

Rad-Hard 2 x 40 A - 45 V Schottky rectifier in SMD.5 package

2 3

SMD.5

Terminals 1 and 2: Anode Terminals 3: cathode Top lid unconnected

Product status link

STPS80A45CHR

Product summary					
I _{F(AV)}	2 x 40 A				
V _{RRM}	45 V				
T _j (max)	175 °C				
V _{F(max)} at 2 x 40 A / 125 °C	0.74 V				

Features

- Forward current: 2 x 40 A
- Repetitive peak reverse voltage: 45 V
- Low forward voltage drop: 0.74 V max. at 80 A/125 °C
- dV/dt up to 10 kV/µs
- Monolithic dual die common cathode
- Hermetic package
- TID and SEE characterized
- Package mass: 1 g
- ESCC qualified: 5106/024

Description

The STPS80A45CHR is packaged and screened to comply with the ESCC5000 specification for aerospace products. It is a dual monolithic Schottky rectifier assembled in an SMD.5 hermetic package and characterized in total dose at high dose rate and in single event effect to be used in aerospace applications. It is ESCC qualified.

The complete ESCC specification for this device will be available from the European Space Agency web site. ST will guarantee full compliance of qualified parts with the ESCC detailed specification.

1 Characteristics

1.1 Absolute maximum ratings

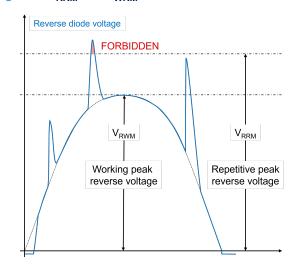

The absolute maximum ratings are limiting values at 25°C, per diode unless otherwise notified. Values provided in Table 1. Absolute maximum ratings shall not be exceeded at any time during use or storage.

Table 1. Absolute maximum ratings

Symbol	Par	Parameter						
V _{RRM} ⁽¹⁾	Repetitive peak reverse voltage		45	V				
V _{RWM} ⁽¹⁾	Peak working reverse voltage		45	V				
I _O ⁽²⁾	Average output regified ourrent	Per diode	40	Α				
10,	Average output rectified current	Per package	80	Α				
I _{FSM}	Non repetitive surge forward current	200	Α					
dV/dt ⁽³⁾	Reverse voltage maximum rise rate (4)		10	kV/μs				
T _{op}	Operating temperature range (case tempe	rature)	-65 to +175	°C				
T _j ⁽⁵⁾	Maximum operating junction temperature		+175	°C				
T _{stg}	Storage temperature range	-65 to +175	°C					
T _{sol} ⁽⁶⁾	Maximum soldering temperature ⁽⁴⁾	+245	°C					
ESD	Electro static discharge	Electro static discharge Air discharge, HBM model, class 3						

- 1. See Figure 1.
- 2. Per diode: for T_{case} > +74 °C, derate linearly to 0 A at +175 °C. Per device: for case > +44 °C, derate linearly to 0 A at +175 °C.
- 3. Evaluated by characterization. Tested in production at 25 °C on 5 parts per wafer lot.
- 4. V_{RRM} from stationary no-conduction state to $V_{RRM} < V_{RRM}$ max
- 5. $(dP_{tot}/dT_i) < (1/R_{th(i-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.
- 6. Duration 5 seconds maximum with at least 3 minutes between consecutive temperature peaks.

Figure 1. V_{RRM} and V_{WRM} definition with their waveform

DS13146 - Rev 3 page 2/12

1.2 Thermal parameters

Table 2. Thermal parameters

Symbol	Parameter	Typ. value	Max. value	Unit	
D (1) The small registers as investigates as	Thermal registance, junction to age	Per diode	-	3.4	°C/W
r\th(j-c)	R _{th(j-c)} (1) Thermal resistance, junction to case	Per package	-	2.8	C/VV

^{1.} When only 1 diode is used, the dissipation is made from a part of the die, hence to a higher thermal resistance.

DS13146 - Rev 3 page 3/12

1.3 Electrical characteristics

Limiting value per diodes, unless otherwise specified.

Table 3. Static electrical characteristics

Symbol	Parameter	MIL-STD-750 test method	Test condition	ıs ⁽¹⁾	Min.	Тур.	Max.	Unit
I _R	Reverse leakage current	4016	DC method, V _R = 45 V	T _j = 25 °C	-	4.0	25	μΑ
чR	Neverse leakage current	4010	Do metriou, VR = 45 V	T _j = 125 °C	-	6.0	18	mA
				T _j = -55 °C	-	0.55	0.59	
			I _F = 5 A	T _j = 25 °C	-	0.47	0.51	
				T _j = 125 °C	-	0.36	0.40	
			I _F = 10 A I _F = 20 A	T _j = -55 °C	-	0.59	0.63	
				T _j = 25 °C	-	0.53	0.57	
				T _j = 125 °C	-	0.44	0.49	
				T _j = -55 °C	-	0.65	0.70	
$V_F^{(2)}$	Forward voltage drop	4011		T _j = 25 °C	-	0.62	0.67	V
				T _j = 125 °C	-	0.55	0.61	
				T _j = -55 °C	-	0.71	0.76	
			I _F = 30 A	T _j = 25 °C	-	0.69	0.75	
				T _j = 125 °C	-	0.62	0.68	
				T _j = -55 °C	-	0.76	0.82	
			I _F = 40 A	T _j = 25 °C	-	0.76	0.82	
				T _j = 125 °C	-	0.67	0.74	

^{1.} Measurement per diode

Table 4. Dynamic electrical characteristics

Sy	ymbol	Parameter	Mil-STD-750 test method	Te	Min.	Тур.	Max.	Unit	
	C ⁽¹⁾	Junction capacitance	4001	T _j = 25 °C	V _R = 10 V, F = 1 MHz	-	-	610	pF

^{1.} Guaranteed by sampling. In case the sampling acceptance criteria is not met, guaranteed by a 100% test

DS13146 - Rev 3 page 4/12

^{2.} Pulse width 680 µs, duty cycle ≤ 2%

Characteristics (curves)

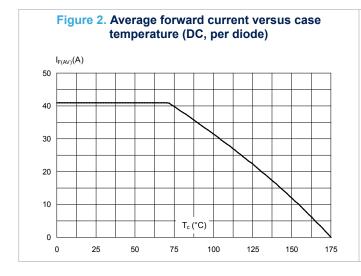


Figure 3. Forward voltage drop versus forward current (typical values, per diode) 100.0 T. = 75 °C 10.0 1.0 T_i = 25 °C V_⊏(V) 0.1 0.0 0.6 0.9

Figure 4. Reverse leakage current versus reverse voltage (typical values, per diode) l_R(μA) 1.E+05 Tj = 150 °C 1.E+04 T_i = 125 °C Ti = 100 °C 1.E+03 Tj = 75 °C 1.E+02 Tj = 50 1.E+01 1.E+00 1.E-01 0 10 20 35 40 45

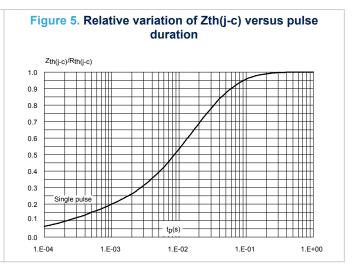
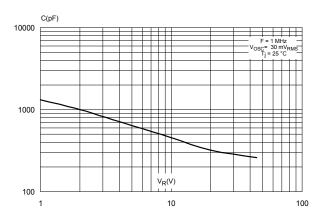



Figure 6. Junction capacitance versus reverse voltage (typical values, per diode)

DS13146 - Rev 3 page 5/12

2 Radiation

The technology of the STMicroelectronics Rad-Hard rectifier's diodes is intrinsically highly resistant to radiative environments.

The product radiation hardness assurance is supported by a total ionisation dose (TID) test at high dose rate and a single effect event (SEE) characterization.

2.1 Total dose radiation (TID) testing

A characterization in Total Ionizing Dose has been done at high dose rate on 12 parts housed in SMD1, 4 parts unbiased, 4 parts reverse biased and 4 parts forward biased.

The irradiation has been done according to the ESCC 22900 specification, standard window.

Both pre-irradiation and post-irradiation performances have been tested using the same circuitry and test conditions for a direct comparison can be done ($T_{amb} = 22 \pm 3$ °C unless otherwise specified).

The following parameters were measured:

- Before irradiation
- After irradiation at final dose 3 Mrad (Si)
- After 168 hrs at room temperature
- after 168 hrs at 100 °C anneal

Based on this characterization, the device is deemed able to sustain 3 Mrad(Si) while maintaining all its parameters within its specifications.

2.2 Single event effect

The Single Event Effect (SEE) relevant to power rectifiers are characterized, i.e. the Single Event Burnout (SEB). The tests are performed as per ESCC 25100, each one on 3 pieces from 1 wafer at room temperature.

The accept/reject criteria are:

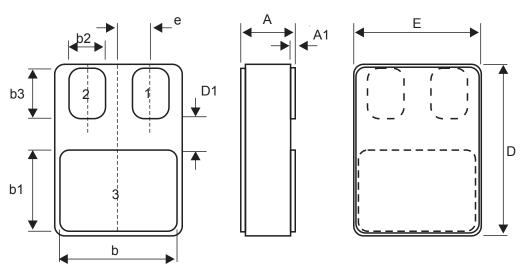
- SEB (Destructive mode):
 - The diode is reverse biased during irradiation. The test is stopped as soon as a SEB occurs or when the reverse leakage current is above the specification or when the overall fluency on the component reaches 1E7 cm².
- Post irradiation stress test (PIST):
 - After the irradiation, a stress is applied to the diode in order to reveal any latent damage on the irradiated devices.

The reverse voltage value is increased from 0 V to 100% of V_R max. and then decreased from 100% of the V_R max. to 0 V. At each step, the reverse leakage current value is measured.

Table 5. Radiation hardness assurance summary

Туре	Conditions	Result
Total ionisation dose	High dose rate 4 reverse biased + 4 forward biased + 4 unbiased	Immune up to 3 Mrad(Si)
Single effect burnout	LET 61.2 MeV.cm ² /mg, $V_r \le 66\% V_{rrm}$	No burnout
	LET 32 MeV.cm ² /mg, $V_r \ge 100\% V_{rrm}$	No burnout
PIST	LET 32 MeV.cm ² /mg, $V_r \ge 100\% V_{rrm}$	Parts fully compliant with specification

DS13146 - Rev 3 page 6/12


3 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

3.1 SMD.5 package information

The top metallic lid is not connected to any part of the die nor any terminal of the package.

Figure 7. Surface mount SMD.5 package outline (3-terminal)

7386434_7

Table 6. SMD.5 package mechanical data

Cumbala		Dimensions (mm)		Di	es)	
Symbols	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.84		3.30	0.112		0.130
A1	0.25	0.38	0.51	0.010	0.015	0.020
b	7.13	7.26	7.39	0.281	0.286	0.291
b1	5.58	5.72	5.84	0.220	0.225	0.230
b2 ⁽¹⁾	2.28	2.41	2.54	0.090	0.095	0.100
b3	2.92	3.05	3.18	0.115	0.120	0.125
D	10.03	10.16	10.28	0.395	0.400	0.405
D1	0.76			0.030		
E	7.39	7.52	7.64	0.291	0.296	0.301
е		1.91 BSC			0.075	

1. 2 locations

DS13146 - Rev 3 page 7/12

Ordering information

Table 7. Ordering information

Order codes	ESCC detail specification	Quality level	Package	Lead finishing	Marking	Mass	Base qty.	Packing
STPS80A45CS1		engineering model		Gold	STPS80A45CS1			
STPS80A45CSG	5106/024/01	Flight model	SMD.5		510602401	1 g	20	Strip pack
STPS80A45CST		Flight model		Hot solder dip	510602404			

Note: Contact ST sales office for information about the specific conditions for products in die form.

DS13146 - Rev 3 page 8/12

5 Other information

5.1 Traceability information

Figure 8. Product marking outline, flight model top view

ST Date code

PM

SN FR ESA

Figure 9. Product marking outline, engineering model top view

ST Date code

PM

FR

Table 8. Product marking description

Field	Model	Description
ST	Engineering and flight	Standard ST logo
PM	Engineering	Product part number
FIVI	Flight	ESCC part number
Date code	Engineering	3yywwN ⁽¹⁾
Date code	Flight	yywwN ⁽²⁾
SN	Flight	Serialization number
ESA	Flight	ESA logo
FR	Engineering and flight	Country of origin

^{1.} yy= year; ww = week; N = alfa-numeric digit for lot of week; 3 = EM type

Note: Black dot marks terminal 1 position underneath.

DS13146 - Rev 3 page 9/12

^{2.} yy= year; ww = week; N = alfa-numeric digit for lot of week

5.2 Packing information

Figure 10. Strip pack view, label side

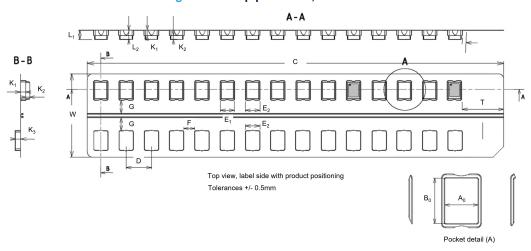


Table 9. Strip pack dimension data

					Strip pa	ck typic	cal dimer	nsion (n	nm)					
A0	В0	С	D	E1	E2	F	G	K1	K2	K3	L1	L2	Т	W
7.80	10.40	400.00	18.20	9.50	10.00	8.10	12.00	5.00	3.30	5.00	8.60	8.30	39.20	70.00

5.3 Documentation

In the Table 10 is a summary of the documentation provided with each type of products. Further quality information on engineering model product is also available in the technical note TN1181.

Table 10. Documentation provided for each type of product

Quality level	Documentation
Engineering model	Certificate of conformance including: Customer name Customer purchase order number ST sales order number and item ST commercial product code Quantity delivered Date code Reference data sheet Reference to TN1181 on engineering models ST Rennes assembly lot ID number
Flight model	Certificate of conformance including: Customer name Customer purchase order number ST sales order number and item ST commercial product code Quantity delivered Date code Serial numbers Wafer diffusion plant location and wafer size Wafer diffusion lot ID number and wafer ID number Reference of the applicable ESCC qualification maintenance lot Reference to the ESCC detail specification ST Rennes assembly lot ID number

DS13146 - Rev 3 page 10/12

Revision history

Table 11. Document revision history

Date	Revision	Changes			
17-Feb-2020	1	First issue.			
19-Mar-2020	2	Updated Section Features.			
		Updated Section Features, Table 1 and Table 7.			
28-Nov-2025	3	Updated Section 5.2: Packing information.			
		Minor text changes.			

DS13146 - Rev 3 page 11/12

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

DS13146 - Rev 3 page 12/12