and multiple hardware components
- Used at the system or subsystem level to coordinate power flow and management across multiple components or ICs

Automotive PMU block diagram featuring ST PMICs

ST PMICs in ADAS PMUs

Example: ADAS power management unit

- Manages power from the vehicle battery (12 V or 24 V) to various ADAS components such as cameras, radar sensors, and domain controllers.
- Ensures safe power-up sequencing, fault detection, and energy efficiency.
- Supports functional safety requirements (ASIL-D).

ST PMICs inside the PMU

PMIC	Role in PMU	Key features
STPM801	Hot swap and ideal diode controller	Protects against reverse polarity, supports dual battery systems, ensures safe power switching
STPM066S	Battery-compatible multirail PMIC	Supplies multiple regulated rails for MCUs, sensors, and processors with SPI control
STPM802A	Buck-boost preregulator	Provides stable intermediate voltage rails for downstream regulators in zonal architectures
STPM098C	Multiphase digital controller	Supplies high-current processors and GPUs with efficient multiphase power conversion

PMU functions enabled

- Safe, efficient power distribution to ADAS modules
- Real-time monitoring and diagnostics via SPI/I²C
- Programmable power sequencing and fault management
- Reduced external components and PCB size

ST PMICs in infotainment system PMUs

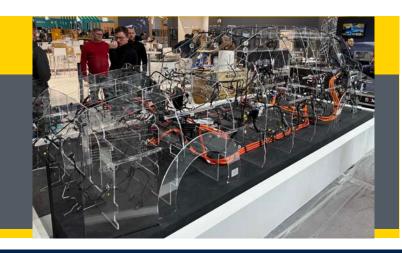
Example: infotainment system power management unit

- Manage power for infotainment components such as instrument clusters, TCU, USB hubs, and chargers.
- Provide multiple voltage rails with high efficiency.
- Support standby modes to reduce power consumption when the vehicle is off.

ST PMICs inside the PMU

PMIC	Role in PMU	Key features
L5965	Battery-compatible multirail PMIC	Supplies multiple voltage rails with programmable outputs and diagnostics
SPSA068	Battery-compatible PMIC for MCU	Provides low quiescent current and supports functional safety
L5963	Dual switching and one linear regulator	Provides high power rails with a flexible configuration

PMU functions enabled

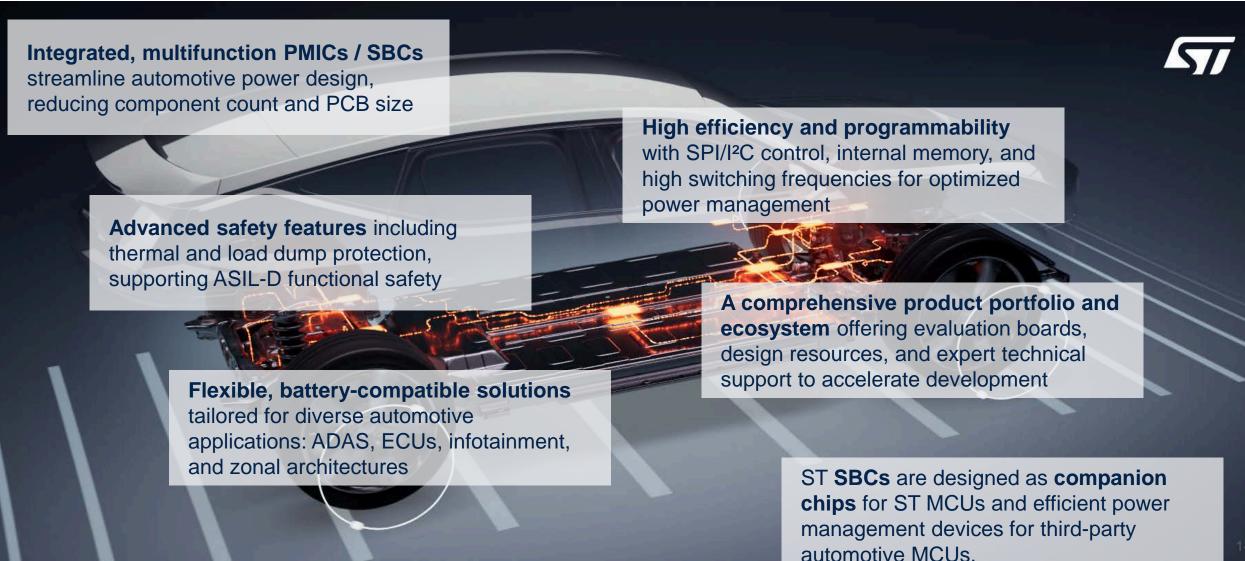

- Flexible power rail configuration
- Energy-efficient standby and low-power modes
- Integrated safety and monitoring
- Simplified system design with fewer external components

ST SBCs as companion chip for MCUs

Example: ST Stellar MCU power ,anagement

- Manages power for MCUs like the new ST Stellar family.
- Ensures safe power-up sequencing, fault detection, and communication.
- Supports functional safety requirements (ASIL-D) in all microcontroller's state, like run-mode, smart-power and stand-by.

ST SBCs inside the PMU


SBC	Main target	
L99PMx	Power supply for STM32 automotive MCUs	
SPSB081	Power management for MCUs with low core current, like STM32 automotive and SPC5 MCUs for general purpose	
L9396	System basis chip especially for MCUs used in ABS, EPS, and transmission systems.	
SPSB100/G	Power management for powerful MCUs, like Stellar G (G6, G7) and P (P6, P7) lines, targeting zonal architectures and electrification (e.g., X in 1)	

Safety functions enabled

- NFSO path to bring the system to a safe state
- SPI, IRQ, and FCCU between PMIC and MCU for fast issue signaling
- NRESET pin to MCU to keep MCU under reset before the supplies are available and if no issue is detected
- Different safe states with different levels of severity

Why choose ST automotive power management ICs?

Our technology starts with You

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

