

Power management IC for MPU: 2 buck converters and 4 LDOs

Features

- Input voltage range from 2.8 V to 5.5 V
- 2 buck SMPS converters with adaptive constant on-time (COT) topology
- 2 adjustable general-purpose LDOs
- 1 LDO for DDR3L/DDR4 termination (sink-source) or as a general-purpose LDO
- 1 LDO for USB PHY supply
- 2 MHz switching frequency buck converters with forced PWM
- User programmable non-volatile memory (NVM), enabling scalability to support a wide range of applications
- Immediate output alternate settings toggle via dedicated power control pins
- Programmable output voltages turn ON/OFF sequences
- I²C and digital I/O control interfaces
- 2 GPO output controls for external commands
- VFQFPN 28L (4.0 x 4.0 x 1.0 mm)

Maturity status link

STPMIC1L

Dev	vice summary
	STPMIC1LAPQR
Order code	STPMIC1LBPQR
	STPMIC1LDPQR
Packing	VFQFPN 28L
1 acking	(4.0 x 4.0 x 1.0 mm)

Applications

- · Power management for embedded microprocessor units
- · Wearable and IoT devices
- Portable devices
- Human machine interfaces
- Smart home devices
- Power management unit companion chip for the STM32MP13/15 MPUs

Description

The STPMIC1L is a fully integrated power management IC designed for STM32MP1x MPU series applications requiring low power and high efficiency.

The device integrates advanced low-power features controlled by a host processor via I²C and I/O interfaces.

The STPMIC1L regulators are designed to supply power to the application processor as well as to external system peripherals such as DDR, and flash memories. The STPMIC1L supplies the core chipset (the MPU+ DDR+ 1 flash memory), but not other system devices. This is done via discrete regulators controlled by the STPMIC1L GPOs).

Two buck SMPS are optimized to provide excellent transient response and output voltage precision for a wide range of operating conditions. Advanced PWM phase-shift synchronization technique with integrated PLL reduces noise and EMI.

1 Device configuration table

The STPMIC1L has a non-volatile memory (NVM) that enables scalability to support a wide range of applications:

- Default output voltage, POWER_UP/POWER_DOWN sequences, protection behavior, auto turn-on functionality, and an I²C slave address.
- The STPMIC1LA, STPMIC1LB and STPMIC1LD are preprogrammed devices to support the STM32MP1x series application processor versions.
- Straightforward NVM reprogramming via I²C to facilitate mass production directly in target applications.
- Possibility to lock NVM content to prevent further reprogramming by writing LOCK NVM bit.

Table 1. Default configuration table

				Default	configuration table	;				
		STPMIC1LA			STPMIC1LB		STPMIC1LD			
	Default output voltage	Default output current	Rank	Default output voltage	Default output current	Rank	Default output voltage	Default output current	Rank	
LDO2	3.3 V	0.4 A OCP level 1	1	1.8 V	0.4 A OCP level 1	1	3.3 V	0.4 A OCP level 1	1	
LDO3	-	OCP level 1	0	-	OCP level 1	0	-	OCP level 0	0	
LDO4	3.3 V	40 mA OCP level	5	3.3 V	40 mA OCP level	5	3.3	40 mA OCP level	5	
LDO5	3.3 V	0.4 A OCP level 0	4	2.9 V	0.4 A OCP level 0	4	3.3 V	0.4 A OCP level 0	4	
BUCK1	1.22 V	1.5 A OCP level 1	2	1.22 V	1.5 A OCP level 1	2	1.25 V	1 A OCP level 1	2	
BUCK2	-	1.0 A OCP level 1	0	-	1.0 A OCP level 1	0	1.25 V	1 A OCP level 1	3	
GPO1	-	-	3	-		3	-	-	5	
GPO2	-	-	0	-	-	0	-	-	0	
VINOK_Rise	4.0 V		-	3.3 V		-	- 4.0 V		-	
VINOK_Fall		3.5 V	-		2.8 V	-		3.5 V	-	

All output voltages with Rank = 0 are by default programmed with 0 Dec (refer to Table 15 and Table 16).

The startup sequence is split into six steps (Rank = 0 to Rank = 5).

Each buck converter or LDO regulator can be programmed to be automatically turned ON in one of these phases. Each rank phase is separated by a delay (1.5 ms, 3 ms, 4.5 ms, or 6 ms) programmed in the NVM:

- Rank = 0: rail not turned ON automatically, no output voltage appears after POWER-UP
- Rank = 1: rail automatically turned ON after 7 ms following a turn ON condition
- Rank = 2: rail automatically turned ON after a further 1.5 ms (by default)
- Rank = 3: rail automatically turned ON after a further 1.5 ms (by default)
- Rank = 4: rail automatically turned ON after a further 1.5 ms (by default)
- Rank = 5: rail automatically turned ON after a further 1.5 ms (by default)

Whatever the STPMIC1L version, the AUTO_TURN_ON option is set.

DS14839 - Rev 2 page 2/127

Typical application schematic

(VIN from 2.8V to 5.5V DC)
BUCK1IN VIN□ VLX1 → VDDCORE BUCK1 CBUCK1IN ҆Ӷvouт1 (SMPS) CVOUT1 PGND1 **BUCK2IN** VLX2 → VDD DDR BUCK2 CVOUT2 (DDR3L, DDR4, IpDDR3, IpDDR4) CBUCK2IN: 工**VOUT2** (SMPS) PGND2 LDO2OUT LDO25IN LDO2 -- VOUT_LDO2 (to Flash Memory CLDO2OUTor system device) CLDO25IN= LDO5OUT LDO3IN LDO5 VOUT_LDO5
CLDO5OUT (1.8V or 3.3V to VDD_DDR □ CLDO3IN: LDO3 LDO3OUT VTT_DDR4

(to DDR3L/DDR4
terminations or to
lpDDR3/4 VDD1) VIO SYSTEM CONTROL VOUT_LDO5 (normal, DDRVTT) SCL I2C SDA **INTLDO INTLDO** INTn CINTLDO AGND PWRCTRL1 REGISTER to / from host AP LDO4OUT - VDD33USB LDO4 STATE MACHINE CLDO4OUT (fixed 3.3V to MPU USB PHY) RSTn POWER GPO1 SUPPLIES CONTROL GPO₂ NVM user push button PONKEYn / EN LOGIC VIN VIN _ CVIN: **GNDLDO** EPGND

Figure 1. Typical application schematic

Note: All BUCKxIN pins must be connected to the same voltage node as VIN.

VIN is the main STPMIC1L supply. All buck converters and linear regulators have dedicated or shared power supply pins. The dedicated VIO supply is for all digital interface pins, except GPOs.

No other supply voltages must be applied before VIN or set higher than VIN.

DS14839 - Rev 2 page 3/127

2.1 Recommended external components

Table 2. Passive components

Component	Manufacturer	Part number	Value	Size
CVIN, CLDO2OUT, CLDO4OUT, CLDO5OUT, CINTLDO		GRM155R60J475ME47D	4.7 μF, 6.3 V	0402
CLDO25IN		GRM155R61E105KA12D	1 μF, 25 V	0402
CBUCK1IN, BUCK2IN		GRM188R61A106ME69D	10 μF, 10 V	0603
CVOUT1 (0.5 V - 1.5 V) LV	Murata	GRM188R60J226MEA0D	2 x 22 μF, 6.3 V	0603
CVOUT1 (1.5 V - 4.2 V) HV		GRM21BR61A226ME51L	2 x 22 µF, 10 V	0805
CVOUT2		GRM188R60J226MEA0D	2 x 22 μF, 6.3 V	0603
CLDO3IN, CLDO3OUT		GRM155R60J106ME05D	10 μF, 6.3 V	0402
LX1	SAMSUNG	CIGT201610LH1R0MNE	1 µH	0806
LX2	JAMISUNG	CIGT201610LH1R0MNE	1 µH	0806

Note:

All the components above refer to a typical application working in an environment up to +85 °C ambient temperature. The operation of the device is not limited to the choice of these external components.

DS14839 - Rev 2 page 4/127

2.2 Pin out and pin description

LD030UT GNDLDO PGND2 LD03IN VOUT2 22 21 RSTn LDO25IN INTn 2 LDO5OUT VIO 3 LDO2OUT **EPGND** GPO1 18 LDO4OUT 4 GPO2 5 AGND PWRCTRL2 6 **INTLDO** 16 15 PWRCTRL1 VIN PGND1 BUCK11N PONKEYn/EN VLX1 SDA

Figure 2. Pin configuration VFQFPN 28L top view

Table 3. Pin description

Pin name	A/D ⁽¹⁾	I/O ⁽¹⁾	Location	Description (default configuration)	Not used pin connection
RSTn	D	I/O	1	Bidirectional reset (active low with internal pull-up)	Floating
INTn	D	0	2	Interrupt (active low with internal pull-up)	Floating
VIO	Α	ı	3	I/O voltage (for all digital signals except PONKEYn/En and GPO1/2)	VIO
GPO1	D	0	4	External Control 1	Floating
GPO2	D	0	5	External Control 2	Floating
PWRCTRL2	D	ı	6	Power control 2 mode (pull-up and pull-down, pull-up active by default)	VIO or floating
PWRCTRL1	D	ı	7	Power control 1 mode (pull-up and pull-down, pull-up active by default)	VIO or floating
VOUT1	Α	I	8	Input feedback signal buck converter 1	Floating
PGND1	Α	-	9	Power ground buck converter 1	GND
VLX1	Α	0	10	LX node buck converter 1	Floating
BUCK1IN	Α	I	11	Power input buck converter 1 VIN	
SDA	D	I	12	I ² C serial data	VIO

DS14839 - Rev 2 page 5/127

Pin name	A/D ⁽¹⁾	I/O ⁽¹⁾	Location	Description (default configuration)	Not used pin connection
SCL	D	I/O	13	I ² C serial clock	VIO
PONKEYn/En	D	ı	14	User power ON key / Enable (active low with internal pullup by default)	Floating
VIN	Α	I	15	Main power input - power input LDO4, VREF	VIN
INTLDO	Α	0	16	Internal LDO	4.7 μF capacitor
AGND	Α	-	17	Main analog ground	GND
LDO4OUT	Α	0	18	Output voltage LDO4	Floating
LDO2OUT	Α	0	19	Output voltage LDO2	Floating
LDO5OUT	Α	0	20	Output voltage LDO5	Floating
LDO25IN	Α	I	21	Power input LDO2 and LDO5	VIN
GNDLDO	Α	-	22	LDO GND	GND
LDO3OUT	Α	0	23	Output voltage LDO3	Floating
LDO3IN	Α	I	24	Power input LDO3	VIN
BUCK2IN	Α	I	25	Power input buck converter 2	VIN
VLX2	Α	0	26	LX node buck converter 2	Floating
PGND2	Α	-	27	Power ground buck converter 2	GND
VOUT2	Α	I	28	Input feedback signal buck converter 2	
EPGND	Α	-	ePad	Exposed pad to be connected to ground	GND

^{1.} A: analog; D: digital; I/O: input/Output

DS14839 - Rev 2 page 6/127

3 Electrical and timing characteristics

3.1 Absolute maximum ratings

Table 4. Absolute maximum ratings

Parameter	Min.	Unit
VIN, BUCKxIN, VLXx, LDO3IN, LDOxIN, PONKEYn/En	-0.5 to +6.5	
VIO, SDA, SCL, RSTn, PWRCTRLx, INTn	-0.5 to +4.2	
INTLDO	-0.5 to +2	V
VOUT1, LDOxOUT, GPO1, GPO2	-0.5 to +5.5	
VOUT2	-0.5 to +3	
ESD HBM	±1000	V
ESD CDM	±500	v

Note:

Stressing the device above the absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating section of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

3.2 Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Value	Unit
Tj	Absolute maximum junction temperature	-40 to +150	
T _{JAMR}	Absolute maximum junction temperature	-40 to +160	°C
TA	Operating ambient temperature	-40 to +105	
ΘJC	Junction-case package thermal resistance on 2s2p std JEDEC board (JESD51-7)	6	°C/W
ӨЈА	Junction-ambient package thermal resistance on 2s2p std JEDEC board (JESD51-7)	32	C/VV

DS14839 - Rev 2 page 7/127

3.3 Consumption in typical application scenarios

STPMIC1L V_{IN} input current consumption with all supply pins connected to V_{IN} except $V_{LDO3IN} = V_{OUT2} = 1.25 \text{ V}$, $V_{IN} = 5 \text{ V}$, $V_{IO} = 3.3 \text{ V}$ from LDO2OUT at $T_i = +25 \,^{\circ}\text{C}$, unless otherwise specified.

Table 6. Consumption in typical application scenarios

Application mode	Application description	Conditions	Тур.	Unit
OFF	AP and peripherals are powered OFF, waiting for a turn-on event to start.	PMIC in OFF state. Turn-on from PONKEYn/EN and I ² C inactive. All regulators OFF. GPOx deasserted.	53 (1)	
STANDBY	AP is in STANDBY mode (suspend to flash). All peripherals are powered OFF.	PMIC in POWER_ON state. IRQ from any source and PWRCTRLx active. LDO2 ON, VLDO2OUT = 3.3 V (VDDIO). All other regulators OFF and GPOx deasserted. All outputs without load. No activity on I ² C.	110	
STOP	AP is in LPLV-STOP1 (Core/CPU on-low voltage) DDR3L is in self-refresh. All peripherals are powered OFF.	PMIC in POWER_ON state. IRQ from any source and PWRCTRLx active. BUCK1 ON, VOUT1 = 0.9 V (VDDCORE). BUCK2 ON, VOUT2 = 1.35 V (VDD_DDR). LDO2 ON, VLDO2OUT = 3.3 V (VDDIO). All other regulators OFF. All outputs without load. No activity on I ² C.	370	μА
RUN	Application is in RUN (Core, CPU, on-nominal) DDR3L is running.	PMIC in POWER_ON state. IRQ from any source and PWRCTRLx active. BUCK1 ON, VOUT1 = 1.25 V (VDDCORE). BUCK2 ON, VOUT2 = 1.35 V (VDD_DDR). LDO3 ON in sink/src (VTT_DDR). LDO2 ON, VLDO2OUT = 3.3 V (VDDIO). All other regulators OFF. All outputs without load. No activity on I ² C.	650	

^{1.} Current consumption, 100 μ A max at T_j = -40 °C to +105 °C.

DS14839 - Rev 2 page 8/127

3.4 Electrical and timing parameter specifications

All parameters are specified at $V_{IN} = V_{BUCKxIN} = V_{LDOxIN} = 5$ V, except $V_{LDO3IN} = V_{OUT2}$, $V_{OUT1} = 1.25$ V, $V_{OUT2} = 1.35$ V, $V_{LDO5OUT} = 3.3$ V, $V_{LDO2OUT} = 3.3$ V, $V_{LDO3OUT} = 3.3$ V, $V_{LDO4OUT} = 3.3$ V, $V_{LDO2OUT}$, $V_{LDO2OUT} = 0.3$ °C to +125 °C, with recommended BOM, unless otherwise specified.

3.4.1 General section

Table 7. Electrical and timing parameter specifications (general section)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
General secti	on					
V _{IN}	Input voltage range		2.8	3.6 or 5	5.5	V
V _{INPOR_Rise}	V _{INPOR} rising threshold		2.2	2.3	2.4	V
V _{INPOR_Fall}	V _{INPOR} falling threshold			2.1	2.2	V
			3	3.1	3.2	
V _{INOK_Rise}	V _{INOK} rising threshold	Programmable value defined in the NVM register	3.2	3.3	3.4	V
*INOK_RISE	VINOR Horing amounted	r regionimable value defined in the review register	3.35	3.5	3.6	
			3.8	4.0	4.1	
				200		
V _{INOK_HYST}	V _{INOK} hysteresis	Programmable value defined in the NVM register		300		mV
				400 500		
V _{INOK_Fall}	V _{INOK} falling threshold	Defined indirectly by V _{INOK_Rise} and V _{INOK_HYST}		V _{INOK_Rise}		mV
VINOK_Fall	VINOR laming threshold	settings		V _{INOK_HYST}		IIIV
		When V _{IN} is crossing V _{INOK_Fall} , PMIC power-down		_		
tVINOK_Fall	V _{INOK} falling delay	then cannot restart before t _{VINOK_Fall} delay, even if V _{IN} >V _{INOK_Rise}		100		ms
V	\/ riging throughold	Dragrammable value defined in register V	+20	V _{INOK_Fall} + 50 to	+80	
V _{INLOW_Rise}	V _{INLOW} rising threshold	Programmable value defined in register V _{INLOW_CR}	+300	V _{INOK_Fall} + 400	+500	mV
			90	100	110	
V _{INLOW_HYST}	V _{INLOW} hysteresis	Programmable value defined in register V _{INLOW CR}	180	200	220	mV
VINLOW_HYST	VINLOW Hysteresis	Tregrammable value defined in register vincow_cR	270	300	330	1110
			360	400	440	
		Defined directly by V _{INLOW Rise} and V _{INLOW HYST}		V _{INLOW_Rise}		
V _{INLOW_Fall}	V _{INLOW} falling threshold	settings		+		mV
				V _{INLOW_HYST}		
T _{WRN_Rise}	Warning temperature rising		115	125	135	°C
T _{WRN_Fall}	Warning temperature falling		95	105	120	°C
T _{SHDN_Rise}	Shutdown temperature rising		140	150	160	°C
T _{SHDN_Fall}	Shutdown temperature falling		105	115	130	°C
t _{TSHDN_DLY}	Shutdown temperature falling delay			3		s
tocpdb_ldo	LDO OCP turn-off delay			5		ms
tocpdb_buck	BUCK OCP turn-off delay			5		ms

DS14839 - Rev 2 page 9/127

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
tHICCUP_DLY				0		
	History and OFF dates	Programmable value defined in		100		mo
	Hiccup mode OFF delay	NVM_BUCKS_IOUT_SHR2 NVM register		500		ms
				1000		
4	Watahda a timar	Programmable value defined in the register		1 to 256		
t _{WD}	Watchdog timer	Timer programming step		1		S
NVM _{END}	NVM write cycles endurance	Recommended maximum writing cycles (1)			10	Cycle
V _{NVM_PROG}	NVM min voltage for write operation		3.8			V

^{1.} NVM writing procedures must be performed under controlled electrical/environmental values.

DS14839 - Rev 2 page 10/127

3.4.2 Digital interface

Table 8. Electrical and timing parameter specifications (digital interface)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Digital inter	face					_
V _{IO}	V _{IO} input voltage for IO signal		1.7	1.8 or 3.3	3.6	V
	PONKEYn/EN input low voltage		0		0.3 x V _{INTLDO}	
V_{IL}	RSTn, PWRCTRLx input low voltage		0		0.3 x V _{IO}	V
	SDA, SCL input low voltage	I ² C NXP UM10204 revision 5 compliant (October 2012)	0		0.3 x V _{IO}	
	PONKEYn/EN input high voltage		0.7 x VINTLDO		V _{IN}	
V_{IH}	RSTn, PWRCTRLx input high voltage		0.7 x VIO		V _{IO}	V
	SDA, SCL input high voltage	I ² C NXP UM10204 revision 5 compliant (October 2012)	0.7 x VIO		V _{IO}	
	PONKEYn/EN input hysteresis			0.1 x V _{INTLDO}		
V_{HYST}	RSTn, PWRCTRLx, input hysteresis			0.1 x V _{IO}		V
	SDA, SCL input hysteresis	I ² C NXP UM10204 revision 5 compliant (October 2012)		0.1 x V _{IO}		
	RSTn, INTn, GPOx output low voltage	I _{IO} = 4 mA	-		0.4	
V _{OL}	SDA, SCL output low voltage	I _{IO} = 4 mA, I ² C NXP UM10204 revision 5 compliant (October 2012)	-		0.4	V
V _{OH}	GPOx output high voltage	I _{IO} = 4 mA			V _{IN} – 0.4	V
D ₋ -	PWRCTRLx pins pull-down resistor	Internally connected to GND	60	90	140	ΚΩ
R_{PD}	PONKEYn/EN pin pull-down resistor	Internally connected to GND	60	100	140	ΚΩ
R _{PU}	RSTn, INTn, PWRCTRLx pins pull-up resistor	Internally connected to V _{IO}	50	80	120	ΚΩ
	PONKEYn/EN pin pull-up resistor	Internally connected to V _{IN}	80	120	140	
tPONKEYnDB	PONKEYn/EN pin debounce filter duration	No debounce filter for EN		30		ms
t _{RSTnAS}	RSTn assertion time (1)		30			μs

 $^{1. \}quad \textit{Pulse smaller than t_{RSTnAS} duration. \textit{PMIC RSTn}$ has no debounce filter. \textit{PMIC must detect a pulse equal to or longer than t_{RSTnAS} duration}$

DS14839 - Rev 2 page 11/127

^{2.} $V_{INTLDO} = 1.8 V$

3.4.3 LDO2 and LDO5

Table 9. Electrical and timing parameter specifications.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
LDO2, LDO5						l
V _{LDOIN}	Main input voltage range		2.8		5.5	
		V _{LDOIN} > V _{LDOOUT} + V _{LDODROP}				V
V _{LDOOUT}	Output voltage	Programmable value.		0.9 to 4.0		
		Voltage programming step		100		mV
		2.8 V < V _{LDOIN} < 5.0 V				
V _{LDOOUT} -	Output voltage accuracy	V _{LDOIN} > V _{LDOOUT} + V _{LDODROP}	-2		2	%
ACC		100 μA < I _{LDOOUT} < 350 mA				
		2.8 V < V _{LDOIN} < 5.5 V	50		75	
I _{LDOLIM}	Output current limitation	I _{LDOLIM} programmable in	100		150	mA
ILDOLIM	Output current innitation	NVM_LDOS_IOUT_SHR (Ref.	200		300	lii/A
		NVM setting A and B versions)	400		600	
		I _{LDOOUT} = 0 mA, V _{LDOIN} = 5 V				
I _{LDO2/5Q}	Total quiescent current	Measured from the related common input pin, LDO25IN		9		
li pooreni i		LDO2/5 output disabled				μΑ
I _{LDO2/5IN} _L KG	Input leakage current	Measured from the related common input pin, LDO25IN		4 (1)	20	
V _{LDODROP}	Dropout (2)	V _{LDOOUT} = 2.9 V, I _{LDOOUT} = 350 mA		180	300	
V _{LDOOUT} -	Load transient regulation	I_{LDOOUT} = 1 mA to 180 mA, t_R = t_F =1 μ s		35		mV
		V _{LDOIN} = 4.5 V to 5 V, t _R =t _F =10				
V _{LDOOUT-LI}	Line transient regulation	μs,		10		
		$\Delta I_{LDOOUT} = 0$				
		ΔV_{LDOIN} = 300 mVPP, f = [0.1:20] kHz, T _j = 25 °C, I _{LDOOUT} = 200 mA		43		
P _{SRRLDO}	Power supply rejection ratio	ΔV_{LDOIN} = 300 mVPP, f = [20:100] kHz, T _i = 25 °C, I _{LDOOUT} = 200 mA		37		dB
		2.8 V < V _{LDOIN} < 5.5 V, 0 < I _{LDOOUT}				
t _{SSLDO}	Soft-start duration	< 1 mA		160 ⁽³⁾		μs
		C_{OUT} = 4.7 μ F, V_{LDOOUT} = 3.3 V				
V		2.8 V < V _{LDOIN} <5.5 V, 1.7 V <				
V _{LDOOUT} -	Startup overshoot	V _{LDOOUT} < 3.3 V		1		%
		I _{LDOOUT} < 10 μA				
t _{SDLDO}	Shutdown duration	Pull-down enabled, V _{LDOOUT} = from 3.3 V to 0.2 V, I _{LDOOUT} = no load			1.5	ms

^{1.} $V_{IN} = V_{LDOIN} = 5 \text{ V}, T_j = 25 \text{ }^{\circ}\text{C}$

DS14839 - Rev 2 page 12/127

^{2.} Dropout is the smallest difference between a regulator's input and its output voltage, which is required to maintain regulation and enable the regulator to provide rated voltage and current

^{3.} Value can be impacted by current limitation and V_{OUT} and C_{OUT} values

3.4.4 LDO3

Table 10. Electrical and timing parameter specifications (LDO3)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
LDO3 normal m	ode						
V _{LDOIN}	Main input voltage range		2.8		5.5		
		V _{LDOIN} > V _{LDOOUT} + V _{LDODROP}		0.9 to 4.0		V	
V_{LDOOUT}	Output voltage	programmable value.		0.9 10 4.0			
		Voltage programming step		100		mV	
V _{LDOOUT-ACC}	Output voltage accuracy	$2.8 \text{ V} < \text{V}_{\text{LDOIN}} < 5.5 \text{ V}, 1.7 \text{ V} < \text{V}_{\text{LDOOUT}} < 3.3 \text{ V}$	-2		+2	%	
*LDOOUT-ACC	Cutput voltage accuracy	100 μA < I _{LDOOUT} < 120 mA				70	
I _{LDOLIM}	Output current limitation	2.8 V < V _{LDOIN} < 5.5 V	120		180	mA	
I_{LDOQ}	Total quiescent current	I _{LDOOUT} = 0 mA		7 (1)	13	μA	
I _{LDOIN_LKG}	Input leakage current	LDO output disabled, $T_j = 25 ^{\circ}\text{C}$		1	3	μΑ	
$V_{LDODROP}$	Dropout voltage	V_{LDOOUT} = 3.3 V, I_{LDOOUT} = 100 mA		120	200		
V _{LDOOUT-LO}	Load transient regulation	I_{LDOOUT} = 100 μA to 50 mA, t_R = t_F =1 μs		20		mV	
V _{LDOOUT-LI}	Line transient regulation	V_{LDOIN} = 4.5 V to 5 V, t_R = t_F = 10 μ s. ΔI_{LDOOUT} = 0		5			
		ΔV_{LDOIN} = 300 mVPP, f = [0.1:20] kHz, T _j = 25 °C,		45			
D	Power supply rejection	I _{LDOOUT} = 50 mA		45		٩D	
P _{SRRLDO}	ratio	ΔV_{LDOIN} = 300 mV _{PP} , f = [20:100] kHz, T _j = 25 °C,		40		dB	
		I _{LDOOUT} = 50 mA		40			
tssldo	Soft-start duration	$2.8 \text{ V} < \text{V}_{\text{LDOIN}} < 5.5 \text{ V}, 0 < \text{I}_{\text{LDOOUT}} < 1 \text{ mA}$		160 ⁽²⁾		116	
SSLDO	Soit-Start duration	$C_{OUT} = 4.7 \mu F, V_{OUT} = 1.8 V$		100 (=/		μs	
$V_{LDOOUT-SO}$	Startup overshoot	$2.8 \text{ V} < \text{V}_{\text{LDOIN}} < 5.5 \text{ V},$		1	1		%
*LD0001-50	Otartap oversnoot	$1.7 \text{ V} < \text{V}_{\text{LDOOUT}} < 3.3 \text{ V}_{\text{ILDOOUT}} < 10 \mu\text{A}$		'		/0	
tsdldo	Shutdown duration	Pull-down enabled, V_{LDOOUT} = 3.3 V to V_{LDOOUT} = 0.2 V, I_{LDOOUT} = no load			1.5	ms	
LDO3 sink-sour	ce mode (DDR VTT supply)						
V _{LDOIN} =V _{OUT6} = specified	1.35 V, V _{IN} = 5.0 V, V _{BUCK2II}	$_{ m N}$ = 5.0 V, V _{LDOOUT} = V _{OUT} 2/2, T _j = -40 °C to +125 °C, recomb	mended	I BOM, unl	ess otl	nerwise	
V _{LDOIN-SS}	Input voltage range		1.1	1.2	1.6	.,	
V _{LDOOUT-SS}	Output voltage			V _{OUT} 2/2		V	
/LDOOUT-ACC-SS	Output voltage accuracy	1.1 V < V _{LDOIN} < 1.6 V, -215 mA < I _{LDOOUT} < +215 mA	-1.5		+1.5	%	
I _{LDOOUT-SS}	Continuous output current	1.1 V < V _{LDOIN} < 1.6 V			120	mA _{RM}	
I _{LDOLIM-SS}	Output current limitation	V _{LDOIN} = 1.1 V to 5.5 V	±230		±500	mA	
I _{LDOQ-SS}	Total quiescent current	I _{LDOOUT} = 0 mA, measured from LDO3IN pin		4 (1)	20	μA	
V _{LDOOUT-LO-SS}	Load transient regulation	$I_{LDOOUT} = \pm [0.50] \text{ mA}, t_R = t_F = 250 \text{ ns}$		30			
V _{LDOOUT-LI-SS}	Line transient regulation	V_{LDOIN} = V_{OUT2} = 1.35 V ±30 mV, t_R = t_F = 10 μ s	5			mV	
t _{SSLDO-SS}	Soft-start duration	1.1 V < V_{LDOIN} < 1.6 V, $ I_{LDOOUT} $ < 1 mA, C_{OUT} = 10 μF		20	40	μs	
t _{SU_LDO}	Startup delay (delay before voltage	controlled by a PWRCTRLx.		16	20	μs	
*30_LDO	starts to rise)	PWRCTRL delay = 0				ļ ,	

DS14839 - Rev 2 page 13/127

Symbol	Parameter	Test conditions		Тур.	Max.	Unit
V _{LDOOUT-SO-SS}	Startup overshoot	1.1 V < V _{LDOIN} < 1.6 V, V _{LDOOUT} = VOUT2/2, L _{DOOUT} = 10 μA			4	%
t _{SDLDO-SS}	Shutdown duration	Pull-down enabled, $V_{LDOOUT} = Vout2/2 \text{ to } V_{LDOOUT} = 0.2 \text{ V, } I_{LDOOUT} = \text{no load}$			1.5	ms

^{1.} $V_{IN} = V_{LDOIN} = 5 V$, $T_j = 25$ °C

3.4.5 LDO4

Table 11. Electrical and timing parameter specifications (LDO4)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
LDO4						
V_{LDOIN}	Main input voltage range	V_{LDOIN} from V_{IN}	2.8		5.5	
V _{LDOOUT-ACC}	Output voltage accuracy	V _{LDOIN} = 3.6 V to 5.5 V 100 μA < I _{LDOOUT} < 30 mA	3.23	3.3	3.40	V
I _{LDOLIM}	Output current limitation	V _{LDOIN} = 3.6 V to 5.5 V	50	75	200	mA
I _{LDOQ}	Quiescent current	I _{LDOOUT} = 0 mA		20 (1)	25	μA
V _{LDODROP}	Dropout voltage from V _{IN} pin	m V _{IN} I _{LDOOUT} = 30 mA		45	90	
V _{LDOOUT-LO}	Load transient regulation	I_{LDOOUT} = 1 to 30 mA, t_R = t_F =1 μs		40		mV
V _{LDOOUT-LI}	Line transient regulation	V_{IN} = 4.5 V to 5.0 V, I_{LDOOUT} = 0 mA, ΔI_{LDOOUT} = 0		10		
	Power supply rejection	ΔV_{LDOIN} = 300 mVPP, f = [0.1:20] kHz, T_j = 25 °C, $_{ILDOOUT}$ = 25 mA		55		
P _{SRRLDO}	ratio	ΔV_{LDOIN} = 300 mVPP, f = [20:100] kHz, T _j = 25 °C, I _{LDOOUT} = 25 mA		40		dB
t _{SSLDO}	Soft-start duration	$3.6~V < V_{LDOIN} < 5.5~V,~0 < I_{LDOOUT} < 1~mA,~C_{OUT} = 4.7~\mu F$		100 (2)		μs
V _{LDOOUT-SO}	Startup overshoot	3.6 V < V _{LDOIN} < 5.5 V, I _{LDOOUT} <10 μA		1		%
t _{SDLDO}	Shutdown duration	Pull-down enabled, V_{LDOOUT} = 3.3 V to V_{LDOOUT} = 0.2 V, I_{LDOOUT} = no load			1.5	ms

^{1.} $V_{IN} = V_{LDOIN} = 3.6 V$, $T_j = 25$ °C.

DS14839 - Rev 2 page 14/127

^{2.} Value can be impacted by V_{OUT} and C_{OUT} values.

^{2.} Value can be impacted by C_{OUT} values.

3.4.6 BUCK1

Table 12. Electrical and timing parameter specifications (BUCK1)

Symbol	Parameter	V _{OUT} range	Test conditions	Min.	Тур.	Max.	Unit
BUCK1 (LV a	and HV)						
V _{BUCKIN}	Main input voltage range			2.8		5.5	V
		LV	Programmable value		0.5 to 1.5		V
		LV	Voltage programming step		10		mV
V _{OUT}	Output voltage		V _{BUCKIN} > V _{OUT} + V _{BUCKDROP}		1.5 to 4.2		V
		HV	Programmable value		1.5 to 4.2		V
			Voltage programming step		100		m۷
V _{OUT-ACC}	Output voltage error	LV	0.5 V < V _{OUT} < 1.5 V	-1.5		1.5	
VOUT-ACC	amplifier accuracy	HV	1.5 V < V _{OUT} < 4.2 V	-1.5		1.5	%
Vourpeo	Output load regulation	HV/LV	CCM mode	-1		1	70
V _{OUT-REG}	(4)	HV/LV	1 mA < I _{OUT} < 1.5 A	-1		•	
		111/	3.0 V < V _{BUCKIN} < 5.5 V		40		
V	Output voltage ripple	LV	0.5 V < V _{OUT} < 1.5 V		10		> (
V _{OUT-RIPP}	(2)	107	2.8 V < V _{BUCKIN} < 5.5 V		15		mVp
		HV	1.5 V < V _{OUT} < 4.2 V,		15		
				500			
I _{OUT}	Max output current (4)		$2.8 \text{ V} < \text{V}_{\text{BUCKIN}} < 5.5 \text{ V}$	1000			m/
1001	max output current		Programmable value in NVM_BUCKS_IOUT_SHR1	1500			1117
				2000			
			Depends on NVM_BUCKS_IOUT_SHR1		1.5		
I _{BCKLIM}	Inductor peak current limit		Max output current steps (0.5 A, 1 A, 1.5 A, 2 A) can		2.1		Α
	IIIIIL	be defined based on the selected inductor per current limit level	be defined based on the selected inductor peak current limit level		2.8		
	Defenses avvitables				3.3		
f _{REFCLK}	Reference switching frequency				2		MH
I _{Q_BCK}	Total quiescent current		I _{OUT} = 0 mA		115	300	μA
BUCKIN_LKG	Input leakage current		BUCK OFF, T _j = + 25 °C		0.01	1	μΑ
			V _{BUCKIN} = 5 V, V _{OUT} = 1.25 V, T _J = +50 °C				
			I _{OUT} = 10 mA		81		
			I _{OUT} = 100 mA		83		0,
EFF _{BCK}	Efficiency		I _{OUT} = 300 mA		84		%
			I _{OUT} = 1000 mA		82		
			I _{OUT} = 2000 mA		76		
			3.0 V < V _{BUCKIN} < 5.5 V				
	Load transient		1.2 V < V _{OUT} < 1.4 V (typ 1250 mV)				
$V_{\text{OUT-LO}}$	regulation (1)	LV	5 mA < I _{OUT} < 1.5 A			+/-34	m∨
	rogulation		$\Delta I_{OUT} = 450 \text{ mA}, t_R/t_F = 1 \mu \text{s}$				

DS14839 - Rev 2 page 15/127

Symbol	Parameter	V _{OUT} range	Test conditions	Min.	Тур.	Max.	Unit	
			3.0 V < V _{BUCKIN} < 5.5 V					
	Load transient regulation (1)		1.8 V < V _{OUT} < 3.3 V					
$V_{\text{OUT-LO}}$		HV	5 mA < I _{OUT} < 2 A			50	mV	
		ΔI_{OUT} = 500 mA, t_R = t_F = 1 μs						
			ΔV(in-out)>1.5 V					
Vou	Line transient		ΔV_{BUCKIN} = 600 mV, t_R = t_F = 10 μ s,		5		mV	
V _{OUT-LI}	regulation		I _{OUT} = 300 mA, ΔV(in-out) > 1.5 V		5		IIIV	
V	Dower up overshoot		2.8 V < V _{BUCKIN} < 5.5 V, I _{OUT} = 1 mA		10		m)/	
V _{OUT-OVR}	Power-up overshoot		T _A = + 25°C, 0.5 V < V _{OUT} < 4.2 V		10		mV	
t _{NORM-CCM-}	Recovery time from		V _{OUT_Norm} = V _{OUT_CCM} ,			10 (4)		
BCK	Normal to Forced CCM mode		controlled by a PWRCTRLx			40 (4)	μs	
	Start-up delay (delay		2.8 V < V _{BUCKIN} < 5.5 V,					
tsu_BCK	t _{SU_BCK} before voltage starts to rise)		controlled by a PWRCTRLx		25 ⁽³⁾	40 ⁽⁴⁾	μs	
	0 % 4 4 4 %	LV		200		1500		
t _{SS_BCK}	Soft-start duration	HV		320		1500	μs	
		LV	Slew rate during start-up	1		12.5		
	Output voltage slew	HV	Slew rate during start-up	2.8		12.5	mV/µ	
SR _{BCK}	rate		DVS slew rate of a voltage programmed change low to high or high to low, from V_{OUT} = 0.5 V to 1.5 V (LV) or V_{OUT} = 1.5 V to 4.2 V (HV)	1	3.1		S	
			From V _{OUT} = 1.5 V to V _{OUT} < 0.2 V					
			2.8 V < V _{BUCKIN} < 5.5 V, I _{OUT} < 1 mA					
		LV	Slow PD			1.5		
t _{SD_BCK} Shutdown dui	Chutalaum dumatia		Fast PD			0.3		
	Silutuown duration		From V _{OUT} = 4.2 V to V _{OUT} < 0.2 V				ms	
		LIV	2.8 V < V _{BUCKIN} < 5.5 V, I _{OUT} < 1 mA					
		HV	Slow PD			1.5		
			Fast PD			0.3	1	

^{1.} Guaranteed by design - not tested in production. Load transient performances are strongly impacted by the external passive component characteristics. The load transient is also influenced by the parasitic elements of the PCB layout.

3.4.7 BUCK2

Table 13. Electrical and timing parameter specifications

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
BUCK2						
V _{BUCKIN}	Main input voltage range		2.8		5.5	V

DS14839 - Rev 2 page 16/127

^{2.} The output ripple voltage is the result of the inductor ripple current flowing through the output capacitor and depends on the capacitance value, ESR, and ESL. The actual output ripple voltage is also influenced by the parasitic elements of the PCB layout.

^{3.} See 1: startup sequence.

^{4.} Guaranteed by design - not tested in production.

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		Programmable value		0.5 to 1.5		V
V _{OUT-ACC}	Output voltage error	Voltage programming step		10		mV
- 001-200	amplifier accuracy	0.5 V < V _{OUT} < 1.5 V	-1.5		1.5	
	-	1.0 V < V _{OUT} < 1.35 V	-1		1	%
V	Output load regulation	CCM mode				
V _{OUT-REG}	(4)	1 mA < I _{OUT} < 1.5 A	-1		1	
		3.0 V < V _{BUCKIN} < 5.5 V				
V _{OUT-RIPP}	Output voltage ripple (2)	$50 \text{ mA} < I_{OUT} < 1000 \text{ mA},$		10		mVpp
		1.0 V < V _{OUT} < 1.35 V				
			500			
I _{OUT}	Max output current (4)	3.0 V < V _{BUCKIN} < 5.5 V	1000			mA
001	max susper surront	Programmable value in NVM_BUCKS_IOUT_SHR1	1500			
			2000			
		Depends on NVM_BUCKS_IOUT_SHR1		1.5		
I _{BCKLIM}	Inductor peak current limit	Inductor peak current		2.1		Α
			based on the selected Inductor peak current limit level		3.3	
f _{REFCLK}	Reference switching frequency			2		MHz
I _{Q_BCK}	Total quiescent current	I _{OUT} = 0 mA		115	300	μA
I _{BUCKIN_LKG}	Input leakage current	BUCK OFF, T _j = + 25 °C		0.01	1	μA
		V _{BUCKIN} = 5 V, V _{OUT} = 1.2 V, T _j = + 50 °C				
	_	I _{OUT} = 10 mA		79		
	_	I _{OUT} = 100 mA		81		
EFF _{BCK}	Efficiency	I _{OUT} = 300 mA		81		%
	-	I _{OUT} = 1000 mA		80		
	_	I _{OUT} = 1500 mA		77		
		3.0 V < V _{BUCKIN} < 5.5 V				
V _{OUT-LO}	Load transient	5 mA < I _{OUT} < 1.0 A			+/-30	mV
30.23	regulation (4)	$\Delta I_{OUT} = 450 \text{ mA}, t_R = t_F = 500 \text{ ns}$				
	Line transient	ΔV_{BUCKIN} = 600 mV, t_R = t_F =10 μ s				
V_{OUT-LI}	regulation	ΔI _{OUT} = 0		5		mV
V _{OUT-OVR}	Power-up overshoot	2.8 V < V _{BUCKIN} < 5.5 V, I _{OUT} =1 mA, T _A = +25°C		10		mV
	Recovery time from	V _{OUT Norm} = V _{OUT CCM}				
NORM-CCM-BCK	Normal to Forced CCM mode	controlled by a PWRCTRLx			40	μs
_	Start-up delay (delay	2.8 V < V _{BUCKIN} < 5.5 V	2.8 V < V _{BUCKIN} < 5.5 V		42 (4)	
tsu_BCK	before voltage starts to rise)	controlled by a PWRCTRLx		25 ⁽³⁾	40 (4)	μs
		2.8 V < V _{BUCKIN} < 5.5 V				
tss_BCK	Soft-start duration	1 mA < I _{OUT} < 100 mA	330		1500	μs
-		V _{OUT} = 1.5 V				

DS14839 - Rev 2 page 17/127

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Slew rate during start-up	1		4.40		
SR _{BCK} Output voltage slew rate		DVS slew rate of a voltage programmed change low to high or high to low, from V_{OUT} = 0.5 V to 1.5 V	1	3.1		mV/μs
		From V_{OUT} = 1.5 V to V_{OUT} < 0.2 V				
top pov	Shutdown duration	$2.8 \text{ V} < \text{V}_{\text{BUCKIN}} < 5.5 \text{ V}, I_{\text{OUT}} < 1 \text{ mA}$				
tsd_BCK	Shuldown duralion	Slow PD			1.5	me
		Fast PD			0.3	ms

- 1. Guaranteed by design not tested in production. Load transient performances are strongly impacted by the external passive component characteristics. The load transient is also influenced by the parasitic elements of the PCB layout. For more information, see AN6116.
- 2. The output ripple voltage is the result of the inductor ripple current flowing through the output capacitor and depends on the capacitance value, ESR, and ESL. The actual output ripple voltage is also influenced by the parasitic elements of the PCB layout.
- 3. See 1: startup sequence.
- 4. Guaranteed by design not tested in production.

DS14839 - Rev 2 page 18/127

4 Power regulator descriptions

4.1 Overview

The STPMIC1L has a wide input voltage range from 2.8 V to 5.5 V to supply applications typically by a 5 V DC wall-adaptor or a 1-cell 3.6 V Li-lon / Li-PO battery.

The STPMIC1L provides all the regulators needed to power supply a STM32MP1x MPU, a DDR and a flash memory:

- 4 LDOs
- 2 step-down (buck) converters

Table 14. General description

Regulator	Output voltage (V)	Programming step (mV)	Rated output current (mA)	Application use
LDO2, LDO5	0.0 V to 4.0 V	0.9 V to 4.0 V 100 400/200/100/50		General-purpose
LDO2, LDO3	0.9 V to 4.0 V			(eMMC, SD card)
LDO3	0.9 V to 4.0 V	100	120	General-purpose / lpDDR
normal mode	0.9 V to 4.0 V	100	120	VDD1
LDO3	V 2/2		+/-120 (rms)	DDR3L/DDR4 terminations
sink-source mode	V _{OUT} 2/2	-	+/-230 (peak)	(VTT)
LDO4	3.3	-	40	STM32MP1x USB PHY
BUCK1	LV: 0.5 V to 1.5 V	10	2000 4500 4000 500	Buck1 = VDDCORE
BUCKI	HV: 1.5 V to 4.2 V	100	2000, 1500, 1000, 500	BUCKT = VDDCORE
				Buck2 = VDDQ
BUCK2	BUCK2 0.5 V to 1.5 V 10 2000, 1500, 1000, 500		(DDR3L, DDR4, lpDDR3, lpDDR4)	
GPO1, GPO2				External Control 1, 2

4.2 LDO regulators

LDO2 and LDO5 are general-purpose LDOs suitable for supplying MPU application peripherals.

LDO3 serves for DDR3, DDR3L, DDR4 memory termination (sink-source mode) or to support the general-purpose mode, which is typically suitable for supplying IpDDR3 or IpDDR4.

LDO4 is a fixed 3.3 V regulator designed to supply a 3V3 USB PHY circuit.

DS14839 - Rev 2 page 19/127

4.2.1 LDO Common features

Enable/disable - each LDO can be enabled or disabled independently:

- Automatically during the POWER UP or POWER DOWN sequence depending on the NVM settings.
- By software (I²C access): Setting the EN bit in the related LDO control register.
- By PWRCTRLx pins state change: The PWRCTRLx pins need to be programmed by I²C to enable this feature.

VLDO OUT voltage setting - LDO output voltage can be set:

- Automatically during the POWER UP or POWER DOWN sequence depending on the NVM settings.
- By software (I²C access): Setting the V_{OUT} bit field in the related LDO control register.
- By PWRCTRLx pins state change: The PWRCTRLx pins need to be programmed by I²C to select the necessary output voltages to meet the MPU application requirements.

The LDO can be enabled or disabled as in normal operation. See the "Enable/ disable" description above.

Soft start: This feature aims to limit input inrush current during the LDO startup phase. LDO soft-start duration is defined by the t_{SSLDO} parameter.

See Figure 3.

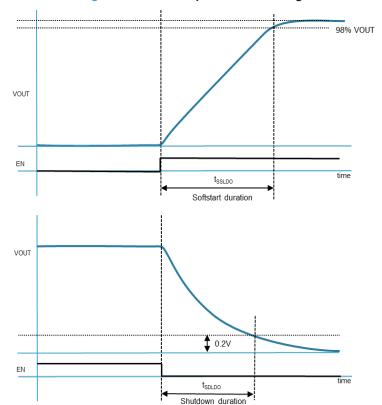


Figure 3. LDO startup/shutdown timings

Output discharge: When LDO is disabled, a pull-down discharge is automatically enabled. It allows the LDO output voltage to discharge within a t_{SDLDO} time delay. The LDO output is low before disabling the next regulators in the next ranking slot. It is active by default. It can be disabled by software to put the LDO output in high impedance when LDO is disabled (LDOS_PD_CR register).

OCP and **Hiccup management**: Each LDO supports OCP and can operate in Hiccup mode. When the output load of the LDO exceeds the I_{LDOLIM} overcurrent limit threshold, the LDO starts decreasing the output voltage, limiting the output current to I_{LDOLIM} . If the overcurrent lasts more than t_{OCPDB_LDO} :

- An interrupt is generated (if the interrupt has been unmasked by software)
- Hiccup mode (default behavior): The LDO is turned OFF for the t_{HICCUP_DLY} duration and then turned ON again.

DS14839 - Rev 2 page 20/127

 Fail-safe mode (alternative behavior): The PMIC is turned OFF for the t_{HICCUP_DLY} duration and then turned ON again (or goes into FAIL_SAFE_LOCK state)

See Section 5.4.15 for details on OCP & Hiccup management.

LDO2 and LDO5 have programmable I_{LDOLIM} overcurrent limit thresholds. I_{LDOLIM} thresholds are programmed in the NVM_LDOS_IOUT_SHR NVM register.

4.2.2 LDO3 special features

The LDO3 is a multipurpose LDO with two operating modes:

- Normal mode LDO3 works as a general-purpose LDO as well as LDO2, 5.
- Sink-source mode LDO3 can regulate the output voltage working in sink source mode. This mode is dedicated to supplying the termination of DDR3/DDR3L or DDR4 IC memories with fixed output voltage. If LDO3 is used in this mode, LDO3IN must be powered from the output of BUCK2 (See Figure 6). The output voltage is fixed and follows VOUT2/2 even during the BUCK2 ramp-up and ramp-down phases. The overcurrent limitation works both during sink and source output current modes.

4.2.3 LDO4 special features

LDO4 can be dedicated to supply a USB HS analog PHY power domain.

The LDO4 output voltage is fixed at 3.3 V.

4.2.4 LDO output voltage settings

Table 15. LDO output voltage settings

	VOUT [4:0] (decimal)	VOUT [V] LDO2 / LDO3 (normal mode) / LDO5
	0	0.9
	1	1.0
	2	1.1
	3	1.2
	4	1.3
	5	1.4
	6	1.5
	7	1.6
	8	1.7
	9	1.8
	10	1.9
Step 100 mV	11	2.0
	12	2.1
	13	2.2
	14	2.3
	15	2.4
	16	2.5
	17	2.6
	18	2.7
	19	2.8
	20	2.9
	21	3.0

DS14839 - Rev 2 page 21/127

	VOUT [4:0] (decimal)	VOUT [V] LDO2 / LDO3 (normal mode) / LDO5
	22	3.1
	23	3.2
	24	3.3
	25	3.4
Step 100 mV	26	3.5
Otep 100 mv	27	3.6
	28	3.7
	29	3.8
	30	3.9
	31	4.0

4.2.5 Examples of DDR memory power supply topology using LDOs

Figure 4. LDO3 uses in sink/source mode with DDR3L

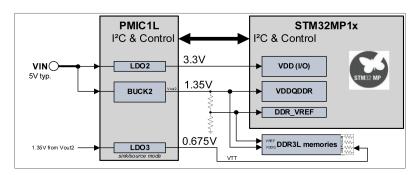
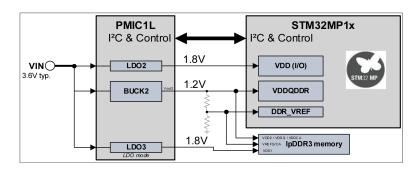



Figure 5. LDO3 uses in LDO mode with IpDDR3

DS14839 - Rev 2 page 22/127

4.3 Buck converters

General description

The STPMIC1L includes two buck converters that are optimized to supply circuits with high current consumption and meet fast transient response requirements.

All converters are based on an adaptive constant-on-time controller (COT) that guarantees an excellent transient response and high efficiency across a wide range of operating conditions.

The switching frequency of the converter is typically 2 MHz in a steady-state CCM condition. In a typical MPU application:

- BUCK1 is primarily dedicated to supplying power to the VDDCORE domain.
- BUCK2 is primarily dedicated to supplying power to the VDDQDDR domain.

4.3.1 Buck converters common features

Enable/Disable: each buck converter can be enabled or disabled independently (same behavior as LDO: see Section 4.2.1)

Vour voltage setting: Output voltage can be set:

- Automatically during a POWER UP or POWER DOWN sequence depending on the NVM settings.
- By software (I²C access): Setting the V_{OUT} bit field in the related buck control register.
- By PWRCTRLx pins state change: The BUCKx converter behaves according to BUCKx_MAIN_CR and BUCKx_ALT_CR content setting. BUCKx_MAIN_CR or BUCKx_ALT_CR is selected by the PWRCTRL pin allocated to BUCKx (see section Section 5.4.10 (PWRCTRLx)).

Forced PWM mode (CCM mode): Each buck can be forced to work in PWM mode to keep a constant frequency and low ripple.

Normal and forced PWM modes are activated by the two-bit PREG MODE [1:0] register as follows:

00: Normal (or auto mode)

01: Reserved

10: Forced PWM (CCM)

11: Reserved

Clock synchronization and clock phase shifting: When all buck converters work in a steady state in CCM mode, they are synchronized to a clock and are shifted by 180° in the following order:

0°: BUCK1180°: BUCK2

Note:

It is possible to force synchronization phase shifting for all buck converters by setting them to forced PWM (CCM). This improves EMI and avoids peak current on the main power supply input source.

Dynamic voltage scaling (DVS): When the buck output voltage is increased/decreased dynamically by the software, the buck output voltage (V_{OUT}) is stepped up/down following the S_{RBK} slew rate.

When a lower V_{OUT} is set, part of the buck converter output energy is discharged from the output capacitor following the S_{RBK} slew rate, providing current back to the input supply capacitor. This operation improves the total power efficiency.

DS14839 - Rev 2 page 23/127

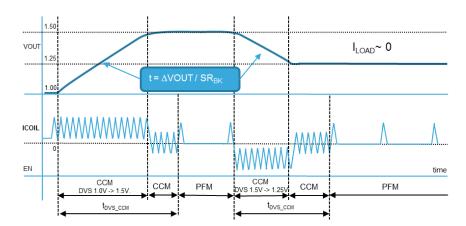


Figure 6. Buck dynamic voltage scaling (DVS)

OCP and Hiccup management: Each buck converter supports OCP and can operate in Hiccup mode. When the output load of the buck exceeds the I_{OUT} max output current (related to inductor peak current limit threshold I_{BKLIM}), the PWM pulse is immediately stopped, and the buck starts to decrease the output voltage, limiting the output current. If the overcurrent lasts more than $I_{OCPDB\ BUCK}$:

- An interrupt is generated (if the interrupt has been unmasked by software).
- Default behavior: The buck is turned OFF for tHICCUP_DLY duration and then turned ON again.
- Alternative behavior: The PMIC is turned OFF for tHICCUP_DLY duration and then turned ON again (or goes to FAIL_SAFE_LOCK state).

See Section 5.4.15 for details on OCP & hiccup management.

All buck converters have a programmable I_{OUT} max current threshold. I_{OUT} thresholds are programmed in the NVM_BUCKS_IOUT_SHR NVM register.

Output discharge: When the buck is disabled, a configurable pull-down (PD) discharge is automatically enabled. The buck output voltage discharges in t_{SD_BKtime} duration (with typical recommended BOM) so that the buck converter output voltage is low before disabling the next regulators in the next ranking slot. Four values are configurable by software at runtime: no pull-down, slow-PD, fast-PD and forced slow-PD by setting BUCKS_PD_CR. Fast discharge output can be modified by software in fast-PD when the buck is disabled, or it can be disabled by software to configure the buck converter output to high impedance when it is disabled. See Figure 7 which shows fast-PD and slow-PD behavior.

Startup sequence: When a buck is enabled, a startup delay (t_{SU_BCK}) occurs before the output voltage starts to rise, and is followed by a soft-start voltage ramp (t_{SS_BCK}) . See Figure 7.

DS14839 - Rev 2 page 24/127

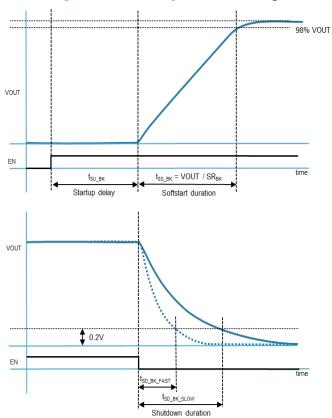


Figure 7. Buck startup/shutdown timings

DS14839 - Rev 2 page 25/127

4.3.2 Buck output voltage settings

Table 16. Buck output voltage settings

	VOUT [6:0]	V _{OUT} [V]	V _{OUT} [V]
	(decimal)	BUCK1_LV and BUCK2	BUCK1_HV
	0	0.50	1.5
	1	0.51	1.5
	2	0.52	1.5
	3	0.53	1.5
	4	0.54	1.5
	5	0.55	1.5
	6	0.56	1.5
	7	0.57	1.5
	8	0.58	1.5
Step 10 mV LV	9	0.59	1.5
	10	0.60	1.5
	11	0.61	1.5
	12 to 94		1.5
	95	1.45	1.5
	96	1.46	1.5
	97	1.47	1.5
	98	1.48	1.5
	99	1.49	1.5
	100	1.50	1.5
	101	1.50	1.6
	102	1.50	1.7
	103	1.50	1.8
	104	1.50	1.9
	105	1.50	2.0
	106	1.50	2.1
	107	1.50	2.2
	108	1.50	2.3
0	109	1.50	2.4
Step 100 mV HV	110	1.50	2.5
	111	1.50	2.6
	112	1.50	2.7
	113 to 122	1.50	
	123	1.50	3.8
	124	1.50	3.9
	125	1.50	4.0
	126	1.50	4.1
	127	1.50	4.2

DS14839 - Rev 2 page 26/127

5 Feature descriptions

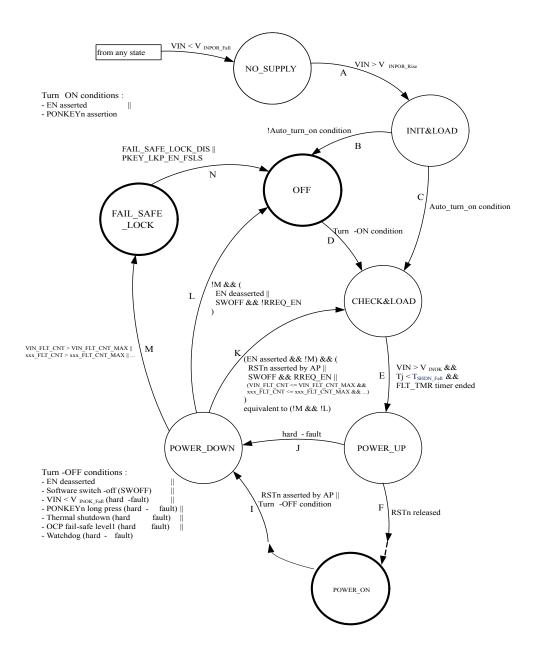
5.1 Functional state machine

Overview

STPMIC1L integrates advanced low-power features controlled by the application processor through I²C, four digital control pins (PONKEYn/EN, PWRCTRL1/2, and RSTn) and one interrupt output line (INTn).

The main parameter settings can be programmed in a non-volatile memory (NVM) as default values at the startup time. See Section 5.2.2.

All regulators can be independently controlled from the PWRCTRLx pins. This allows for flexible configuration and a fast transition between different power strategies at the application level.


Other features are provided to fulfill high-end application processor and advanced operating system needs:

- Multiple turn-on/turn-off conditions
- Mask_reset and restart_request options
- Overcurrent and overvoltage protection
- Thermal protection
- Watchdog
- Interrupt controller
- Safety management

PMIC state machine - STPMIC1L state machine is described in Figure 8.

DS14839 - Rev 2 page 27/127

Figure 8. PMIC state machine

DS14839 - Rev 2 page 28/127

5.1.1 Transition conditions

Table 17. PMIC state machine transition conditions

A NO_SUPPLY to INIT&LOAD V _{IN} > V _{INPOR_Rise} B INIT&LOAD to OFF Not auto_turn_on condition: Init_OK && load NVM_OK && !(AUTO_TURN_ON PONKEYn_low EN deasserted) C INIT&LOAD to CHECK&LOAD Auto_turn_on condition: Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_asserted) Turn-on condition: PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:			
B INIT&LOAD to OFF Init_OK && load NVM_OK && !(AUTO_TURN_ON PONKEYn_low EN deasserted) C INIT&LOAD to CHECK&LOAD Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_asserted) D OFF to CHECK&LOAD Turn-on condition: PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:		V _{IN} > V _{INPOR_Rise}	А
Init_OK && load NVM_OK && !(AUTO_TURN_ON PONKEYn_low EN deasserted) C INIT&LOAD to CHECK&LOAD Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_asserted) Turn-on condition: PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:		Not auto_turn_on condition:	В
C CHECK&LOAD Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_asserted) D OFF to CHECK&LOAD Turn-on condition: PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:	(t	Init_OK && load NVM_OK && !(AUTO_TURN_ON PONKEYn_low EN o	
D OFF to CHECK&LOAD Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_asserted) Turn-on condition: PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:		Auto_turn_on condition:	С
D OFF to CHECK&LOAD PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:		Init_OK && load NVM_OK && (AUTO_TURN_ON PONKEYn_low EN_a	
PONKEYn falling edge EN asserted CHECK&LOAD is a transitory state going to POWER_UP:		Turn-on condition:	D
		PONKEYn falling edge EN asserted	
		CHECK&LOAD is a transitory state going to POWER_UP:	E
F CHECK&LOAD to VIN > VINOK &&		V _{IN} > V _{INOK} &&	
POWER_UP T _j < T _{SHDN_Fall} &&		$T_j < T_{SHDN_Fall}$ &&	
FLT_TMR timer ended		FLT_TMR timer ended	
F POWER_UP to POWER_ON When power-up sequence ends without hard-fault, the PMIC released RSTn, Transition occurs when RSTn signal goes higher than V _{IH} .	on F		F
EN deasserted		EN deasserted	
RSTn signal asserted by AP		RSTn signal asserted by AP	
Turn-off condition:		Turn-off condition:	
Software switch-off (SWOFF)		Software switch-off (SWOFF)	
I POWER_ON to POWER_DOWN V _{IN} < V _{INOK_Fall} (hard-fault)		V _{IN} < V _{INOK_Fall} (hard-fault)	I
PONKEYn long press (hard-fault)		PONKEYn long press (hard-fault)	
Thermal shutdown (hard-fault)		Thermal shutdown (hard-fault)	
OCP fail-safe level1 (hard-fault)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
Watchdog (hard-fault)		Watchdog (hard-fault)	
Turn-off condition (hard-fault):		· · ·	
V _{IN} < V _{INOK_Fall} (hard-fault)		_	
POWER_UP to POWER DOWN		, , , , ,	J
POWER_DOWN Thermal shutdown (hard-fault)			
OCP fail-safe level1 (hard-fault)		,	
Watchdog (hard-fault)			
(EN asserted && !M)		, , , , , , , , , , , , , , , , , , ,	
RSTn asserted by AP			
(SWOFF && RREQ_EN) POWER_DOWN to (VIN_FLT_CNT <= VIN_FLT_CNT_MAX &&		_ ,	
K POWER_DOWN to CHECK&LOAD PKEY_FLT_CNT <= VIN_FLT_CNT_MAX && PKEY_FLT_CNT_MAX &&			K
TSHDN_FLT_CNT <= TSHDN_FLT_CNT_MAX &&			
OCP_FLT_CNT <= OCP_FLT_CNT_MAX &&			
WDG_FLT_CNT <= WDG_FLT_CNT_MAX)			
L POWER_DOWN to OFF !M && (EN deasserted (SWOFF && !RREQ_EN))			L
VIN_FLT_CNT > VIN_FLT_CNT_MAX			M
POWER_DOWN to PREY FLT CNT > PREY FLT CNT MAX II			
FAIL_SAFE_LOCK TREET_FET_ORT_ROOTS TSHDN_FLT_CNT_MAX			

DS14839 - Rev 2 page 29/127

Transition symbol	State transition	Transition condition
		OCP_FLT_CNT > OCP_FLT_CNT_MAX
		WDG_FLT_CNT > WDG_FLT_CNT_MAX
N	FAIL_SAFE_LOCK to OFF FAIL_SAFE_LOCK_DIS (NVM bit)	Transition to force leaving the fail-safe locked state:
		FAIL_SAFE_LOCK_DIS (NVM bit)
		PKEY_LKP_EN_FSLS (PONKEY Long Key Press Fail-Safe-Lock-Skip bit / EN deasserted Fail-Safe-Lock-Skip)

5.1.2 State explanations

5.1.2.1 NO SUPPLY

V_{IN} is below V_{INPOR Fall} (see Section 5.4.1). No output state can be guaranteed in this state.

5.1.2.2 INIT&LOAD

The INIT&LOAD state is immediately reached when VIN is higher than VINPOR Rise-

STPMIC1L releases internal POR circuitry, it initializes, all registers are reset, the NVM load is performed (see Section 5.5.2), and RSTn is asserted.

If the Auto_turn_on condition is true, PMIC makes a transition to the CHECK&LOAD state. Prior to leaving the INIT&LOAD state, the TURN ON SR is reset, and then the TURN ON SR[AUTO] bit is set.

If the Auto_turn_on condition is false, STPMIC1L evaluates the PONKEYn/EN status. If the turn on condition is not recognized, STPMIC1L makes the transition to the OFF state, otherwise it sets the proper bit in TURN ON SR and makes the transition to the CHECK&LOAD state (see Table 17).

5.1.2.3 OFF

The OFF state is entered from the INIT&LOAD state, the POWER_DOWN state, or the FAIL_SAFE_LOCK state. In the OFF state, the PMIC is in the lowest power consumption state, and all regulators are turned OFF. The voltage references are OFF and RSTn is asserted by PMIC.

All fail-safe counters are reset (xxx_FLT_CNT). Fail-safe timers (FLT_TMR), reset-fault-counter-timers (RST_FLT_CNT_TMR), and watchdog timers are stopped.

The transition to the CHECK&LOAD state (see Table 17) is triggered by a turn-on condition (see Section 5.4.5). Prior to leaving the OFF state, the TURN_ON_SR is reset, then the related turn-on condition bit is set in the TURN_ON_SR register.

5.1.2.4 CHECK&LOAD

CHECK&LOAD is a transitional state from a user point of view. It prepares the PMIC for power-up. The PMIC enables internal reference voltages, thermal monitoring, and V_{IN} monitoring.

The NVM is reloaded into shadow registers. Some registers are initialized with default values from the NVM content.

RSTn is asserted by the PMIC.

After the CHECK&LOAD state, the PMIC always transitions to the POWER-UP state if power-up conditions are fulfilled (see Table 17) and the fault timer (FLT_TMR) ends. The fault timer waits before restarting the PMIC after a hard-fault (see Section 5.2.2).

5.1.2.5 **POWER UP**

The PMIC starts sequential regulators following a sequence that is predefined in the NVM and a default voltage that is predefined in the NVM (see).

During the power-up sequence, RSTn is asserted by the PMIC. When the power-up sequence ends without a hard-fault, the PMIC releases RSTn signal.

5.1.2.6 **POWER_ON**

In the **POWER_ON** state, the PMIC can be set to deliver power at full performance and features. Each regulator can switch power states (MAIN_CR or ALT_CR) depending on the PWRCTRLx pin settings (see Section 5.4.10).

DS14839 - Rev 2 page 30/127

5.1.2.7 POWER_DOWN

The PMIC asserts RSTn, then sequentially turns off the regulators starting with the regulators not enabled in the power-up sequence (= rank0: enabled by software at runtime), then in reverse sequence order in the POWER UP state (see Section 5.2).

When the POWER_DOWN sequence ends, before the transition to the next state, the watchdog is disabled (WDG_EN = 0) and status registers are updated according to the turn-off condition source:

- TURN_ON_SR and TURN_OFF_SR and RESTART_SR and OCP_SR1 and OCP_SR2 are reset (cleared)
- If RSTn is asserted by AP (PMIC transition to K in Table 17):
 - RESTART SR[R RST] bit is set
- Else If SWOFF && RREQ_EN && PONKEYn set in NVM_MAIN_CTRL_SHR3 (PMIC transition to K in Table 17):
 - RESTART_SR[R_SWOFF] bit is set
- Else If SWOFF && EN asserted && EN set in NVM MAIN CTRL SHR3 (PMIC transition to K in Table 17):
 - RESTART SR[R SWOFF] bit is set
- Else If EN asserted following a pulse deassertion on EN generating a turn-OFF condition (PMIC transition to K in Table 17):
 - RESTART SR[R EN] bit is set
- Else If SWOFF && !RREQ EN (PMIC transition to L in Table 17):
 - TURN OFF SR[SWOFF] is set
- Else If EN deasserted (PMIC transition to L in Table 17):
 - TURN OFF SR[EN] is set
- Else (it is a hard-fault turn-off condition, then depending on the hard-fault source):
 - If hard-fault is OCP:
 - OCP SR1 or OCP SR2 is updated with the OCP fault source
 - If PMIC transitions to M:
 - TURN OFF SR is updated with fault source
 - If PMIC transitions to K:
 - RESTART SR is updated with fault source

Note:

If another turn-off condition is triggered during the POWER DOWN sequence, it is ignored. So, only the original power-down trigger source is registered.

When a hard fault occurs first and EN feature is active, the choice between K and L transitions depends on EN status at end of POWER_DOWN sequence; in this scenario, TURN_OFF_SR/RESTART_SR are updated with both hard-fault source and EN bit, to keep trace of the original POWER_DOWN root cause.

DS14839 - Rev 2 page 31/127

5.1.2.8 FAIL SAFE LOCK

The FAIL_SAFE_LOCK state is entered from the POWER_DOWN state with an M transition (a hard-fault counter xxx FLT CNT that exceeds the max number of PMIC restart occurrences xxx FLT CNT MAX).

In the FAIL_SAFE_LOCK state, the PMIC is in the lowest power consumption state: All regulators are turned OFF, voltage references are OFF, and RSTn is asserted by the PMIC.

The PMIC is locked in that state until POR: a turn-on condition does not power-up the PMIC.

Nevertheless, the PMIC is allowed to skip the FAIL_SAFE_LOCK state in specific N transition conditions (see Table 17).

5.2 POWER UP / POWER DOWN sequence

The PMIC starts and stops regulators following the sequential 5 rank procedures called POWER_UP and POWER_DOWN, respectively.

During POWER_UP each regulator is started at one of the 6-rank phases programmed in the NVM. Each rank phase is separated by a delay (1.5 ms, 3 ms, 4.5 ms, and 6 ms) programmed in the NVM.

An additional delay can be programmed in the NVM to release the RSTn signal later than the last rank phase. This delay is also applied after the Turn_OFF condition, in between RSTn signal assertion and when the first regulator is powered off (RANK0).

The default rank sequence for each regulator, default output voltage of each regulator, default rank duration, and additional RSTn default delays are predefined in the NVM. Those values can be adapted by reprogramming the PMIC NVM with expected values.

An additional VIN_DLY [1:0] delay (0, 10 ms, 50 ms, 100 ms) can be programmed in NVM to prevent the PMIC from powering up, allowing VIN to stabilize.

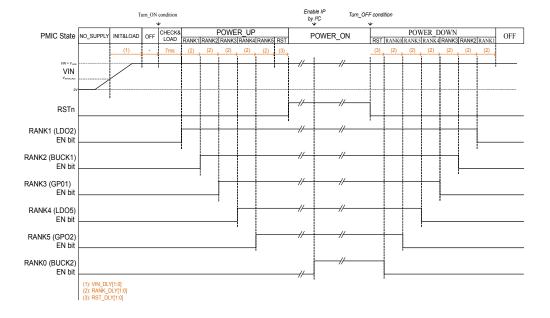


Figure 9. PMIC POWER_UP and POWER_DOWN sequence example

(*) The device remains in OFF state until a turn-on condition is triggered For RANK DLY and RST DLY, see Table 80

Note: RANK0 means that the regulator is not turned ON during the POWER_UP sequence.

DS14839 - Rev 2 page 32/127

5.2.1 NO_SUPPLY and INIT&LOAD:

The PMIC is initially in NO_SUPPLY state with VIN < VINPOR_Fall. A power source is inserted making VIN rise. Once VIN > VINPOR_Rise, the PMIC goes into INIT&LOAD state. The PMIC reads NVM and performs internal initialization. Then, the PMIC launches the VIN_DLY [1:0] delay. Once the VIN_DLY elapses, the PMIC can transition to OFF state (or directly to CHECK&LOAD state if AUTO TURN ON bit is set in NVM).

The VIN_DLY is suitable when the PMIC starts immediately after VIN rise; especially when AUTO_TURN_ON bit is set in NVM.

5.2.2 OFF and CHECK&LOAD:

The PMIC is initially in the OFF state. The RSTn pin is asserted by the PMIC. Once a turn-on condition occurs, the PMIC goes into the CHECK&LOAD state. As the turn-on condition is valid (for example: VIN>VINOK) the PMIC goes into the POWER UP state.

5.2.3 POWER_UP:

In the POWER_UP state, RSTn is kept asserted by the PMIC.

The PMIC enables regulators sequentially by 1.5 ms slots (according to the default rank sequence and default output voltage defined in the NVM, RANK DLY[1:0]).

For example (see Figure 9):

RANK1 (LDO2) then RANK2 (BUCK1) then RANK3 (GPO1) then RANK4 (LDO5) then RANK5 (GPO2).

Once the RANK5 ends, the PMIC releases RSTn and then it goes into the POWER_ON state.

Note: Regulator RANK0 (LDO3 in this example) is not turned ON automatically.

5.2.4 POWER_ON:

In the POWER_ON state, all regulators are managed by the application processor's software (I²C control) or by the PWRCTRL pin (see Section 5.4.10). In the example of Figure 9, BUCK2 is enabled by the AP's software at runtime.

5.2.5 POWER_DOWN:

Once a Turn-OFF condition occurs, the PMIC asserts RSTn, then the PMIC shuts down RANK0 regulators that have been started by software (BUCK2 in the Figure 9 example).

Then the PMIC disables the regulators sequentially in reverse rank order from the POWER_UP sequence, by 1.5 ms slots (according to the default rank sequence in the NVM, RANK_DLY [1:0]).

For example (see Figure 9):

RANK5 (GPO2), then RANK4 (LDO5), then RANK3 (GPO1), then RANK2 (BUCK1), then RANK1 (LDO2).

When the RANK1 ends, the PMIC goes into the OFF state (RSTn is kept asserted). The analog behavior of regulators is detailed in Section 4.

DS14839 - Rev 2 page 33/127

5.3 Digital pin description

5.3.1 PONKEYn/EN

The PONKEYn/EN pin is a multifunctional pin that can be configured (see PKEY_EN_CFG NVM pin) with two different functions: As PONKEYn, it is intended to be connected to a push-button at the application level. If the push-button is pressed by a user, the PONKEYn signal is grounded. If the push-button is released by the user, the PONKEYn signal is floating, but the internal PMIC R_{PU} ties PONKEYn to V_{IN}. When configured as Enable, it turns the PMIC on or off, based on the programmed polarity.

Main characteristics as PONKEYn:

- Digital input
- Active low
- Programmable pull-up (RPU) internally connected to V_{IN} and pull-down (RPD)
- Debounce filter on rising and falling edges (see Figure 10)
- Turn-ON condition on falling edge (after debounce) when PMIC is in the OFF state.
- Turn-ON condition on low level from a PMIC POR (see Section 5.4.2)
- Interrupt on falling and rising edges (after debounce)
- Turn-OFF condition on PONKEYn long press (duration programmable)

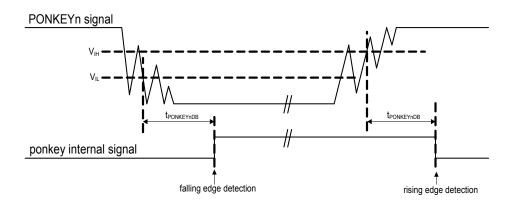


Figure 10. PONKEYn debounce filter behavior

PONKEYn falling edge: the debounce filter timer is enabled once the PONKEYn voltage is lower than VIL. If a bounce voltage higher than VIH occurs, the debounce filter timer is canceled and so on.

PONKEYn rising edge: the debounce filter timer is enabled once the PONKEYn voltage is higher than VIH. If a bounce voltage lower than VIL occurs, the debounce filter timer is canceled and so on.

Main characteristics as EN:

- Digital input, level sensitive with VIL/VIH thresholds 1.8 V compatible
- Active high or low (programmable polarity)
- NVM or user level Programmable pull-up (RPU) internally connected to V_{IN} or pull-down (RPD)
- 30 µs rising and falling deglitch
- Turn-ON and Turn-OFF conditions when (respectively) asserted or deasserted based on programmed polarity
- When configured, the following functionalities are disabled: PONKEYn turn-ON event (implicit) and long press Turn-OFF event and fail-safe skip, AUTO_TURN_ON, RREQ_EN.

RPU and RPD settings are independent from the PONKEYn/EN configuration.

DS14839 - Rev 2 page 34/127

Feature descriptions

5.3.2 RSTn

The RSTn is a bidirectional reset pin both for the PMIC and the application processor:

- Digital input: active low input reset (when not asserted by the PMIC). The application processor can assert RSTn low to force the PMIC to power cycle.
- Open drain output: The PMIC can assert RSTn low to reset the application processor, typically during a power-ON or a power-OFF sequence and a power cycling reset sequence. Pull-up (R_{PU}) is internally connected to V_{IO}.

5.3.3 INTn

The PMIC asserts INTn low when a PMIC interrupt is pending (and not masked):

- Digital output (open drain)
- Active low
- Pull-up (RPU) internally connected to V_{IO}.

5.3.4 PWRCTRL1, PWRCTRL2

Power control signals aim to control the regulator's behavior. Typically, power control signals are driven to '1' or '0' by the application processor to manage different power modes at application level.

PWRCTRLx pin characteristics:

- Digital input
- Level-sensitive
- Programmable polarity
- Rising and falling delay cells
- Inactive by default
- Programmable pull-up (RPU) internally connected to VIO or pull-down (RPD), and RPU is active by default.
- No debounce

See Section 5.4.10 for behavior description.

5.3.5 GPO1, GPO2

General Purpose Output driven by PMIC via GPOx_MAIN_CR, GPOx_ALT_CR like other regulators and PWRCTRL registers. A GPO can also be driven at power-up/power-down sequence (programmable in NVM like any regulator).

GPOx are mainly targeted to control external discrete regulators or an additional PMIC (driven by EN pin). GPO can also be used to control any external peripherals on an application.

GPOx pin characteristics:

- Digital output (push-pull on V_{IN})
- Programmable polarity (an external discrete regulator usually has active high Enable pin input but sometime the Enable pin is active low)

Note: • GPO are in high impedance when 0 < VIN < Vinpor.

DS14839 - Rev 2 page 35/127

5.4 Feature descriptions

5.4.1 V_{IN} monitoring

The main input supply pin V_{IN} is monitored permanently by the PMIC state machine. There are different threshold triggers on V_{IN} . The lowest to the highest thresholds are: V_{INPOR} , V_{INOK} , and V_{INLOW} as shown in Figure 11.

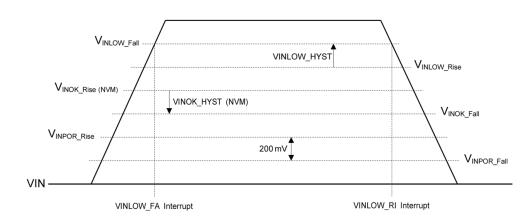


Figure 11. V_{IN} monitoring thresholds

5.4.2 **VINPOR**

 $V_{\mbox{\footnotesize{INPOR}}}$ is the minimum voltage required to supply the PMIC internal circuitry. It is specified by two hardcoded thresholds with 200 mV hysteresis:

Below $V_{\mbox{\scriptsize INPOR}}$ Fall, the PMIC is considered as not supplied.

Above V_{INPOR Rise}, the PMIC internal circuitry is functional.

Note: Once V_{IN} rises above V_{INPOR_Rise} , PMIC internal circuitry remains functional until V_{IN} falls below V_{INPOR_Fall} .

Refer to Section 3.4.1 for threshold values.

5.4.3 V_{INOK}

 V_{INOK} is the minimal voltage required to allow the PMIC to work in the POWER_ON state.

It is specified by V_{INOK_Rise} threshold and V_{INOK_HYST} hysteresis values that can be adjusted in the NVM, respectively in the V_{INOK_RISE} [1:0] and V_{INOK_HYST} [1:0] bit fields.

If V_{IN} falls below V_{INOK_Fall} ($V_{INOK_Fall} = V_{INOK_Rise} - V_{INOK_HYST}$), then it is considered as a hard-fault turn-off condition and the PMIC immediately starts the POWER_DOWN sequence (see Section 5.2.5). Following this condition, the PMIC waits for the t_{VINOK_Fall} delay before it can restart, even if V_{IN} exceeds V_{INOK_Rise} again before the t_{VINOK_Fall} delay ends.

Definition: The $V_{IN} > V_{INOK}$ condition means that if V_{IN} rises above V_{INOK_Rise} , then V_{IN} remains higher than V_{INOK_Fall} . Reciprocally, $V_{IN} < V_{INOK}$ means that $V_{IN} < V_{INOK_Fall}$ or V_{IN} is less than the V_{INOK_Rise} threshold (this definition is just to simplify the state machine description).

DS14839 - Rev 2 page 36/127

5.4.4 V_{INLOW}

 V_{INLOW} operates as a flag to trigger an interrupt: V_{INLOW_Fall} and V_{INLOW_Rise} are configurable software thresholds that notify the AP (via an interrupt line) when the V_{IN} voltage crosses one of those two thresholds.

V_{INLOW} can be enabled and configured by programming the register V_{INLOW} CR.

 V_{INLOW_Rise} and V_{INLOW_Fall} thresholds generate, respectively, V_{INLOW_Rl} and V_{INLOW_FA} interrupts, allowing the application processor to take relevant action. They can be unmasked independently.

The $V_{INLOW\ RI}$ interrupt is asserted once V_{IN} goes below the $V_{INLOW\ Rise}$ threshold.

The V_{INLOW FA} interrupt is asserted once V_{IN} goes above the V_{INLOW Fall} threshold.

5.4.5 Turn-on conditions

A turn-on condition is required to power up the PMIC and to reach the POWER_ON state. A turn-on condition is only valid from the OFF state, or alternatively from the NO_SUPPLY state (the PMIC has no V_{IN} initially).

The PMIC manages several turn-on conditions:

- PONKEYn pin assertion or EN pin assertion
- AUTO turn-on (AUTO_TURN_ON bit set in the NVM, only if pin EN is not configured)
- Fail-safe restart condition

Note:

A fail-safe restart condition is not a real turn-on condition, but rather an allowed restart condition following a failure event triggering a turn-off event. See Section 5.4.6.

5.4.5.1 PONKEYn / En turn-on detection conditions

A turn-on condition can be triggered by an external signal source from PONKEYn/EN pin:

- 1. If PONKEYn is set in the PKEY_EN_CFG bit (NVM):
 - a. PONKEYn is tied low initially. The PMIC is in a NO_SUPPLY state. When the V_{IN} voltage rises and crosses the V_{INPOR_Rise} threshold, the PMIC goes into the INIT&LOAD state (transition A), and then it goes into the CHECK&LOAD state (transition C).
 - b. PONKEYn is initially released. The PMIC is in the OFF state. When the PONKEYn is asserted, a turn-on condition occurs.
- If EN is set in the PKEY_EN_CFG bit (NVM):
- EN asserted: always a turn-on condition (except if PMIC is in FAIL_SAFE_LOCK state).

Table 18. Turn-on conditions from external trigger source summary

Source	Turn-on condition	Debounce
PONKEYn	PONKEYn signal low from the PMIC in a NO_SUPPLY state when V_{IN} rises and crosses $V_{\text{INPOR_Rise}}$	30 µs
PONKEYn	PONKEYn signal falling edge when the PMIC is in the OFF state	t _{PONKEYnDB}
EN	EN asserted (signal high or low depending of EN polarity set in NVM)	30 µs

5.4.5.2 AUTO turn-ON

AUTO turn-ON allows the PMIC to be turned ON automatically when V_{IN} rises from $V_{IN} < V_{INPOR_Fall}$. An AUTO turn-ON event is triggered only from a NO SUPPLY state transition:

- 1. V_{IN} rises from V_{INPOR_Fall} to V_{INPOR_Rise}
- 2. PMIC goes into INIT&LOAD state, then the AUTO_TURN_ON bit is enabled in the NVM
- 3. PMIC goes into the CHECK&LOAD state, waiting for V_{IN} > V_{INOK}
- 4. PMIC POWER UP

The AUTO turn-ON is enabled in the NVM by default.

DS14839 - Rev 2 page 37/127

5.4.6 Turn-off conditions

Turn-off conditions are triggered by events or stimulus leading the PMIC to perform a POWER_DOWN sequence. Following the POWER_DOWN sequence, the PMIC can switch to the OFF state or to the FAIL_SAFE_LOCK state, or restart automatically (power cycle), depending on the source that has triggered the turn-off condition. There are six sources triggering a turn-off condition detailed in Table 19:

Table 19. Turn-off condition trigger sources

Source	Туре	Turn-off condition	Power cycle condition
EN (2)	Switch-off	EN deasserted (signal low or high depending of EN polarity set in EN_POL_CFG bit in NVM)	EN = asserted ⁽²⁾ (short deassertion pulse)
Software switch-	Switch-off	Writing 1 to SWOFF bit	RREQ_EN = 1
off			EN = asserted (2)
V _{INOK_Fall}	Hard-fault	V_{IN} falls below $V_{\text{INOK_Fall}}$ threshold (with V_{IN} staying higher than $V_{\text{IN_POR_Fall}}$). See Section 5.4.1	VIN_FLT_CNT <= VIN_FLT_CNT_MAX && EN = asserted (2)
		PKEY_LKP_OFF bit set or NVM_PKEY_LKP_OFF bit set (NVM).	
PONKEYn long key press	Hard-fault	Long key press duration can be set in PKEY_LKP_TMR [3:0] bit field or in NVM_PKEY_LKP_TMR [1:0] bit field (NVM)	PKEY_FLT_CNT <= PKEY_FLT_CNT_MAX
		PONKEYn signal is asserted low for a duration > PKEY_LKP_TMR [3:0]	
Thermal	Hard-fault	PMIC junction temperature exceeds T _{SHDN Rise} threshold. See	TSHDN_FLT_CNT <= TSHDN FLT CNT MAX
shutdown	Haru-lauit	Section 5.4.5.2	&& EN = asserted (2)
Overcurrent	Hard-fault	Overcurrent detected on a regulator (related regulator	OCP_FLT_CNT <= OCP_FLT_CNT_MAX
protection	i iaiu-iauli	NVM_FS_OCP_xxx (1) bit set in NVM or FS_OCP_xxx (1) bit set by software).	&& EN = asserted (2)
Watchdog	Hard-fault	Watchdog feature active and timer expired. See Section 5.4.6.1	WDG_FLT_CNT <= WDG_FLT_CNT_MAX
rvatoridog	. iai a iault	Traterious realizate and arrive and arrive expired. Ode October 9.4.9.1	&& EN = asserted (2)

^{1.} xxx: instance name of the regulator, eg: LDO2, BUCK1

5.4.6.1 Turn-OFF condition triggered by software switch-off

When the software sets the SWOFF bit, the PMIC starts a POWER_DOWN sequence immediately, then the PMIC goes into the OFF state. The $TURN_OFF_SR$ is set accordingly.

PONKEYn set in PKEY_EN_CFG bit in NVM: If the software has set both the RREQ_EN and SWOFF bits, the PMIC restarts automatically after the POWER_DOWN sequence (transition K) and goes into the POWER_ON state. The RESTART_SR register is set accordingly.

EN set in PKEY_EN_CFG bit in NVM: If the software has set SWOFF bit while EN is asserted, the PMIC restarts automatically after the POWER_DOWN sequence (transition K) and goes into POWER_ON state.

The RESTART_SR register is set accordingly.

5.4.6.2 Turn-OFF condition triggered by a hard fault

Each hard-fault source has a hard-fault counter: see Table 20.

Each time a hard-fault event occurs, a turn-off condition is triggered, and it is managed by fail-safe management. See Section 5.4.7.

DS14839 - Rev 2 page 38/127

^{2.} EN set in PKEY_EN_CFG bit in NVM

5.4.7 Fail-safe management

Each hard-fault source has an independent fail-safe counter that is incremented each time a hard-fault turn-off condition occurs (see Table 20). If the counter value is below (or equal to) the max limit, then the PMIC restarts (= power cycling on fault condition). Alternatively, if the counter is higher than the max limit, then the PMIC goes into the FAIL SAFE LOCK state to avoid cyclic hard failures.

Sequence details:

When a turn-off condition is triggered by a hard-fault source (see Table 19):

- The corresponding hard-fault counter is incremented (see Table 20): xxx FLT CNT ++
- The FLT_TMR is loaded with the corresponding hard-fault duration and starts (see Table 20)
- The PMIC switches to the POWER_DOWN sequence
- Once the POWER DOWN sequence ends:
 - If all counters xxx_FLT_CNT <= xxx_FLT_CNT_MAX then the PMIC goes into the CHECK&LOAD state, then PMIC waits for a FLT_TMR timer expiration before restarting (see Table 20). Then it goes into POWER_UP, and then it goes in POWER_ON state. The corresponding bit in the RESTART_SR status register is set.
 - Else if one of the counters xxx_FLT_CNT > xxx_FLT_CNT_MAX, then PMIC goes into the FAIL_SAFE_LOCK state. The corresponding bit in the TURN_OFF_SR status register is set. Even when the FAIL_SAFE_LOCK is skipped, the PMIC waits for FLT_TMR expiration before restarting.

Note: If EN set in PKEY_EN_CFG bit in NVM, it is assumed that EN is kept asserted during the above sequence.

			· ·
Source	Fail-safe counters	Max fault iteration (NVM shadow register)	Wait before restart timer duration FLT_TMR[x]
V _{INOK_Fall}	VIN_FLT_CNT [3:0]	VIN_FLT_CNT_MAX [3:0]	t _{VINOK_Fall}
PONKEYn long press	PKEY_FLT_CNT [3:0]	PKEY_FLT_CNT_MAX [3:0]	0
Thermal shutdown	TSHDN_FLT_CNT [3:0]	TSHDN_FLT_CNT_MAX [3:0]	t _{TSHDN_DLY}
Overcurrent protection (OCP)	OCP_FLT_CNT [3:0]	OCP_FLT_CNT_MAX [3:0]	tHICCUP_DLY
Watchdog	WDG_FLT_CNT [3:0]	WDG_FLT_CNT_MAX [3:0]	0

Table 20. Hard-fault fail-safe counters and waits before restarting timer

Notes:

- 1 When a counter (xxx_FLT_CNT [3:0]) reaches 0xF, all the next counter increments keep the counter value at 0xF (and not restart to 0). This allows for infinite PMIC restart iterations to be set when xxx_FLT_CNT_MAX [3:0] is set to 0xF.
- 2 Setting 0 in xxx_FLT_CNT_MAX makes the PMIC go into the FAIL_SAFE_LOCK state after the first corresponding turn-off hard-fault condition (PMIC restarts 0 times).
- 3 Setting 0xF in xxx_FLT_CNT_MAX makes the PMIC always restart after any corresponding urn-off fault condition as highlighted above in Note 1 (PMIC restarts indefinitely).
- 4 Programming the NVM with t_{HICCUP DLY} ='0' means no wait before restart.

DS14839 - Rev 2 page 39/127

5.4.8 Hard-fault counters reset and auto-reset

To avoid reaching the FAIL_SAFE_LOCK state due to isolated turn-off hard-fault conditions, all counters can be reset automatically when no turn-off hard-fault condition occurs in RST_FTL_CNT_TMR timer duration (see Table 21 for timer duration NVM settings).

From the NO_SUPPLY state and until a first turn-off condition occurs, the RST_FTL_CNT_TMR timer is disabled. Each time a turn-off hard-fault condition occurs, the RST_FTL_CNT_TMR timer is reset to the

RST FLT CNT TMR[1:0] value and restarted.

When the RST FTL CNT TMR timer elapses:

- All counters (*_FLT_CNT) are reset
- The RST_FTL_CNT_TMR timer is stopped until a new turn-off hard-fault condition occurs

If PMIC reaches the FAIL_SAFE_LOCK state before the RST_FTL_CNT_TMR timer elapses, then RST_FTL_CNT_TMR timer is reset and stopped.

A RSTn condition has no effect on the RST FTL CNT TMR timer.

In the OFF state, the RST_FTL_CNT_TMR timer is reset and stopped, and all counters (*_FLT_CNT) are reset.

RST_FLT_CNT_TMR [1:0] (NVM shadow register)	Timer duration
00	disabled
01	1 min
10	6 min
11	60 min

Table 21. Reset fault counter timer settings

5.4.9 FAIL SAFE LOCK state skipping

When the PMIC enters FAIL_SAFE_LOCK state, it remains in this state until PMIC POR ($V_{IN} < V_{INPOR_Fall}$). Alternatively, there are three programmable options to force the PMIC to switch from the FAIL_SAFE_LOCK state to the OFF state:

- Set the bit FAIL_SAFE_LOCK_DIS in the NVM. It disables the FAIL_SAFE_LOCK feature (when the PMIC enters the FAIL_SAFE_LOCK state, it immediately transitions to the OFF state).
- A PKEY_EN_FAIL_SAFE_LOCK_SKIP condition
 - A PKEY_EN_FAIL_SAFE_LOCK_SKIP condition can be reached only if the PKEY_LKP_EN_FSLS
 (1) bit is set prior to entering the FAIL_SAFE_LOCK state (or if the NVM_PKEY_LKP_EN_FSLS bit is set in NVM, which automatically sets the PKEY_LKP_EN_FSLS bit) and:
 - A PONKEYn long key press event (if PONKEYn is set in the PKEY EN CFG bit (NVM))
 - An EN pin deassertion (if EN is set in the PKEY EN CFG bit (NVM))
- PKEY_LKP_EN_FSLS: PONKEY Long Key Press Fail-Safe-Lock-Skip bit / EN deasserted Fail-Safe-Lock-Skip bit)

Note:

When the PMIC performs the transition from the FAIL_SAFE_LOCK state to the OFF state, a turn-on condition should occur to power up the PMIC (the AUTO_TURN_ON bit has no effect on the FAIL_SAFE_LOCK state to the OFF state transition.

DS14839 - Rev 2 page 40/127

5.4.10 Power control management (PWRCTRLx)

PWRCTRL1 and PWRCTRL2 are digital inputs controlled from an application processor (see Section 5.3.4). They are dedicated to managing different application power modes or special regulator reset features.

PWRCTRL1 and PWRCTRL2 can be independently muxed onto each regulator instance (BUCKx, LDOx or GPOx).

For example, BUCK1 may be controlled by PWRCTRL2, and BUCK2, BUCK2, and LDO5 can be controlled by PWRCTRL1, and so on.

A regulator instance and external command (GPO) can be controlled by a single PWRCTRL signal. For each regulator instance, a PWRCTRL input can be used either to:

- Switch between the xxx_MAIN_CR register or the xxx_ALT_CR register of a regulator (where xxx is the regulator instance)
- The regulator behaves according to the selected xxx_MAIN_CR or xxx_ALT_CR register
- Reset a regulator instance to its default value (from the NVM)

PWRCTRL1 or PWRCTRL2 can be used to suspend the watchdog, typically when the AP is in low-power mode. Figure 12 provides the logic circuitry principle showing:

How a buck converter is controlled by a PWRCTRLx

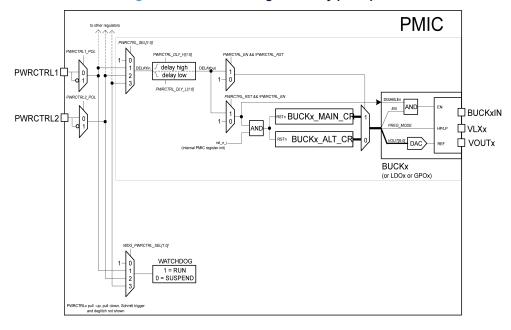


Figure 12. PWRCTRLx logic circuitry principle

PWRCTRL1_POL and PWRCTRL2_POL bits set the polarity of PWRCTRL1 and PWRCTRL2 respectively. Those settings are applicable to all regulators and external commands (GPO) (not linked to a single regulator). PWRCTRLx_POL: polarity of PWRCTRLx signal (with x = 1, 2): 0: active low; 1: active high. See Table 22.

Table 22. PWRCTRLx polarity truth table

PWRCTRLx input level	PWRCTRLx_POL	PWRCTRLx logic level
0	0	Active
1	0	Inactive
0	1	Inactive
1	1	Active

Note: x is the instance number of the PWRCTRL pin.

DS14839 - Rev 2 page 41/127

WDG_PWRCTRL_SEL [1:0]: Watchdog control source selection. When PWRCTRLx is active, the watchdog timer is suspended. When PWRCTRLx is inactive, the watchdog timer is running (if watchdog is enabled) (see Section 5.4.6.2).

Note: There is one instance of the following registers per regulator instance:

PWRCTRL_SEL [1:0]: BUCKx control/reset source selection.

PWRCTRL_DLY_H [1:0]: BUCKx control/reset source shift delay from low to high level (typically to perform the power ON sequence between different regulators; driven by a PWRCTRL signal). 0 = no delay; 1 = 1.5 ms delay; 2 = 3 ms delay; and 3 = 6 ms delay.

PWRCTRL_DLY_L [1:0]: BUCKx control/reset source shift delay from high to low level (typically to emulate the power OFF sequence between different regulators; driven by a PWRCTRL signal). 0 = no delay; 1 = 1.5 ms delay; 2 = 3 ms delay; and 3 = 6 ms delay.

PWRCTRL_EN: BUCKx control source enable. 0: disable, 1: enable. When enabled, BUCKx is controlled by a PWRCTRL signal:

- If PWRCTRL is inactive, the BUCKx MAIN CR register is used to control BUCKx
- If PWRCTRL is active, the BUCKx_ALT_CR register is used to control BUCKx

PWRCTRL_RST: BUCKx independent reset source enable. 0: disable, 1: enable. When enabled, BUCKx is reset by a PWRCTRL signal. See Section 5.4.12 for details:

- 1. If PWRCTRL is active
- 2. BUCKx is disabled (forced by the DISABLEn signal in Figure 15)
- 3. The BUCKx_MAIN_CR and BUCKx_ALT_CR registers are reset to default value (the NVM default value is reloaded in both registers).
- 4. If PWRCTRL is inactive, the BUCKx_MAIN_CR register is used to control BUCKx.

Notes:

- If both PWRCTRL_EN and PWRCTRL_RST are set by mistake, both the control source and independent reset features are disabled (no effect).
- The above bit field descriptions are also applicable for LDOs and GPOs replacing BUCKx with LDOx and GPOx respectively.

PWRCTRLx logic level	PWRCTRL_RST	PWRCTRL_EN	Regulator control register
Active or inactive	0	0	xxx_MAIN_CR
Active	0	1	xxx_ALT_CR
Inactive	0	1	xxx_MAIN_CR
Active	1	0	xxx regulator disabled (OFF) xxx_MAIN_CR & xxx_ALT_CR registers are reset to default value
Inactive	1	0	xxx_MAIN_CR
Active or inactive	1	1	XXX MAIN CR

Table 23. Regulator control truth table

Note: x is the instance number of the PWRCTRL pin; xxx is the instance name of a regulator.

DS14839 - Rev 2 page 42/127

5.4.11 PWRCTRL delay high and delay low behaviors

PWRCTRL delay blocks are independent for each regulator. A delay block allows a PWRCTRLx signal to shift by preprogrammed delays. Each delay block is composed of two parts (a delay high and a delay low). The first operates at a high input level, and the second operates at a low input level.

Delay blocks are typically used to emulate power sequences between regulators when entering or leaving a low-power mode.

High-level delay behavior:

When the input signal goes from low to high level, the high-level delay timer (PWRCTRL_DLY_H [1:0]) is started. Once the timer expires, the output goes high.

If the input signal changes from high to low before the high-level delay timer expires, the "high-level delay timer" is stopped and reset, and the output keeps the previous value.

Low-level delay behavior:

Same behavior as for the high-level delay but on low-level input.

When the input signal goes from high to low level, the low-level delay timer (PWRCTRL_DLY_L [1:0]) is started. Once the timer expires, the output goes low.

If the input signal changes from low to high before the low-level delay timer expires, the "low-level delay timer" is stopped and reset, and the output keeps the previous value.

Note:

The high-level delay timer and low-level delay timer are both driven from a level (and not from an edge) to ensure that the output is always copying the input after any delay expires.

Figure 13 illustrates this example, using the PWRCTRL2 to control the BUCK1 and the BUCK2:

Settings for the Figure 13 example:

// BUCK1 settings

BUCK1_PWRCTRL_CR[PWRCTRL_SEL[1:0]] = 2; // PWRCTRL2 as BUCK1 control source

BUCK1_PWRCTRL_CR[PWRCTRL_DLY_H[1:0]] = 0; // no delay on PWRCTRL2 going from low to high forBUCK1

 ${\tt BUCK1_PWRCTRL_CR[PWRCTRL_DLY_L[1:0]] = 2; // 3 ms delay on PWRCTRL2 going from high to low for BUCK1}$

BUCK1_PWRCTRL_CR[PWRCTRL_EN] = 1; // enable the PWRCTRL input feature for BUCK1 // BUCK2 settings

BUCK2_PWRCTRL_CR[PWRCTRL_SEL[1:0]] = 2; // PWRCTRL2 as BUCK2 control source

 ${\tt BUCK2_PWRCTRL_CR[PWRCTRL_DLY_H[1:0]] = 2; // 3 ms delay on PWRCTRL2 going from low to high for BUCK2}$

 ${\tt BUCK2_PWRCTRL_CR[PWRCTRL_DLY_L[1:0]] = 0; // \ no \ delay \ on \ PWRCTRL2 \ going \ from \ high \ to \ low \ for BUCK2}$

BUCK2_PWRCTRL_CR[PWRCTRL_EN] = 1; // enable the PWRCTRL input feature for BUCK2.

DS14839 - Rev 2 page 43/127

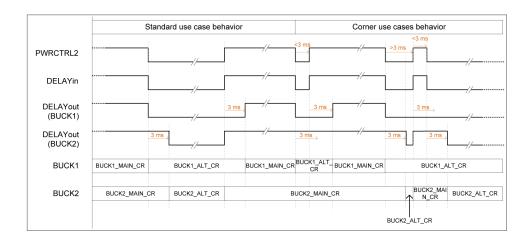


Figure 13. Delay rising and delay falling behaviors example.

5.4.12 Regulator-independent reset detailed behaviors (PWRCTRL_RST)

The independent reset feature is controlled by a PWRCTRLx input pin (PWRCTRL_SRC [1:0]) and it is enabled by setting the PWRCTRL_RST bit. This feature allows a regulator to reset to its default NVM value from an AP hardware signal "on the fly" (which cannot be done by I²C access).

When the PWRCTRLx input pin is active, regulator xxx is forced into OFF mode. xxx_MAIN_CR and xxx_ALT_CR registers are both reset to default values (the NVM default value is reloaded in both registers from the related NVM shadow register).

When the PWRCTRLx input pin is inactive, regulator xxx is controlled by xxx_MAIN_CR register content. Figure 14 provides an example to illustrate regulator-independent reset behaviors using the PWRCTRL2 to control the LDO2 independent reset.

Assumptions and settings for the Figure 14 example:

LDO2 reset value (from the NVM):

- LDO2_MAIN_CR[VOUT] = 2.9 V
- LDO2_MAIN_CR[EN] = 1

Software settings:

PWRCTRL2 POL = 0; // PWRCTRL2 active low

// LDO2 settings

LDO2_PWRCTRL_CR[PWRCTRL_SEL [1:0]] = 3; // PWRCTRL2 as LDO2 control source
LDO2_PWRCTRL_CR[PWRCTRL_DLY_H [1:0]] = 0; // no delay on PWRCTRL2 going high for LDO2
LDO2_PWRCTRL_CR[PWRCTRL_DLY_L [1:0]] = 0; // no delay on PWRCTRL2 going low for LDO2
LDO2_PWRCTRL_CR[PWRCTRL_RST] = 1; // enable the PWRCTRL2 input to control LDO2 independent reset

DS14839 - Rev 2 page 44/127

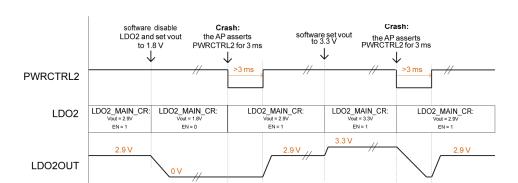


Figure 14. Regulator-independent reset behavior example

5.4.13 Reset management (RSTn) and mask_reset software option

RSTn is a bidirectional reset pin both for the PMIC and the application processor. It has a digital input/open drain output topology with an internal pull-up resistor (RPU).

- When the PMIC asserts RSTn, it drives the RSTn signal low (open drain internal transistor). The application processor is forced into a reset state.
- When the PMIC does not assert RSTn, the RSTn pin is in high impedance and the RSTn signal goes high (due to the pull-up resistor) if the RSTn signal is not asserted low externally (for example by a reset push-button or from an application processor asserting the reset signal low). In that case, the PMIC RSTn pin becomes a digital input and it monitors the RSTn signal.

In the POWER_ON state, the RSTn pin can be driven by the application processor or a reset push-button.

When the application processor asserts RSTn low exceeding the t_{RSTnAS} duration, it immediately triggers a reset sequence of the PMIC by performing a non-interruptible power cycle:

- 1. The PMIC asserts RSTn low (forcing the AP to keep it in reset, and in case that the AP releases the reset before the end of the sequence)
- 2. POWER DOWN sequence
- 3. CHECK&LOAD
- 4. POWER UP sequence
- 5. PMIC deasserts RSTn and monitors RSTn
- 6. PMIC waits for the RSTn signal to go high before entering POWER_ON (to prevent an infinite loop of reset sequences)

The PMIC can detect a negative pulse on RSTn shorter than the tRSTnAS duration. The PMIC must detect a negative pulse longer or equal to the tRSTnAS duration.

5.4.13.1 mask_reset software option

From step 2 to step 4 (in the above sequence), LDOs, GPOs and buck regulators follow a POWER_DOWN sequence followed by a POWER_UP sequence as defined in Section 5.2 except for regulators with the **mask_reset** option bit set.

The **mask_reset** option can be defined for each regulator by setting the corresponding MRST bit in the corresponding BUCKS_MRST_CR or LDOS_MRST_CR or GPOS_MRST_CR registers.

When the **mask_reset** option is set to a regulator, the MAIN and ALTERNATE related registers are not reset and content is maintained during and after the reset power cycle. Nevertheless, the PWRCTRLx settings are reset for all regulators, including those with the **mask_reset** option set:

- POWER_DOWN is not performed.
- MAIN and ALTERNATE register values are not reset, and their contents are maintained with the current value
- PWRCTRLx register settings are reset (xxx_PWRCTRL_CR)

DS14839 - Rev 2 page 45/127

The PMIC always ends the power cycle in the POWER_ON state, regardless of the PWRCTRLx value, as all PWRCTRLx settings have been reset during the power cycle.

If RSTn is asserted in MAIN mode, regulators with the **mask_reset** option set are not impacted at all by the reset sequence, keeping V_{OUT}, EN, and PREG_MODE unchanged.

If RSTn is asserted in the ALTERNATE mode, V_{OUT}, EN, and PREG_MODE switch to the content of the [regulator]_MAIN_CR register values when the POWER_DOWN sequence ends before the POWER_UP sequence starts.

Figure 15 illustrates a reset power cycle of the PMIC.

Figure 15. Reset power-cycle sequence example.

For RANK_DLY and RST_DLY, see Table 80.

Settings related to the example in Figure 15:

LDO5 with mask_reset option set (LDOS_MRST_CR[LDO2_MRST] = 1) is not impacted by the reset power-cvcle.

BUCK1, BUCK2, and LDO4 are powered down and up at their respective ranks defined in the NVM. LDO5 is enabled by I²C. So, it is powered down first and not restarted (as not defined in the NVM to start). Mask_reset is valid once. It is cleared in the CHECK&LOAD state. So, it is cleared following a turn-off condition, a VINPOR, and a RSTn assertion.

When RSTn is released by the application processor, the PMIC keeps RSTn asserted (the RSTn signal stays low), meaning that the application processor is kept in reset until the PMIC releases the RSTn signal.

5.4.14 Thermal protection

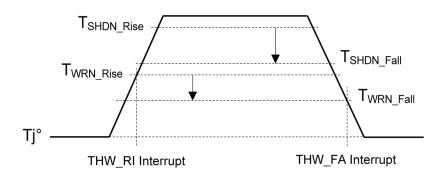
The PMIC implements a thermal protection to prevent overheating damage. PMIC junction temperature is permanently monitored by an embedded thermal sensor.

The first level of thermal protection consists of an alarm sent by an interrupt to the application processor:

- When T_i rises above the TWRN_Rise threshold, the PMIC generates a THW_RI interrupt
- When T_i falls below the TWRN Fall threshold, the PMIC generates a THW FA interrupt

The application processor can decrease the application activity load, in order to decrease the application power consumption. Alternatively, a second level of thermal protection may occur.

The second level of thermal protection consists of triggering a turn-off hard-fault condition:


DS14839 - Rev 2 page 46/127

- When T_j rises above the TSHDN_Rise threshold, the PMIC generates a turn-off hard-fault condition, and the thermal fail-safe counter is incremented (TSHDN_FLT_CNT_++):
 - If the thermal fail-safe counter reaches the maximum number of power cycles defined in the NVM (TSHDN_FLT_CNT > TSHDN_FLT_CNT_MAX), then the PMIC goes into the FAIL_SAFE_LOCK state.
 - Alternatively, when T_j falls below the TSHDN_Fall threshold and a tTSHDN_DLY delay ends, the PMIC restarts.

See Section 5.4.7 for details about fail-safe counter management.

Figure 16. Thermal protection thresholds

5.4.15 Overcurrent (OCP) and Hiccup mode

All regulators implement protection against overcurrent (OC) on their output.

Note:

Short-circuits (SC) are managed by the overcurrent protection.

For each regulator, the PMIC embeds 2 levels of protection against overcurrent and short-circuits:

- Level 0 (default): independent regulator OCP Hiccup mode management
- Level 1: PMIC OCP fail-safe management (see Section 5.4.7)

The default level of protection is defined in the NVM (NVM_FS_OCP_SHR1/2) for each regulator, and can be changed at runtime by software (FS_OCP_CR1/2).

5.4.16 Level 0: Independent regulator OCP Hiccup mode management

Each PMIC regulator operates independently in Hiccup mode:

- When a short-circuit or an overcurrent occurs, the output current is limited to ILDOLIM (for LDO) and IBKLIM (for buck).
- If the SC or OC lasts more than t_{OCPDB LDO} or t_{OCPDB BUCK} (respectively for LDO or buck):
 - The regulator turns OFF for the t_{HICCUP DLY} duration
 - An interrupt is generated (if the interrupt is unmasked by software)
- Once the t_{HICCUP DLY} timer elapses, the regulator turns ON
 - If the SC or OC is removed, the LDO operates normally
 - If the SC or OC stays present, the regulator goes into step 1, repeating the cycle until the overload disappears (hiccup)

Notes:

DS14839 - Rev 2 page 47/127

- 1) When the t_{HICCUP_DLY} timer duration is set to 0, the regulator is turned-OFF (interrupt-generated) and it does not restart (step 3 is skipped).
- 2) The t_{HICCUP_DLY} timer duration can be adjusted in the NVM by setting the HICCUP_DLY [1:0] bit field in the NVM_BUCKS_IOUT_SHR2 shadow register, then programming the NVM.
- 3) The t_{HICCUP_DLY} timer is reset if a POWER_DOWN occurs at the same time. In this way, the IP can restart with its assigned RANK at the next POWER_UP. This happens even if the mask reset is set and/or t_{HICCUP_DLY} is set to '0'.

5.4.17 Level 1: PMIC OCP fail-safe management

Each PMIC regulator can be set independently to trigger a hard-fault condition when an overcurrent or a short circuit occurs:

- When a short-circuit or an overcurrent occurs, the output current is limited to ILDOLIM(for LDO) and IBKLIM (for buck).
- If the SC or OC lasts more than tOCPDB_LDO or tOCPDB_BUCK (respectively for LDO or buck), the PMIC generates a turn-off hard-fault condition. OCP_SR1 or OCP_SR2 is updated with the OCP fault source, and the OCP fail-safe counter (1) is incremented (OCP_FLT_CNT ++):
 - If the OCP fail-safe counter reaches the maximum number of power cycles defined in the NVM (OCP_FLT_CNT > OCP_FLT_CNT_MAX), the PMIC goes into FAIL_SAFE_LOCK state.
 - Alternatively, when the tHICCUP_DLY delay ends, the PMIC restarts.

There is a single OCP fail-safe counter (OCP_FLT_CNT) for all regulators. It is incremented each time a regulator triggers a hard-fault regardless of the regulator instance.

DS14839 - Rev 2 page 48/127

5.4.18 Watchdog management

The PMIC has an internal watchdog timer. A watchdog timer expiration generates a turn-off hard-fault condition (see Section 5.4.6) followed either by a PMIC restart (power cycling) or by the PMIC going into the FAIL SAFE LOCK state.

The watchdog can be enabled/disabled by software or at power-up (NVM settings):

- Software: set/reset WDG EN bit at runtime
- NVM: set/reset NVM WDG EN bit, then program the NVM

The watchdog timer duration can be set in a range from 1 s to 256 s in 1 s steps by setting the WDG_TMR_SET [7:0] bit field. The default watchdog timer duration can be set in the NVM by setting NVM_WDG_TMR_SET [1:0], then programming the NVM.

Note:

Each time the NVM is reloaded (typically in the CHECK&LOAD state), the NVM_WDG_EN bit is copied into the WDG_EN bit and the NVM_WDG_TMR_SET [1:0] bit field related duration is set into the WDG_TMR_SET [7:0] bit field. In the POWER_ON state, the software can override the default watchdog values (NVM) by setting the WDG_EN bit and/or the WDG_TMR_SET [7:0] bit field.

As soon as the watchdog is enabled, the software should periodically set the WDG_RST bit (self-cleared) to reload the timer down counter WDG_TMR_CNT [7:0] with the value defined in the WDG_TMR_SET [7:0] bit field.

The software can read the watchdog timer down counter (WDG_TMR_CNT [7:0]) to check the remaining duration before expiration.

A turn-OFF hard-fault condition occurs if the watchdog timer expires. The turn-off condition is followed by a POWER_DOWN sequence either by a PMIC restart (POWER_UP then POWER_ON) or by the PMIC going into the FAIL_SAFE_LOCK state. (See Section 5.4.7 for details about the behavior following a turn-off hard-fault event).

Enabling the watchdog (from WDG_EN = 0 to 1) to reload the timer down counter (WDG_TMR_CNT [7:0]) with the value defined in the WDG_TMR_SET [7:0] bit field.

When enabled, the watchdog timer remains active in the POWER ON state.

The watchdog timer can be disabled at runtime by setting WDG_EN = 0. Alternatively, the watchdog timer is automatically disabled when PMIC goes into the OFF state or the FAIL_SAFE_LOCK state (regardless of turn-OFF condition source).

When enabled (WDG_EN = 1), the watchdog timer can be suspended automatically from one PWRCTRLx signal. The WDG_PWRCTRL_SEL [1:0] bit field allows for the selection of the PWRCTRLx source to suspend the watchdog. It is suitable to automatically suspend/freeze the watchdog when the application is in low-power mode:

- When PWRCTRLx is inactive (the application is running), the watchdog timer down counter is running. The software should set the WDG_RST bit periodically to reload the timer down counter.
- When PWRCTRLx is active (the application is in low-power mode), the watchdog timer down counter is suspended (frozen). When PWRCTRLx becomes inactive (the application leaves the low-power mode), the watchdog down counter restarts from the current WDG_TMR_CNT [7:0] value (counter WDG_TMR_CNT [7:0] is not reloaded from WDG_TMR_SET [7:0] value).

5.5 Programming

5.5.1 I²C interface

The I²C interface works in slave mode. It supports both standard and fast modes with a data rate up to 400 Kb/s. It also supports fast mode plus (FM+) with a data rate up to 1 Mb/s, which is a suitable frequency for DVS operations.

5.5.1.1 Slave address

There is an I²C slave address for the STPMIC1L.

The address is stored in the NVM_I²C_ADDR_SHR[6:0] shadow register bit field. The hard-coded I²C default address defined in the NVM is 0x33.

Table 24. Slave address format

b7	b6	b5	b4	b3	b2	b1	b0
AddID6	AddID5	AddID4	AddID3	AddID2	AddID1	AddID0	R/W

DS14839 - Rev 2 page 49/127

5.5.1.2 Read/write operation.

Each transaction is composed of a start condition followed by an 8-bit packet number representing either a device ID plus R/W command, register address, or register data coming to/from the slave.

SeeTable 28. An acknowledgment is needed after each packet. This acknowledgment is given by the receiver of the packet. Transaction examples are given in Table 29 and Table 30. Multi-read and multi-write operations are supported.

Table 25. Register address format

b7	b6	b6 b5 b4 b5		b3	b2	b1	b0
RegAdd7	RegAdd6	RegAdd5	RegAdd4	RegAdd3	RegAdd2	RegAdd1	RegAdd0

Table 26. Register data format

b7	b6	b5	b4	b3	b2	b1	b0
DATA7	DATA6	DATA5	DATA4	DATA3	DATA2	DATA1	DATA0

Figure 17. I²C read operation

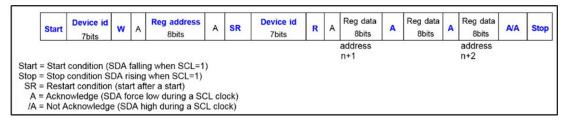
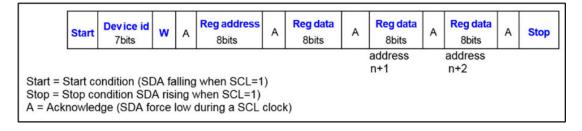



Figure 18. I²C write operation

5.5.2 Non-volatile memory (NVM)

The PMIC's built-in non-volatile memory provides high flexibility to support a wide range of applications.

Its write management through I²C allows for the customization of the PMIC directly in final applications during product development and mass production.

The NVM read operation is performed automatically in the INIT&LOAD state and in the CHECK&LOAD state to set control registers with default values and configure the POWER_UP and POWER_DOWN sequence.

The NVM write operation can be performed several times (NVMEND cycles max) during application development debugging procedures. Once the final settings have been defined, these can be written in the NVM content of each part mounted on the customer application that is written in the production line under a controlled environment.

In addition, the PMIC supports the NVM CRC check (or checksum) to guarantee its content integrity. The CRC is computed by the PMIC during an NVM write operation. After the NVM write, the user reads back the NVM content to check that the content is OK (and implicitly that the computed CRC is valid). Then, each time the PMIC reads the NVM (in the INIT&LOAD and in the CHECK&LOAD states) if the CRC is not OK, the PMIC does not start up.

DS14839 - Rev 2 page 50/127

5.5.2.1 NVM read operation

The NVM read operation is fully managed by the PMIC.

For each read operation, the PMIC automatically loads the NVM content into NVM shadow registers. It means that shadow register content is a copy of NVM content.

When the PMIC power supply is connected (VIN > VINPOR_Rise), the PMIC state machine goes into the INIT&LOAD state (see Section 5.1). In this state, an NVM read operation is performed to check if the PMIC can start up automatically, depending on the AUTO_TURN_ON NVM bit value.

If the AUTO_TURN_ON bit is not set, the PMIC goes into the OFF state, or into the CHECK&LOAD state and continues to POWER UP automatically.

Before each POWER_UP sequence, the NVM read operation is performed in the CHECK&LOAD state. NVM content is loaded into shadow registers and NVM content integrity is checked with CRC. Additionally, the PMIC initializes BUCK and LDO control registers with values predefined in the NVM and it configures the POWER_UP and POWER_DOWN sequence of regulators.

5.5.2.2 NVM write operation (PMIC customization)

The NVM write operation can be performed by the I²C interface for customization purposes (see max cycles in NVMEND).

The writing procedure can be performed in two ways:

Customizing a pre-programmed device directly from the application host processor via the I²C interface

NVM write operation generic sequence:

- 1. Apply V_{IN} to the application: the PMIC goes into the POWER ON state (*)
- 2. Write NVM shadow registers with expected customization values
- 3. Initiate a "NVM program operation" command: write NVM CMD [1:0] = '01'
- 4. Wait for the NVM write operation to be completed: wait for NVM_BUSY to become 0
- 5. Check for the NVM write operation to succeed: NVM WRITE FAIL = 0 in NVM SR
- Check new NVM content by initiating an NVM read operation: write NVM_CMD [1:0] = '10' and wait for NVM BUSY to become 0
- 7. A power OFF/ON cycle is needed to load the new NVM content.

The following conditions should be fulfilled to allow an NVM write operation:

V_{IN} must be minimum VNVM_PROG

The NVM write operation works at least in the POWER_ON state to allow the application to reprogram the NVM at runtime (via I²C). Writing into NVM shadow registers does not affect NVM content until the NVM write operation is executed.

WARNING: If V_{IN} goes below VNVM_PROG during the write operation, the NVM content integrity may be corrupted and the PMIC may not start up anymore.

*. The PMIC has the AUTO_TURN_ON bit set by default to power up automatically. This is to enable NVM write operation without generating turn-on conditions.

5.5.2.3 I²C address:

Special attention must be given when a new I²C address needs to be programmed.

When a different I²C address is written in NVM_I²C_ADDR_SHR, this new address becomes effective only after a "NVM write operation" after reloading the NVM (INIT&LOAD or CHECK&LOAD state).

If a "NVM write operation" is not performed following the I²C address change in the shadow register, the previously programmed I²C address is loaded from the NVM during the next POWER_UP sequence.

5.5.2.4 LOCK NVM write operation

When the PMIC is customized with the LOCK_NVM bit set in the NVM_I²C_ADD_SHR followed by a programing command (NVM_CMD [1:0] = 0b01), then the NVM write operation becomes disabled immediately. Any new programing command execution is ignored and the NVM_WRITE_FAIL bit is set in NVM_SR.

DS14839 - Rev 2 page 51/127

6 Register descriptions

6.1 Register map

All NVM_xxx bits of shadow registers have related xxx mirror bits in the control registers section allowing the software to override the NVM's predefined values at runtime. Each time the NVM is reloaded, related xxx mirror bits are also reloaded with the NVM's predefined values.

All bits specified as reserved in registers with R/W must not be modified.

So, before writing on a register with a reserved bit, the user should read the content of the register and should only modify bits that are not reserved, then write to the register.

have	Register	R/					BITS[7:0]			
hex	Name	W	7	6	5	4	3	2	1	0
Status	registers				<u> </u>					
0x00	Product_ID	R		PM	/IIC_REF_ID[3:0]		PMIC_N	NVM_ID[3:0]	
0x01	Version_S R	R		MAJOR_VERSION[3:0]				MINOR_\	VERSION[3:0]	
0x02	TURN_ON _SR	R	-	-	-	-	AUTO	-	-	PKEY_EN
0x03	TURN_OF F_SR	R	EN	-	WDG_FLT	THSDN_FLT	OCP_FLT	VIN_FLT	PKEY_FLT	SWOFF
0x04	RESTART _SR	R	R_EN	R_RST	R_WDG_FLT	R_THSDN_FL T	R_OCP_FLT	R_VIN_FLT	R_PKEY_FLT	R_SWOFF
0x05	OCP_SR1	R	-	-	-	-	-	-	OCP_BUCK2	OCP_BUCK1
0x06	OCP_SR2	R	-	-	-	OCP_LDO5	OCP_LDO4	OCP_LDO3	OCP_LDO2	-
0x07	EN_SR1	R	-	-	-	-	-	-	EN_BUCK2	EN_BUCK1
0x08	EN_SR2	R	-	-	-	EN_LDO5	EN_LDO4	EN_LDO3	EN_LDO2	-
0x09	FS_CNT_S R1	R		IIV	N_FLT_CNT[3:0]		PKEY_F	LT_CNT[3:0]	
0x0A	FS_CNT_S R2	R		THS	DN_FLT_CNT[3	:0]	OCP_FLT_CNT[3:0]			
0x0B	FS_CNT_S R3	R	-	-	-	-	WDG_FLT_CNT[3:0]			
0x0C	MODE_SR	R		C	DP_MODE[3:0]		-	-	PWRCTRL 2	PWRCTRL 1
0x0D	GPO_SR	R	-	-	-	-	-	-	GPO2_EN	GPO1_EN
Contro	ol registers				I		ı		I	I
0x10	MAIN_CR	R/ W	-		-	-	PWRCTRL	_POL[1:0]	RREQ_EN	SWOFF
0x11	VINLOW_ CR	R/ W	-	-	VINLOW_	_HYST[1:0]	V	INLOW_RISE[2:0]	VINLOW_EN
0x12	PKEY_LKP _CR	R/ W	PKEY _LK P_OF F	PKEY_L K P_EN_F S LS				PKEY_L	KP_TMR[3:0]	1
0x13	WDG_CR	R/ W	-	-	-			RCTRL[1:0]	WDG_RST	WDG_EN
0x14	WDG_TM R_CR	R/ W				0]				

DS14839 - Rev 2 page 52/127

	Register	R/					BITS[7:0]				
hex	Name	w	7	6	5	4	3	2	1	0	
Status	registers										
0x15	WDG_TM R_SR	R				WDG	_TMR_CNT[7:0	TMR_CNT[7:0]			
0x16	FS_OCP_ CR1	R/ W	-	-	-	-	-	-	FS_OCP_ BUCK2	FS_OCP_ BUCK1	
0x17	FS_OCP_ CR2	R/ W	-	-	-	FS_OCP_LDO 5	FS_OCP_LD O4	FS_OCP_LD O3	FS_OCP_LD O2	-	
0x18	PADS_PU LL_CR	R/ W	-	-	PWRCTRL	_2_PULL[1:0]	PWRCTRL*	I_PULL[1:0]	PKEY_EN	I_PULL[1:0]	
0x19	BUCKS_P D_CR	R/ W	-	-	-	-	BUCK2	_PD[1:0]	BUCK1	_PD[1:0]	
0x1B	LDOS_PD _CR	R/ W	-	-	-	LDO5_PD	LDO4_PD	LDO3_PD	LDO2_PD	-	
0x1C	GPO_MRS T_CR	R/ W	-	-	-	-	-	GPO2_MRS T	GPO1_MRST	-	
0x1D	BUCKS_M RST_CR	R/ W	-	-	-	-	-	-	BUCK2_MRS T	BUCK1_MRST	
0x1E	LDOS_MR ST_CR	R/ W	-	-	-	LDO5_MRST	LDO4_MRS T	LDO3_MRS T	LDO2_MRST	-	
виск	control regi	sters					'				
0x20	BUCK1_M AIN_CR1	R/ W	-				VOUT[6:0]				
0x21	BUCK1_M AIN_CR2	R/ W	-	-	-	-	-	PREG_I	MODE[1:0]	EN	
0x22	BUCK1_AL T_CR1	R/ W	-				VOUT[6:0]				
0x23	BUCK1_AL T_CR2	R/ W	-	-	-	-	-	PREG_N	MODE[1:0]	EN	
0x24	BUCK1_P WRCTRL_ CR	R/ W		TRL_DLY_ I[1:0]	PWRCTRI	DLY_L[1:0]	PWRCTRI	_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN	
0x25	BUCK2_M AIN_CR1	R/ W	-				VOUT[6:0]				
0x26	BUCK2_M AIN_CR2	R/ W	-	-	-	-	-	PREG_N	MODE[1:0]	EN	
0x27	BUCK2_AL T_CR1	R/ W	-				VOUT[6:0]				
0x28	BUCK2_AL T_CR2	R/ W	-	-	-	-	-	PREG_N	MODE[1:0]	EN	
0x29	BUCK2_P WRCTRL_ CR	R/ W	PWRC	TRL_DLY_ I[1:0]	PWRCTRI	DLY_L[1:0]	PWRCTRI	_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN	
0x43	GPO1_MAI N_CR	R/ W	-	-	-	-	-	-	-	EN	
0x44	GPO1_ALT _CR	R/ W	-	-	-	-	-	-	-	EN	
0x45	GPO1_PW RCTRL_C R	R/ W		TRL_DLY_ I[1:0]	PWRCTRI	_DLY_L[1:0]	PWRCTRI	_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN	

DS14839 - Rev 2 page 53/127

	Register	R/					BITS[7:0]			
hex	Name	w	7	6	5	4	3	2	1	0
Status	registers									
0x46	GPO2_MAI N_CR	R/ W	-	-	-	-	-	-	-	EN
0x47	GPO2_ALT _CR	R/ W	-	-	-	-	-	-	-	EN
0x48	GPO2_PW RCTRL_C R	R/ W		TRL_DLY_ I[1:0]	PWRCTRL	_DLY_L[1:0]	PWRCTRI	L_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN
LDO c	ontrol regist	ers					I		I	
0x4F	LDO2_MAI N_CR	R/ W	-	-			VOUT[4:0]			EN
0x50	LDO2_ALT _CR	R/ W	-	-			VOUT[4:0]			EN
0x51	LDO2_PW RCTRL_C R	R/ W		TRL_DLY_ I[1:0]	PWRCTRL	_DLY_L[1:0]	PWRCTRI	L_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN
0x52	LDO3_MAI N_CR	R/ W	SNK_ SRC	-			VOUT[4:0]			EN
0x53	LDO3_ALT _CR	R/ W	SNK_ SRC	-			VOUT[4:0]			EN
0x54	LDO3_PW RCTRL_C R	R/ W		TRL_DLY_ I[1:0]	PWRCTRL	_DLY_L[1:0]	PWRCTRL_SEL[1:0] PWRCTRL_R			PWRCTRL_EN
0x55	LDO4_MAI N_CR	R/ W	-	-	-	-	-	-	-	EN
0x56	LDO4_ALT _CR	R/ W	-	-	-	-	-	-	-	EN
0x57	LDO4_PW RCTRL_C R	R/ W		TRL_DLY_ H[1:0]	PWRCTRL	_DLY_L[1:0]	PWRCTRI	L_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN
0x58	LDO5_MAI N_CR	R/ W	-	-			VOUT[4:0]			EN
0x59	LDO5_ALT _CR	R/ W	-	-			VOUT[4:0]			EN
0x5A	LDO5_PW RCTRL_C R	R/ W		TRL_DLY_ H[1:0]	PWRCTRL	_DLY_L[1:0]	PWRCTRI	L_SEL[1:0]	PWRCTRL_R ST	PWRCTRL_EN
Interru	upt control re	giste	rs				'		'	
0x70	INT_PEND ING_R1	R	-	-	VINLOW_RI	VINLOW_FA	-	-	PKEY_RI	PKEY_FA
0x71	INT_PEND ING_R2	R	-	-	-	-	-	-	THW_RI	THW_FA
0x72	INT_PEND ING_R3	R	-	-	-	-	-	-	BUCK2_OCP	BUCK1_OCP
0x73	INT_PEND ING_R4	R	-	-	-	LDO5_OCP	LDO4_OCP	LDO3_OCP	LDO2_OCP	
0x74	INT_CLEA R_R1	W/ R0/ SC	-	-	VINLOW_ RI_CLR	VINLOW_ FA_CLR	-	-	PKEY_RI_CL R	PKEY_FA_CL R

DS14839 - Rev 2 page 54/127

	Register	R/					BITS[7:0]			
hex	Name	w	7	6	5	4	3	2	1	0
Status	registers									
0x75	INT_CLEA R_R2	W/ R0/ SC	-	-	-	-	-	-	THW_RI_CLR	THW_FA_CLR
0x76	INT_CLEA R_R3	W/ R0/ SC	-	-	-	-	-	-	BUCK2_OCP _CLR	BUCK1_OCP_ CLR
0x77	INT_CLEA R_R4	W/ R0	-	-	-	LDO5_OCP_C LR	LDO4_OCP _CLR	LDO3_OCP _CLR	LDO2_OCP_ CLR	-
0x78	INT_MASK _R1	R/ W	-	-	VINLOW_RI_ MASK	VINLOW_FA_ MASK	-	-	PKEY_RI_MA SK	PKEY_FA_MA SK
0x79	INT_MASK _R2	R/ W	-	-	-	-	-	-	THW_RI_MAS K	THW_FA_MAS K
0x7A	INT_MASK _R3	R/ W	-	-	-	-	-	-	BUCK2_OCP _MASK	BUCK1_OCP_ MASK
0x7B	INT_MASK _R4	R/ W	-	-	-	LDO5_OCP_M ASK	LDO4_OCP _MASK	LDO3_OCP _MASK	LDO2_OCP_ MASK	-
0x7C	INT_SRC_ R1	R	-	-	VINLOW	!VINLOW	-	-	PKEY	!PKEY
0x7D	INT_SRC_ R2	R	-	-	-	-	-	-	THW	!THW
0x7E	INT_SRC_ R3	R	-	-	-	-	-	-	BUCK2_OCP _STATUS	BUCK1_OCP_ STATUS
0x7F	INT_SRC_ R4	R	-	-	-	LDO5_OCP_S TATUS	LDO4_OCP _STATUS	LDO3_OCP _STATUS	LDO2_OCP_S TATUS	-
0x80	INT_DBG_ LATCH_R1	W/ R0/ SC	-	-	VINLOW_RI_ FRC	VINLOW_FA_F RC	-	-	PKEY_RI_FR C	PKEY_FA_FR C
0x81	INT_DBG_ LATCH_R2	W/ R0/ SC	-	-	-	-	-	-	THW_RI_FRC	THW_FA_FRC
0x82	INT_DBG_ LATCH_R3	W/ R0/ SC	-	-	-	-	-	-	BUCK2_OCP _FRC	BUCK1_OCP_ FRC
0x83	INT_DBG_ LATCH_R4	W/ R0/ SC	-	-	-	LDO5_OCP_F RC	LDO4_OCP _FRC	LDO3_OCP _FRC	LDO2_OCP_F RC	-
NVM t	ıser control r	egist	ers	l						
0x8E	NVM_SR	R	-	-	-	-	-	-	WRITE_FAIL	BUSY
0x8F	NVM_CR	R/ W	-	-	-	-	-	-	СМІ	D[1:0]
NVM u	iser shadow	regis	ters							
0x90	MAIN_CTR L_SHR1	R/ W	VINOK	_HYST[1:0]	VINOK_	_RISE[1:0]	NVM_WDG_1	ΓMR_SET[1:0]	NVM_WDG_E N	AUTO_TURNO N
0x91	MAIN_CTR L_SHR2	R/ W	RANK	_DLY[1:0]	RST_I	DLY[1:0]	NVM_PKEY _LKP_OFF	NVM_PKEY _LKP_EN_F SLS	NVM_PKEY_	LKP_TMR[1:0]
0x92	NVM_RAN K_SHR1	R/ W	-	-	В	SUCK2_RANK[2:0]		BUCK1_RANK[2	2:0]
0x96	NVM_RAN K_SHR5	R/ W	-	-	I	LDO2_RANK[2:0]		-	-	-

DS14839 - Rev 2 page 55/127

	Register	R/					BITS[7:0]				
hex	Name	w	7	6	5	4	3	2	1	0	
Status	registers		<u>'</u>								
0x97	NVM_RAN K_SHR6	R/ W	-	-	LDO4_RANK[2:0]				LDO3_RANK[2	:0]	
0x98	RANK_SH R7	R/ W	-	-	-	-	-		LDO5_RANK[2	:0]	
0x9A	NVM_BUC K_MODE _SHR1	R/ W	-	-	-	-		REG_MODE :0]	BUCK1_PRE	EG_MODE[1:0]	
0x9C	NVM_BUC K1_VOUT _SHR	R/ W	BUCK 1_VR ANGE _CFG				NVM_VOUT[6:0]			
0x9D	NVM_BUC K2_VOUT _SHR	R/ W	BUCK 2_IRA NGE_ CFG				NVM_VOUT[VOUT[6:0]			
0x9F	NVM_MAI N_CTRL_S HR3	R/ W	-	-	-	-	-	-	GPO2_POL	GPO1_POL	
0xA0	NVM_RAN K_SHR9	R/ W	-		GPO2	_RANK[2:0]			GPO1_RANK[2:0]		
0xA3	NVM_LDO 2_SHR	R/ W	-	-		N	VM_VOUT[4:0]	_VOUT[4:0]			
0xA4	NVM_LDO 3_SHR	R/ W	SNK_ RSC	-		N	NVM_VOUT[4:0]				
0xA5	NVM_LDO 5_SHR	R/ W	-	-		N	VM_VOUT[4:0]		-	
0xA9	NVM_PD_ SHR1	R/ W	-	-	-	-	NVM_BUC	K2_PD[1:0]	NVM_BUG	CK1_PD[1:0]	
0xAB	NVM_PD_ SHR3	R/ W	-	-	-	NVM_LDO 5_PD	NVM_LDO 4_PD	NVM_LDO 3_PD	NVM_LDO 2_PD	-	
0xAC	NVM_BUC KS_IOUT _SHR1	R/ W	-	-	-	-	BUCK2_	ILIM[1:0]	BUCK1	1_ILIM[1:0]	
0xAD	NVM_BUC KS_IOUT _SHR2	R/ W	HICCU	P_DLY[1:0]	-	-	-	-	-	-	
0xAE	NVM_LDO S_IOUT_ SHR	R/ W	-	-	-	-	LDO5_I	LIM[1:0]	LDO2_	ILIM[1:0]	
0xAF	NVM_FS_ OCP_SHR 1	R/ W	-	-	-	-	-	-	NVM_FS_OC P_BUCK2	NVM_FS_OCP _BUCK1	
0xB0	NVM_FS_ OCP_SHR 2	R/ W	-	-	-	NVM_FS_OCP _LDO5	NVM_FS_O CP_LDO4	NVM_FS_O CP_LDO3	NVM_FS_OC P_LDO2	-	
0xB1	NVM_FS_ SHR1	R/ W		VIN_F	FLT_CNT_MAX	[3:0]		PKEY_FLT	_CNT_MAX[3:0]		
0xB2	NVM_FS_ SHR2	R/ W		TSHDN	_FLT_CNT_MA	X[3:0]		OCP_FLT_	_CNT_MAX[3:0]		
0xB3	NVM_FS_ SHR3	R/ W	-	FS_LOC K_DIS	RST_FLT_0	CNT_TMR[1:0]		WDG_FLT	_CNT_MAX[3:0]		

DS14839 - Rev 2 page 56/127

hex	Register			BITS[7:0]							
IIEX	Name	W	7	6	5	4	3	2	1	0	
Status	Status registers										
0xB5	NVM_I ² C_ ADDR_SH R	R/ W	LOCK _NVM								
0xB6	NVM_USE R_SHR1	R/ W				NV	M_USER1[7:0]				
0xB7	NVM_USE R_SHR2	R/ W				NV	M_USER2[7:0]				
0xB9	NVM_MAI N_CTRL_ SHR4	R/ W	VIN_	DLY[1:0]		NVM_PKEY_EN_PULL EN_POL_CF PKEY_EN G					

DS14839 - Rev 2 page 57/127

6.2 Status registers

6.2.1 Product ID status register (PRODUCT_ID_SR)

Table 27. PRODUCT_ID_SR

7	6	5	4	3	2	1	0
	PMIC_RE	F_ID [3:0]			PMIC_NV	M_ID [3:0]	
R	R	R	R	R	R	R	R

- Address: 0x00
- Default: 0x1X (X depends on the PMIC variant)
- Description: PMIC product ID status register.

[7:4]	PMIC_REF_ID [3:0]: PMIC family of devices 0001: STPMIC1L product family (fixed value)
	Version A and B only
	0000: customized
[3:0]	0001: A
	0002: B
	0011: reserved

6.2.2 Version status register (VERSION_SR)

Table 28. . VERSION_SR

7	6	5	4	3	2	1	0
	MAJOR_VE	RSION [3:0]			MINOR_VE	RSION [3:0]	
R	R	R	R	R	R	R	R

- Address: 0x01Default: 0x11
- Description: PMIC version status register.

[7:4]	MAJOR_VERSION [3:0]
[3:0]	MINOR_VERSION [3:0]

DS14839 - Rev 2 page 58/127

6.2.3 Turn-on status register (TURN_ON_SR)

Table 29. TURN_ON_SR

7	6	5	4	3	2	1	0
-	-	-	-	AUTO	-	-	PKEY_EN
R	R	R	R	R	R	R	R

- Address: 0x02
- Default: 0b0000x00x where x depends on the turn-on condition
- Description: Stores last condition, which has turned on the PMIC.

From the NO_SUPPLY state, if the AUTO_TURN_ON bit is set in the NVM, the TURN_ON_SR [AUTO] is set. In the OFF state, the TURN_ON_SR is cleared. When a turn-on condition occurs, the related turn-on bit is set in TURN_ON_SR before leaving the OFF state.

The TURN_ON_SR is cleared in the POWER_DOWN state.

[7:4]	reserved
[3]	AUTO : The PMIC turn-on condition is triggered by the AUTO_TURN_ON bit in the NVM. See Section 5.4.5 AUTO turn-ON.
	0: False 1: True
[2]	reserved
[1]	reserved
	PKEY_EN: The PMIC turn-on condition is triggered by the PONKEYn or EN signals. See Section 5.4.5
[0]	0: False
	1: True

DS14839 - Rev 2 page 59/127

6.2.4 Turn-off status register (TURN_OFF_SR)

Table 30. TURN_OFF_SR

7	6	5	4	3	2	1	0
EN	-	WDG_FLT	TSHDN_FLT	OCP_FLT	VIN_FLT	PKEY_FLT	SWOFF
R	R	R	R	R	R	R	R

- Address: 0x03
- Default: 0bx0xxxxxx, where x depends on the turn-off condition
- Description: Stores last condition, which turns off the PMIC.

The TURN_OFF_SR register is reset in the POWER_DOWN state. Then TURN_OFF_SR is set either when going into the OFF state or when going into the FAIL_SAFE_LOCK state (see Section 5.4.6 and Section 5.1.2).

	EN: Last turn-off is due to EN de-activation.
[7]	(PKEY_EN_CFG bit is set, and PONKEYn/EN pad is deasserted depending on EN_POL_CFG)
[7]	0: False
	1: True
[6]	reserved
	WDG_FLT: Last turn-off is due to watchdog hard-fault source while WDG_FLT_CNT > WDG_FLT_CNT_MAX.
[5]	0: False
	1: True
	THSDN_FLT: Last turn-off is due to thermal shutdown hard-fault source while TSHDN_FLT_CNT
[4]	> TSHDN_FLT_CNT_MAX.
ניין	0: False
	1: True
	OCP_FLT : Last turn-off is due to regulator overcurrent hard-fault source while OCP_FLT_CNT > OCP_FLT_CNT_MAX.
[3]	0: False
	1: True
	VIN_FLT: Last turn-off is due to VIN falling below VINOK_Fall hard-fault source while VIN_FLT_CNT > VIN_FLT_CNT_MAX.
[2]	(This is valid only if VIN is kept higher than VINPOR_Fall, or the PMIC fully resets)
	0: False
	1: True
	PKEY_FLT : Last turn-off is due to PONKEYn long key press hard-fault source while PKEY_FLT_CNT > PKEY_FLT_CNT_MAX.
[1]	0: False
	1: True
	SWOFF: Last turn-off is due to software switch-OFF
[O]	(SWOFF bit set and RREQ_EN bit clear in the MAIN_CR register).
[0]	0: False
	1: True

DS14839 - Rev 2 page 60/127

6.2.5 Restart status register (RESTART_SR)

Table 31. RESTART_SR

7	6	5	4	3	2	1	0
R_EN	R_RST	R_WDG_FLT	R_TSHDN_FLT	R_OCP_FLT	R_VIN_FLT	R_PKEY_FLT	R_SWOFF
R	R	R	R	R	R	R	R

- Address: 0x04
- Default: 0bxxxxxxxx, where x depends on a power-OFF condition which restarts the PMIC
- Description: Stores last condition, which restarts the PMIC (power cycle).

The RESTART_SR register is reset in the POWER_DOWN state. Then RESTART_SR is set when going into the CHECK&LOAD state (see Section 5.4.6 and Section 5.1.2).

	$\textbf{R_EN} : Last \ restart \ is \ due \ to \ EN \ pin \ activation \ (PKEY_EN_CFG \ bit \ is \ set, \ and \ PONKEYn/EN \ pad \ asserted \ depending \ on \ EN_POL_CFG)$
[7]	0: False
	1: True
	R_RST: Last restart is due to RSTn pin asserted low by the application processor (or by a user reset button)
[6]	0: False
	1: True
	R_WDG_FLT : Last restart is due to watchdog hard-fault source while WDG_FLT_CNT <= WDG_FLT_CNT_MAX.
[5]	0: False
	1: True
[4]	R_TSHDN_FLT : Last restart is due to thermal shutdown hard-fault source while TSHDN_FLT_CNT <= TSHDN_FLT_CNT_MAX.
	0: False
	1: True
	R_OCP_FLT : Last restart is due to regulator overcurrent hard-fault source while OCP_FLT_CNT
	<= OCP_FLT_CNT_MAX.
3]	(overcurrent source is saved in OCP_SR1 or in OCP_SR2)
	0: False
	1: True
	R_VIN_FLT : Last restart is due to VIN falling below VINOK_Fall hard-fault source while VIN_FLT_CNT <= VIN_FLT_CNT_MAX.
2]	(This is valid only if VIN is kept higher than VINPOR_Fall, or PMIC fully resets)
	0: False
	1: True
	R_PKEY_FLT : Last restart is due to PONKEYn long key press hard-fault source while PKEY_FLT_CNT <= PKEY_FLT_CNT_MAX.
[1]	0: False
	1: True
[0]	 R_SWOFF: Last restart is due to a restart request from AP: setting both SWOFF and RREQ_EN bits in MAIN_CR register if PONKEYn is set in PKEY_EN_CFG NVM register setting SWOFF bit and EN is asserted if EN is set in PKEY_EN_CFG NVM register.
	0: False
	1: True

DS14839 - Rev 2 page 61/127

6.2.6 Overcurrent protection status register 1 (OCP_SR1)

Table 32. Overcurrent protection status register 1 (OCP_SR1)

7	6	5	4	3	2	1	0
-	-	-	-	-	-	OCP_BUCK2	OCP_BUCK1
R	R	R	R	R	R	R	R

- Address: 0x05
- Default: 0b000000xx, where x depends on regulator that has triggered the OCP.
- Description: If the PMIC is turned OFF or restarted due to an OCP from regulator, OCP_SR1 or OCP_SR2 store the regulator instance that triggered the OCP.

The OCP_SR1 register is reset in the POWER_DOWN state. If an OCP hard-fault condition occurred, then the OCP_SR1 register is set before leaving the POWER_DOWN state (see Section 5.4.6.1 and Section 5.4.6 and Section 5.1.2).

[7:2]	reserved
	OCP_BUCK2: Last turn-off or restart is due to overcurrent protection on BUCK2.
[1]	0: False
	1: True
	OCP_BUCK1: Last turn-off or restart is due to overcurrent protection on BUCK1.
[0]	0: False
	1: True

DS14839 - Rev 2 page 62/127

6.2.7 Overcurrent protection status register 2 (OCP_SR2)

Table 33. Overcurrent protection status register 2 (OCP_SR2)

7	6	5	4	3	2	1	0
-	-	-	OCP_LDO5	OCP_LDO4	OCP_LDO3	OCP_LDO2	-
R	R	R	R	R	R	R	R

- Address: 0x06
- Default: 0b000xxxx0, where x depends on regulator that has triggered the OCP.
- Description: If the PMIC is turned OFF or is restarted due to an OCP from a regulator, OCP_SR1 or OCP_SR2 store the regulator instance that triggered the OCP.

The OCP_SR2 register is reset in the POWER_DOWN state. If an OCP hard-fault condition occurred, then the OCP_SR2 register is set before leaving the POWER_DOWN state (see Section 5.4.6.1 and Section 5.4.6 and Section 5.1.2).

[7:5]	reserved
	OCP_LDO5: Last turn-off or restart is due to overcurrent protection on LDO5.
[4]	0: False
	1: True
	OCP_LDO4: Last turn-off or restart is due to overcurrent protection on LDO4.
[3]	0: False
	1: True
	OCP_LDO3: Last turn-off or restart is due to overcurrent protection on LDO3.
[2]	0: False
	1: True
	OCP_LDO2: Last turn-off or restart is due to overcurrent protection on LDO2.
[1]	0: False
	1: True
[0]	reserved

DS14839 - Rev 2 page 63/127

6.2.8 Enable status register 1 (EN_SR1)

Table 34. EN_SR1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	EN_BUCK2	EN_BUCK1
R	R	R	R	R	R	R	R

- Address: 0x07
- Default: 0b000000xx, where x depends on regulator status (0 = disabled, 1 = enabled)
- Description: This register reflects the IP current enable status despite the setting in MAIN or ALT configurations.

[7:2]	reserved
	EN_BUCK2: Current internal enable status of BUCK2.
[1]	0: Disabled
	1: Enabled
	EN_BUCK1: Current internal enable status of BUCK1.
[0]	0: Disabled
	1: Enabled

6.2.9 Enable status register 2 (EN_SR2)

Table 35. EN_SR2

7	6	5	4	3	2	1	0
-	-	-	EN_LDO5	EN_LDO4	EN_LDO3	EN_LDO2	-
R	R	R	R	R	R	R	R

- Address: 0x08
- Default: 0b000xxxx0, where x depends on regulator status (0 = disabled, 1 = enabled)
- Description: This register reflects the IP current enable status despite the setting in MAIN or ALT configurations.

[7:5]	reserved
	EN_LDO5: Current internal enable status of LDO5.
[4]	0: Disabled
	1: Enabled
	EN_LDO4: Current internal enable status of LDO4.
[3]	0: Disabled
	1: Enabled
	EN_LDO3: Current internal enable status of LDO3.
[2]	0: Disabled
	1: Enabled
	EN_LDO2: Current internal enable status of LDO2.
[1]	0: Disabled
	1: Enabled
[0]	reserved

DS14839 - Rev 2 page 64/127

6.2.10 Fail-safe counter status register 1 (FS_CNT_SR1)

Table 36. FS_CNT_SR1

7	6	5	4	3	2	1	0
	VIN_FLT_	CNT [3:0]			PKEY_FLT	_CNT [3:0]	
R	R	R	R	R	R	R	R

Address: 0x09

Default: 0x00

Description: Fail-safe counters store the number of hard-fault occurrences. There is one fail-safe counter
per hard-fault source (see Section 5.4.6). FS_CNT_SR1 is reset in the OFF state.

[7:4]	/IN_FLT_CNT [3:0]: number of occurrences triggered by V _{IN} falling below VINOK_Fall hard-fault source.						
	(This is valid only if V _{IN} is kept higher than VINPOR_Fall, or PMIC fully resets)						
[3:0]	PKEY_FLT_CNT [3:0]: number of occurrences triggered by a PONKEYn long key press hard-fault source.						

Note:

When a counter (xxx_FLT_CNT [3:0]) reaches 0xF, all following counter increments keep the counter value at 0xF (and not restart to 0).

6.2.11 Fail-safe counter status register 2 (FS_CNT_SR2)

Table 37. FS_CNT_SR2

7	6	5	4	3	2	1	0
	TSHDN_FL	T_CNT [3:0]		OCP_FLT	_CNT [3:0]		
R	R	R	R	R	R	R	

Address: 0x0A

Default: 0x00

Description: Fail-safe counters store the number of hard-fault occurrences. There is one fail-safe counter
per hard-fault source (see Section 5.4.6). FS_CNT_SR2 is reset in the OFF state.

[7:4] TSHDN_FLT_CNT [3:0]: Number of occurrences triggered by a thermal shutdown hard-fault source.
 [3:0] OCP_FLT_CNT [3:0]: Number of occurrences triggered by regulator overcurrent hard-fault source.

Note:

When a counter (xxx_FLT_CNT [3:0]) reaches 0xF, all following counter increments keep the counter value at 0xF (and not restart to 0).

DS14839 - Rev 2 page 65/127

6.2.12 Fail-safe counter status register 3 (FS_CNT_SR3)

Table 38. FS_CNT_SR3

7	6	5	4	3	2	1	0		
-	-	-	-	WDG_FLT_CNT [3:0]					
R	R	R	R	R R		R	R		

Address: 0x0B

Default: 0x00

 Description: Fail-safe counters store the number of hard-fault occurrences. There is one fail-safe counter per hard-fault source (see Section 5.4.6). FS_CNT_SR3 is reset in OFF state.

[7:4]	reserved
[3:0]	WDG_FLT_CNT [3:0]: Number of occurrences triggered by watchdog hard-fault source.

Note:

When a counter (xxx_FLT_CNT [3:0]) reaches 0xF, all following counter increments keep the counter value at 0xF (and not restart to 0).

6.2.13 Mode status register (MODE_SR)

Table 39. MODE SR

	7	6	5	4	3	2	1	0
ſ		DE [3:0]		-	-	PWRCTRL2	PWRCTRL1	
	R R R		R	R	R	R	R	

Address: 0x0C

Default: 0bxxxx00xx, where x depends on source state

• Description: Contains the current state of the related source.

OP_MODE: PMIC operating state 0000: PMIC is in POWER_ON state 0001: RESERVED 0010: PMIC is in INIT&LOAD state 0100: PMIC is in OFF state [7:4] 0110: PMIC is in CHECK&LOAD state 1000: PMIC is in POWER_UP state 1110: PMIC is in WAIT_RSTREL state 1010: PMIC is in POWER_DOWN state 1100: PMIC is in FAIL_SAFE_LOCK state [3:2] reserved PWRCTRL2: logic state of the PWRCTRL2 input (see Table 26. Register data format) [1] 0: PWRCTRL2 is active 1: PWRCTRL2 is inactive PWRCTRL1: logic state of the PWRCTRL1 input (see Table 26. Register data format) [0] 0: PWRCTRL1 is active 1: PWRCTRL1 is inactive

DS14839 - Rev 2 page 66/127

6.2.14 GPO status register (GPO_SR)

Table 40. GPO_SR

7	6	5	4	3	2	1	0
		-		-	-	GPO2_EN	GPO1_EN
R	R	R	R	R	R	R	R

Address: 0x0D

• Default: 0b000000xx, where x depends on source state

Description: Contains the current state of the related GPO.

[7:2]	reserved				
[1]	GPO2_EN: logic state of the GPO2 input: 0: GPO2 is inactive 1: GPO2 is active				
[0]	GPO1_EN: logic state of the GPO1 input: 0: GPO1 is inactive 1: GPO1 is active				

DS14839 - Rev 2 page 67/127

6.3 Control registers

6.3.1 Main control register (MAIN_CR)

Table 41. MAIN_CR

7	6 5 4		3	2	1	0	
-		-	-	PWRCTRL2_POL	PWRCTRL1_POL	RREQ_EN	SWOFF
R	R/W R/W R		R	R/W	R/W	R/W	R/W

- Address: 0x10
- Default: 0b00000000
- Description: Main control register (see Table 26). This register is initialized to the default value in the CHECK&LOAD state.

[7:4]	Reserved						
	PWRCTRL2_POL: Specifies PWRCTRL2 pin polarity.						
[3]	0: PWRCTRL2 active low						
[2]	1: PWRCTRL2 active high						
	(see Table 26)						
	PWRCTRL1_POL: Specifies PWRCTRL1 pin polarity.						
[2]	0: PWRCTRL1 active low						
[2]	1: PWRCTRL1 active high						
	(see Table 26)						
	RREQ_EN: Allows the PMIC power cycle when the software switch OFF bit is (SWOFF) set.						
	0: PMIC goes in OFF state when SWOFF bit is set						
[1]	1: PMIC performs a power cycle when the SWOFF bit is set						
	Note: If EN is set in the PKEY_EN_CFG NVM register, this bit has no effect and is automatically cleared.						
	SWOFF: Software switch OFF bit.						
[0]	0: No effect						
	1: Switch-OFF requested (turn-off condition). The PMIC goes into the POWER_DOWN state immediately.						

DS14839 - Rev 2 page 68/127

6.3.2 VINLOW monitoring control register (VINLOW_CR)

Table 42. VINLOW_CR

7	6	5	4	3 2		1	0
-	-	VINLOW_I	VIN	ILOW_RISE [2	VINLOW_EN		
R	R	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x11Default: 0x00
- Description: V_{INLOW} monitoring control register (see Section 5.4.1). This register is initialized to the default value in the CHECK&LOAD state.

[7:6]	reserved				
	VINLOW_HYST [1:0]: VINLOW threshold hysteresis				
	00: 100 mV				
[5:4]	01: 200 mV				
	10: 300 mV				
	11: 400 mV				
	VINLOW_RISE [2:0]: VINLOW_Rise threshold				
	000: VINOK_Fall + 50 mV				
	001: VINOK_Fall + 100 mV				
	010: VINOK_Fall + 150 mV				
[3:1]	011: VINOK_Fall + 200 mV				
	100: VINOK_Fall + 250 mV				
	101: VINOK_Fall + 300 mV				
	110: VINOK_Fall + 350 mV				
	111: VINOK_Fall + 400 mV				
	VINLOW_EN: VINLOW monitoring enable bit				
[0]	0: VINLOW monitoring is disabled				
	1: VINLOW monitoring is enabled				

DS14839 - Rev 2 page 69/127

6.3.3 PONKEYn long key press control register (PKEY_LKP_CR)

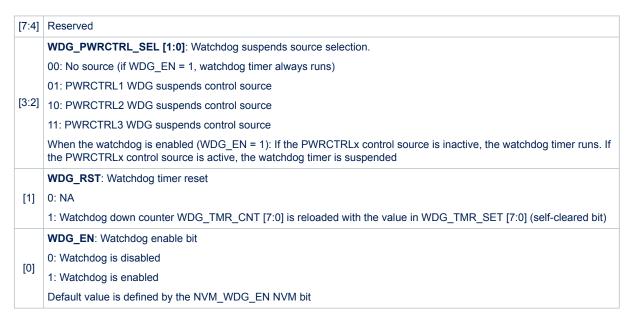
Table 43. PKEY_LKP_CR

7	6		4	3	2	1	0
PKEY_LKP_OFF	PKEY_LKP_EN_FSLS	-	-	PKEY_LKP_TMR [3:0]]
R/W	R/W	R	R	R/W	R/W	R/W	R/W

- Address: 0x12
- Default: 0bXX00XXXX, where X depends on the value programmed in the NVM
- Description: PONKEYn long key press control register. This register is initialized to the default value in the CHECK&LOAD state.

	PKEY_LKP_OFF: (see Section 5.4.4)							
[7]]	0: no effect							
[, 11	1: A PONKEYn long key press triggers a turn-off condition							
	Default value is defined by NVM_PKEY_LKP_OFF NVM bit							
	PKEY_LKP_EN_FSLS: PONKEYn long key press / EN (Enable) as FS_LOCK state skipping							
[0]	0: no effect							
[6]	1: A PONKEYn long key press / EN allows the PMIC to go from the FAIL_SAFE_LOCK state to the OFF state							
	Default value is defined by the NVM_PKEY_LKP_EN_FSLS NVM bit							
[5:4]	reserved							
	PKEY_LKP_TMR [3:0]: PONKEYn long key press timer duration							
	0000: 1 s							
	0001: 2 s							
	0010: 3 s							
	0011: 4 s							
	0100: 5 s							
	0101: 6 s							
	0110: 7 s							
[2.0]	0111: 8 s							
[3:0]	1000: 9 s							
	1001: 10 s							
	1010: 11 s							
	1011: 12 s							
	1100: 13 s							
	1101: 14 s							
	1110: 15 s							
	1111: 16 s							
	Default value is defined by the NVM_PKEY_LKP_TMR [1:0] NVM bit field							

DS14839 - Rev 2 page 70/127



6.3.4 Watchdog control register (WDG_CR)

Table 44. WDG_CR

7	6	5	4	3	2	1	0
-	-	-	-	WDG_PWRC	TRL_SEL[1:0]	WDG_RST	WDG_EN
R	R	R	R	R/W	R/W	W/R0/SC	R/W

- Address: 0x13
- Default: 0b0000000X, where X depends on the value programmed in the NVM
- Description: Watchdog control register (see Section 5.4.6.2). This register is initialized to the default valuein the CHECK&LOAD state.

6.3.5 Watchdog timer control register (WDG TMR CR)

Table 45. WDG_TMR_CR

7	6	5	4	3	2	1	0
WDG_TMR_SET [7:0]							
R/W	R/W	R/W	R/W	R/W	R/W	W/R0	R/W

- Address: 0x14
- Default: 0xXX, where X depends on the value programmed in NVM
- Description: Watchdog timer control register (see Section 5.4.6.2). This register is initialized to the default value in the CHECK&LOAD state.

```
WDG_TMR_SET [7:0]: Watchdog timer duration settings:

0x00 = 1 s

0x00 = 2 s

...

0xFF= 256 s

Default value is defined by the NVM_WDG_TMR_SET [1:0] NVM bit
```

DS14839 - Rev 2 page 71/127

6.3.6 Watchdog timer status register (WDG_TMR_SR)

Table 46. WDG_TMR_SR

7	6	5	4	3	2	1	0
WDG_TMR_SET [7:0]							
R	R	R	R	R	R	R	R

Address: 0x15Default: 0x00

• Description: Watchdog timer status register. Watchdog down counter providing remaining duration (in seconds) before watchdog expiration.

This register is initialized to the default value in the CHECK&LOAD state.

```
WDG_TMR_CNT [7:0]: Watchdog timer down counter

0xFF = 256 s

[7:0] ...

0x01 = 2 s

0x00 = 1 s
```

6.3.7 Fail-safe overcurrent protection control register 1 (FS_OCP_CR1)

Table 47. FS_OCP_CR1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	FS_OCP_BUCK2	FS_OCP_BUCK1
R	R	R	R	R	R	R/W	R/W

- Address: 0x16
- Default: 0b000000XX, where X depends on the value programmed in the NVM
- Description: Fail-safe overcurrent protection control registers 1 (see Section 5.4.6.1). This register is initialized to the default value in the CHECK&LOAD state.

[7:2]	reserved					
	FS_OCP_BUCK2: BUCK2 OCP management mode selection.					
[1]	0: OCP hiccup mode (Level 0)					
	1: OCP fail-safe PMIC turn-off (Level 1)					
	FS_OCP_BUCK1: BUCK1 OCP management mode selection.					
[0]	0: OCP hiccup mode (Level 0)					
	1: OCP fail-safe PMIC turn-off (Level 1)					

DS14839 - Rev 2 page 72/127

6.3.8 Fail-safe overcurrent protection control register 2 (FS_OCP_CR2)

Table 48. FS_OCP_CR2

7	6	5	4	3	2	1	0
-	-	-	FS_OCP_LDO5	FS_OCP_LDO4	FS_OCP_LDO3	FS_OCP_LDO2	-
R	R	R	R/W	R/W	R/W	R/W	R

- Address: 0x17
- Default: 0b000XXXX0, where X depends on the value programmed in NVM
- Description: Fail-safe overcurrent protection control registers 2 (see Section 5.4.6.1). This register is initialized to the default value in the CHECK&LOAD state.

[7:5]	reserved
	FS_OCP_LDO5: LDO5 OCP management mode selection.
[4]	0: OCP hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	FS_OCP_LDO4: LDO4 OCP management mode selection.
[3]	0: OCP hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	FS_OCP_LDO3: LDO3 OCP management mode selection.
[2]	0: OCP hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	FS_OCP_LDO2: LDO2 OCP management mode selection.
[1]	0: OCP hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
[0]	reserved

DS14839 - Rev 2 page 73/127

6.3.9 Pads pull control register (PADS_PULL_CR)

Table 49. PADS_PULL_CR

7	6	5	4	3	2	1	0	
-	-	PWRCTRL2	_PULL [1:0]	PWRCTRL1	_PULL [1:0]	PKEY_EN_PULL [1:0]		
R	R	R/W	R/W	R/W	R/W	R/W	R/W	

- Address: 0x18
- Default: 0b000101xx, where xx depends on the value programmed in NVM
- Description: Pads pull control register. This register is initialized to the default value in the CHECK&LOAD state.

[7:6]	reserved
	PWRCTRL2_PULL[1:0]: PWRCTRL2 pad pull resistor selection.
	00: no pull
[5:4]	01: pull-up active (RPU)
	10: pull-down active (RPD)
	11: no pull
	PWRCTRL1_PULL[1:0]: PWRCTRL1 pad pull resistor selection.
	00: no pull
[3:2]	01: pull-up active (RPU)
	10: pull-down active (RPD)
	11: no pull
	PKEY_EN_PULL[1:0]: PONKEYn/EN pad pull resistor selection.
	00: no pull
[1:0]	01: pull-up active (RPU)
[1.0]	10: pull-down active (RPD)
	11: no pull
	Default value is defined by NVM_PKEY_EN_PULL[1:0] NVM bit

DS14839 - Rev 2 page 74/127

6.3.10 Buck pull-down control register 1 (BUCKS_PD_CR)

Table 50. . BUCKS_PD_CR

	7	6	5	4	3	2	1	0
ſ	-	-	-	-	BUCK2_	PD [1:0]	BUCK1_	_PD [1:0]
	R	R	R	R	R/W	R/W	R/W	R/W

- Address: 0x19
- Default: 0b0000XXXX, where X depends on the value programmed in the NVM
- Description: Buck pull-down control register 1. This register is initialized to the default value in the INIT&LOAD and in the CHECK&LOAD states.

[7:4]	reserved
	BUCK2_PD [1:0]: Default value is defined by NVM_BUCK2_PD [1:0] NVM bit.
	BUCK2 pull-down selection.
[2:2]	00: no pull-down
[3:2]	01: slow pull-down active when BUCK2 is disabled (EN = 0)
	10: fast pull-down active when BUCK2 is disabled (EN = 0)
	11: slow pull-down forced active
	BUCK1_PD [1:0]: Default value is defined by NVM_BUCK1_PD [1:0] NVM bit.
	BUCK1 pull-down selection.
[1:0]	00: no pull-down
[1.0]	01: slow pull-down active when BUCK1 is disabled (EN = 0) 1
	0: fast pull-down active when BUCK1 is disabled (EN = 0)
	11: slow pull-down forced active

DS14839 - Rev 2 page 75/127

6.3.11 LDO pull-down control register (LDOS_PD_CR)

Table 51. LDOS_PD_CR

7	6	5	4	3	2	1	0
-	-	-	LDO5_PD	LDO4_PD	LDO3_PD	LDO2_PD	-
R	R	R	R/W	R/W	R/W	R/W	R

- Address: 0x1B
- Default: 0b000XXXXX0. where X depends on the value programmed in NVM
- Description: LDO pull-down control register. This register is initialized to the default value in the INIT&LOAD and in the CHECK&LOAD states.

[7:5]	reserved
	LDO5_PD: Default value is defined by NVM_LDO5_PD [1:0] NVM bit.
[4]	0: no pull-down
	1: pull-down active when LDO5 is disabled (EN = 0)
	LDO4_PD: Default value is defined by NVM_LDO4_PD [1:0] NVM bit.
[3]	0: no pull-down
	1: pull-down active when LDO4 is disabled (EN = 0)
	LDO3_PD: Default value is defined by NVM_LDO3_PD [1:0] NVM bit.
[2]	0: no pull-down
	1: pull-down active when LDO3 is disabled (EN = 0)
	LDO2_PD: Default value is defined by NVM_LDO2_PD [1:0] NVM bit.
[1]	0: no pull-down
	1: pull-down active when LDO2 is disabled (EN = 0)
[0]	reserved

DS14839 - Rev 2 page 76/127

6.3.12 Mask reset GPO control register (GPO_MRST_CR)

Table 52. GPO_MRST_CR

	7	6	5	4	3	2	1	0
Γ	-	-	-	-	_	GPO2_MRST	GPO1_MRST	-
Γ	R	R	R	R	R	R/W	R/W	R

Address: 0x1C; user page

• Default: 0x00

Description: mask reset GPO control register.

This register is initialized to default value in CHECK&LOAD states; writable in POWER_ON states only.

[7:3]	-	Reserved; read as 0
		GPO2 mask reset setting
[2]	GPO2 MRST	For every bit:
[2]	GFOZ_WINST	0: mask reset inactive for GPO2
		1: mask reset active for GPO2
		GPO1 mask reset setting
[1]	GPO1 MRST	For every bit:
1.7		0: mask reset inactive for GPO1
		1: mask reset active for GPO1
[0]	-	Reserved; read as 0

DS14839 - Rev 2 page 77/127

6.3.13 Mask reset buck control register (BUCKS_MRST_CR)

Table 53. BUCKS_MRST_CR

7	6	5	4	3	2	1	0
-	-	-	-	-	-	BUCK2_MRST	BUCK1_MRST
R	R	R	R	R	R	R/W	R/W

Address: 0x1DDefault: 0x00

Description: Mask reset buck control register.

See Section 5.4.13.1. This register is initialized to the default value in the CHECK&LOAD state and writable in POWER_ON states only.

[7:2]	reserved
[1]	BUCK2_MRST: Mask reset setting 0: inactive
	1: active
	BUCK1_MRST: Mask reset setting
[0]	0: inactive
	1: active

DS14839 - Rev 2 page 78/127

6.3.14 Mask reset LDO control register (LDOS_MRST_CR)

Table 54. LDOS_MRST_CR

7	6	5	4	3	2	1	0
-	-	-	LDO5_MRST	LDO4_MRST	LDO3_MRST	LDO2_MRST	-
R	R	R	R/W	R/W	R/W	R/W	R

Address: 0x1EDefault: 0x00

Description: Mask reset LDO control register.

See Section 5.4.13.1. This register is initialized to the default value in the CHECK&LOAD state and writable in POWER_ON states only.

[7:5]	reserved				
	LDO5_MRST: Mask reset setting				
[4]	0: inactive				
	1: active				
	LDO4_MRST: Mask reset setting				
[3]	0: inactive				
	1: active				
	LDO3_MRST: Mask reset setting				
[2]	0: inactive				
	1: active				
	LDO2_MRST: Mask reset setting				
[1]	0: inactive				
	1: active				
[0]	reserved				

DS14839 - Rev 2 page 79/127

6.4 Power supply control registers

6.4.1 BUCKx MAIN mode control register 1 (BUCKx_MAIN_CR1) (x = 1 to 2)

Table 55. BUCKx_MAIN_CR1

7	6	5	4	3	2	1	0	
-	VOUT [6:0]							
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

- Address: 0x20/0x25
- Default: 0b0XXXXXXX, where X depends on the value programmed in the NVM
- Description: BUCK1 to BUCK2 MAIN mode control register 1.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to set the voltage of BUCKx, which is applied to the MAIN mode (see Section 5).

[7]	reserved
16:0	VOUT [6:0]: Buck output voltage settings. See Table 1. BUCK output voltage settings.
[6:0]	The default value is defined in the BUCKx_VOUT [2:0] bit field of NVM_BUCKx_VOUT_SHR NVM shadow registers.

6.4.2 BUCKx MAIN mode control register 2 (BUCKx_MAIN_CR2) (x = 1 to 2)

Table 56. BUCKx_MAIN_CR2

7	6	5	4	3	2	1	0
-	-	-	-	-	PREG_MODE [1:0]		EN
R	R	R	R	R	R/W R/W		R/W

- Address: 0x21/0x26
- Default: 0b00000XXX, where X depends on the value programmed in NVM
- Description: BUCK1 to BUCK2 MAIN mode control register 2.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control the enable and regulation modes of BUCKx, which are applied to the MAIN mode (see Feature descriptions).

[7:3]	reserved						
	PREG_MODE: Default value is defined by NVM_BUCKx_PREG_MODE NVM bit.						
	Select regulation mode						
[2:1]	00: BUCKx operates in normal mode (HP)						
[2.1]	01: reserved						
	10: BUCKx operates in forced PWM mode (CCM)						
	11: reserved						
	EN:						
	0: BUCKx is disabled						
[0]	1: BUCKx is enabled						
	Default value is defined in the BUCKx_RANK [2:0] bit field of NVM_BUCKx_RANK_SHR NVM shadow registers. If BUCKx_RANK [2:0] = 0, BUCKx is disabled at power up; if BUCKx_RANK [2:0] = y (with 6 > y > 0), BUCKx is enabled at power up at rank y (see Section 5.2)						

DS14839 - Rev 2 page 80/127

6.4.3 BUCKx ALTERNATE mode control register 1 (BUCKx_ALT_CR1) (x = 1 to 2)

Table 57. BUCKx_ALT_CR1

7	6	5	4	3	2	1	0	
-	VOUT [6:0]							
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Address: 0x22/0x27

Default: 0b0XXXXXXX, where X depends on the value programmed in NVM

• Description: BUCK1 to BUCK ALT mode control register 1.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to set the voltage of BUCKx, which is applied to the ALTERNATE mode (see Section 5.4.5.1).

[7]	reserved
[6:0]	VOUT [6:0]: Buck output voltage settings. See Table 20.
[6:0]	The default value is the same as BUCKx_MAIN_CR1

6.4.4 BUCKx ALTERNATE mode control register 2 (BUCKx_ALT_CR2) (x = 1 to 2)

Table 58. BUCKx_ALT_CR2

7	6	5	4	3	2	1	0
-	-	-	-	-	PREG_MODE [1:0]		EN
R	R	R	R	R	R/W R/W		R/W

Address: 0x23/0x28

Default: 0b00000XXX. where X depends on the value programmed in NVM

Description: BUCK1 to BUCK2 ALTERNATE mode control register 2.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control the enable and regulation modes of BUCKx, which are applied to the ALTERNATE mode (see Section 5.4.5.1).

[7:3]	reserved				
	PREG_MODE [1:0]: select regulation mode				
	00: BUCKx operates in normal mode (HP)				
[2:1]	01: reserved				
	10: BUCKx operates in forced PWM mode (CCM)				
	11: Reserved				
	EN:				
[0]	0: BUCKx is disabled				
[0]	1: BUCKx is enabled				
	The default value is the same as BUCKx_MAIN_CR2				

DS14839 - Rev 2 page 81/127

6.4.5 BUCKx PWRCTRL control register (BUCKx_PWRCTRL_CR) (x = 1 to 2)

Table 59. BUCKx_PWRCTRL_CR

7		6	5	4	3	2	1	0
PWR	TRL_	DLY_H [1:0]	PWRCTRL_	DLY_L [1:0]	PWRCTRL	_SEL [1:0]	PWRCTRL_RST	PWRCTRL_EN
R/V	/	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0x24/0x29

Default: 0x00

Description: BUCK1 to BUCK2 PWRCTRL control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to allocate a PWRCTRL signal for controlling the BUCKx (see Section 5.4.5.1).

	PWRCTRL_DLY_H [1:0]: BUCKx control/reset source shift delay from low to High level					
	00: no delay					
[7:6]	01: 1.5 ms delay					
	10: 3 ms delay					
	11: 6 ms delay					
	PWRCTRL_DLY_L [1:0]: BUCKx control/reset source shift delay from high to Low level					
	00: no delay					
[5:4]	01: 1.5 ms delay					
	10: 3 ms delay					
	11: 6 ms delay					
	PWRCTRL_SEL[1:0]: BUCKx control/reset PWRCTRL source selection					
	00: no control source					
[3:2]	01: PWRCTRL1 control source					
	10: PWRCTRL2 control source					
	11: reserved					
	PWRCTRL_RST: BUCKx independent reset source enable					
[4]	0: no effect					
[1]	1: reset enable (when the selected PWRCTRL source is active, BUCKx is disabled and the BUCKx control registers are reset to the default value. When the selected PWRCTRL source is inactive, BUCKx operates according to BUCKx_MAIN_CR1 / 2. See Table 27).					
	PWRCTRL_EN: BUCKx control source enable					
[0]	0: disable (BUCKx operates according to BUCKx_MAIN_CR1 / 2)					
1-1	1: enable (BUCKx operates according to BUCKx_MAIN_CR1 / 2 or BUCKx_ALT_CR1 / 2 depending on the PWRCTRL selected source. See Table 27).					

DS14839 - Rev 2 page 82/127

6.4.6 GPOx MAIN mode control register (GPOx_MAIN_CR) (x = 1, 2)

Table 60. GPOx_MAIN_CR

7	6	5	4	3	2	1	0
	-	-	-	-	-	-	EN
R	R	R	R	R	R	R	R/W

Address: 0x43/0x46

• Default: 0b0000000X, where X depends on the value programmed in the NVM

• Description: GPO1 to GPO2 MAIN mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable of GPOx, which is applied to the MAIN mode (see Section 5.4.5.1).

[7:1]	reserved	
	EN:	1
	0: GPOx is disabled	
[0]	1: GPOx is enabled	
	The default value is defined in the GPOx_RANK [2:0] bit field of the NVM_GPO_RANK_SHR1 NVM shadow registers. If GPOx_RANK [2:0] = 0, GPOx is disabled at power-up. If GPOx_RANK [2:0] = y (with 6 > y > 0), GPOx is enabled at power-up at rank y (see Section 5.2).	

6.4.7 GPOx ALTERNATE mode control register (GPOx_ALT_CR) (x = 1, 2)

Table 61. GPOx_ALT_CR

7	6	5	4	3	2	1	0
	-	-	-	-	-	-	EN
R	R	R	R	R	R	R	R/W

Address: 0x44/0x47

• Default: 0b0000000X, where X depends on the value programmed in the NVM

Description: GPO1 to GPO2 ALTERNATE mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable of GPOx, which is applied to the ALTERNATE mode (see Section 5.4.5.1).

[7:1]	reserved
	EN:
[0]	0: GPOx is disabled
[0]	1: GPOx is enabled
	The default value is the same as GPOx_MAIN_CR

DS14839 - Rev 2 page 83/127

6.4.8 GPOx PWRCTRL control register (GPOx_PWRCTRL_CR) (x = 1, 2)

Table 62. GPOx_PWRCTRL_CR

7	6	5	4	3	2	1	0
PWRCTRL_DLY_H [1:0]		PWRCTRL_DLY_L [1:0]		PWRCTRL_SEL [1:0]		PWRCTRL_RST	PWRCTRL_EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0x45/0x48

Default: 0x00

Description: GPO1 to GPO2 PWRCTRL control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to allocate a PWRCTRL signal for controlling the GPOx.

	PWRCTRL_DLY_H [1:0]: GPOx control/reset source shift delay from low to High level
	00: no delay
[7:6]	01: 1.5 ms delay
	10: 3 ms delay
	11: 6 ms delay
	PWRCTRL_DLY_L [1:0]: GPOx control/reset source shift delay from high to Low level
	00: no delay
[5:4]	01: 1.5 ms delay
	10: 3 ms delay
	11: 6 ms delay
	PWRCTRL_SEL [1:0]: GPOx control/reset PWRCTRL source selection
	00: No control source
[3:2]	01: PWRCTRL1 control source
	10: PWRCTRL2 control source
	11: reserved
	PWRCTRL_RST: GPOx independent reset source enable
	0: no effect
[1]	1: reset enable (when the selected PWRCTRL source is active, GPOx is disabled and the GPOx control registers are reset to the default value. When the selected PWRCTRL source is inactive, GPOx operates according to GPOx_MAIN_CR).
	PWRCTRL_EN: GPOx control source enable
[0]	0: disable (GPOx operates according to GPOx_MAIN_CR1 / 2)
[-3	1: enable (GPOx operates according to GPOx_MAIN_CR or GPOx_ALT_CR depending on the PWRCTRL selected source).

DS14839 - Rev 2 page 84/127

6.4.9 LDOx MAIN mode control register (LDOx_MAIN_CR) (x = 2/5)

Table 63. LDOx_MAIN_CR

7	6	5	4	3	2	1	0
-	-		EN				
R	R	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x4F/0x58
- Default: 0b00XXXXXX, where X depends on the value programmed in NVM
- Description: LDO2 and LDO5 MAIN mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable and set the voltage of the related LDO instance which is applied to the MAIN mode (see Section 5.4.5.1).

[7:6]	reserved					
[5:4]	VOUT [4:0]: LDOx output voltage settings. See Section 4.2.4.					
[5:1]	The default value is defined in the VOUT [4:0] bit field of NVM_LDOx_SHR NVM shadow registers					
	EN:					
	0: LDOx is disabled					
[0]	1: LDOx is enabled					
	The default value is defined in the LDOx_RANK [2:0] bit field of the NVM_LDOs_RANK_SHR NVM shadow registers. If LDOx_RANK [2:0] = 0, LDOx is disabled at power up; if LDOx_RANK [2:0] = y (with 6 > y > 0), LDOx is enabled at power up at rank y					

6.4.10 LDOx ALTERNATE mode control register (LDOx_ALT_CR) (x = 2/5)

Table 64. LDOx_ALT_CR

7	6	5	4	3	2	1	0
-	-		EN				
R	R	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x50/0x59
- Default: 0b00XXXXXX, where X depends on the value programmed in the NVM
- Description: LDO2/LDO5 ALTERNATE mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable and set the voltage of the related LDO instance, which is applied to the ALTERNATE mode (see Section 5.4.5.1.

[7:6]	reserved				
[5:4]	VOUT [4:0]: LDOx output voltage settings (See Section 4.2.4);				
[5:1]	The default value is the same as LDOx_MAIN_CR				
	EN:				
[0]	0: LDOx is disabled				
[0]	1: LDOx is enabled				
	The default value is the same as LDOx_MAIN_CR				

DS14839 - Rev 2 page 85/127

6.4.11 LDOx PWRCTRL control register (LDOx_PWRCTRL_CR) (x = 2 to 5)

Table 65. LDOx_PWRCTRL_CR

7	6	5	4	3	2	1	0
PWRCTRL_DLY_H [1:0]		PWRCTRL_DLY_L [1:0]		PWRCTRL_SEL [1:0]		PWRCTRL_RST	PWRCTRL_EN
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0x51/0x54/0x57/0x5A

Default: 0x00

Description: LDO2 to LDO5 PWRCTRL control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to allocate a PWRCTRL signal for controlling the LDOx (see Section 5.4.5.1).

	PWRCTRL_DLY_H [1:0]: LDOx control/reset source shift delay from low to High level
	00: no delay
[7:6]	01: 1.5 ms delay
	10: 3 ms delay
	11: 6 ms delay
	PWRCTRL_DLY_L [1:0]: LDOx control/reset source shift delay from high to Low level
	00: no delay
[5:4]	01: 1.5 ms delay
	10: 3 ms delay
	11: 6 ms delay
	PWRCTRL_SEL[1:0]: LDOx control/reset PWRCTRL source selection.
	00: no control source
[3:2]	01: PWRCTRL1 control source
	10: PWRCTRL2 control source
	11: reserved
	PWRCTRL_RST: LDOx independent reset source enable
	0: no effect
[1]	1: reset enable (when the selected PWRCTRL source is active, LDOx is disabled and LDOx control registers are reset to the default value. When the selected PWRCTRL source is inactive, LDOx operates according to LDOx MAIN CR.
	See Table 27).
	PWRCTRL_EN: LDOx control source enable
[0]	0: disable (LDOx operates according to LDOx_MAIN_CR)
[0]	1: enable (LDOx operates according to LDOx_MAIN_CR or LDOx_ALT_CR depending on the PWRCTRL selected source. See Table 27).

DS14839 - Rev 2 page 86/127

6.4.12 LDO3 MAIN mode control register (LDO3_MAIN_CR)

Table 66. LDO3_MAIN_CR

7	6	5	4	3	2	1	0	
SNK_SRC	-		VOUT [4:0]					
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	

- Address: 0x52
- Default: 0bX0XXXXXX, where X depends on the value programmed in the NVM
- Description: LDO3 MAIN mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable and SNK_SRC mode, and set the voltage of LDO3, which is applied to the MAIN mode (see Section 5.4.5.1).

	SNK_SRC: Select sink/source mode operation (see Section 4.2.3)
	0: LDO3 operates in normal mode
[7]	1: LDO3 operates in sink/source mode
	The default value is defined by the SNK_SRC bit of the NVM_LDO3_SHR NVM shadow register
[6]	reserved
[5.4]	VOUT [4:0]: LDO3 output voltage settings (see Section 4.2.4).
[5:1]	The default value is defined in the VOUT [4:0] bit field of the NVM_LDO3_SHR NVM shadow registers
	EN:
	0: LDO3 is disabled
[0]	1: LDO3 is enabled
- ·	The default value is defined in the LDO3_RANK [2:0] bit field of the NVM_LDOs_RANK_SHR2 NVM shadow registers. If LDO3_RANK [2:0] = 0, LDO3 is disabled at power up; if LDO3_RANK [2:0] = y (with 6 > y > 0) LDO3 is enabled at power up at rank y (see Section 5.2).

DS14839 - Rev 2 page 87/127

6.4.13 LDO3 ALTERNATE mode control register (LDO3_ALT_CR)

Table 67. LDO3_ALT_CR

7	6	5	4	3	2	1	0	
SNK_SRC	-		VOUT [4:0]					
R/W	R	R/W	R/W	R/W	R/W	R/W	R/W	

Address: 0x53

Default: 0bX0XXXXXX, where X depends on the value programmed in the NVM

Description: LDO3 ALTERNATE mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable or SNK_SRC mode and set the voltage of LDO3, which is applied to the ALTERNATE mode (see Section 5.4.5.1).

	SNK_SRC: select sink/source mode operation (see Section 4.2.4).
	0: LDO3 operates in sink/source mode
[7]	1: LDO3 operates in sink/source mode
	The default value is the same as LDO3_MAIN_CR
[6]	reserved
[5:4]	VOUT [4:0]: LDO3 output voltage settings (see Section 4.2.4).
[5:1]	The default value is the same as LDO3_MAIN_CR
	EN:
ro1	0: LDO3 is disabled
[0]	1: LDO3 is enabled
	The default value is the same as LDO3_MAIN_CR

6.4.14 LDO4 MAIN mode control register (LDO4_MAIN_CR)

Table 68. LDO4_MAIN_CR

7	6	5	4	3	2	1	0
	-	-	-	-	-	-	EN
R	R	R	R	R	R	R	R/W

Address: 0x55

Default: 0b0000000X, where X depends on the value programmed in the NVM

Description: LDO4 MAIN mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable or to force the power input source of LDO4, which is applied to the MAIN mode (see Section 5.4.5.1).

[7:1]	reserved
	EN:
	0: LDO4 is disabled
[0]	1: LDO4 is enabled
[0]	The default value is defined in the LDO4_RANK[2:0] bit field of the NVM_LDOs_RANK_SHR2 NVM shadow registers. If LDO4_RANK[2:0] = 0, LDO4 is disabled at power-up. If LDO4_RANK[2:0] = y (with 6 > y > 0), LDO4 is enabled at power-up at rank y (see Section 5.2)

DS14839 - Rev 2 page 88/127

6.4.15 LDO4 ALTERNATE mode control register (LDO4_ALT_CR)

Table 69. LDO4_ALT_CR

7	6	5	4	3	2	1	0
	-	-	-	-	-	-	EN
R	R	R	R	R	R	R	R/W

Address: 0x56

• Default: 0b0000000X, where X depends on the value programmed in the NVM

Description: LDO4 ALTERNATE mode control register.

This register is initialized to the default value in the CHECK&LOAD state. The user can write to this register to control enable or to force the power input source of LDO4, which is applied to the ALTERNATE mode (see Section 5.4.6).

[7:1]	reserved
	EN:
[0]	0: LDO4 is disabled
[0]	1: LDO4 is enabled
	The default value is the same as LDO4_MAIN_CR

DS14839 - Rev 2 page 89/127

6.5 Interrupt registers

6.5.1 Interrupt management overview

Interrupts are probed in the POWER_ON state only. All interrupts are masked by default. All interrupt registers are reset to the default value if RSTn is asserted.

INT_PENDING_Rx

- Stores events of interrupt sources, regardless of interrupts masking.
- Corresponding bits are kept set until they are cleared (using INT CLEAR Rx registers).

INT CLEAR Rx

• Setting a bit in these registers clears the corresponding pending bit in the INT_PENDING_Rx registers. A bit in the INT_PENDING_Rx registers can be cleared only if the corresponding interrupt source disappears. Alternatively, the bit stays set after being cleared. In the case of the INT_PENDING_Rx bit generated by edge triggering, they can be directly deleted without checking the INT_SOURCE_RX.

INT_MASK_Rx

- Clearing a bit in these registers unmasks the corresponding interrupt.
- The INTn pin is forced low as long as the corresponding interrupt bit is set in INT PENDING Rx.

INT_SOURCE_Rx

- These registers provide the actual state of interrupt sources.
- If an interrupt source is present, the corresponding bit is set. If the interrupt source disappears, the
 corresponding bit is cleared.

INT_DBG_LATCH_Rx

Setting a bit in these registers emulates the corresponding interrupt event. These registers aim to test and to debug the application processor software interrupt handler.

6.5.2 Interrupt pending register 1 (INT_PENDING_R1)

Table 70. INT_PENDING_R1

7	6	5	4	3	2	1	0
-	-	VINLOW_RI	VINLOW_FA	-	-	PKEY_RI	PKEY_FA
R	R	R	R	R	R	R	R

- Address: 0x70
- Default: 0x00
- Description: Interrupt pending register 1 (see Section 6.5.1). This register is reset to the default value if RSTn is asserted. For all bits:

0: interrupt not pending

1: interrupt pending

[7:6]	reserved
[5]	VINLOW_RI: Voltage on the VIN pin falls below the VINLOW_Rise threshold
[4]	VINLOW_FA: Voltage onthe VIN pin rises above the VINLOW_Fall threshold
[3:2]	reserved
[1]	PKEY_RI: PONKEYn rising edge
[0]	PKEY_FA: PONKEYn falling edge

DS14839 - Rev 2 page 90/127

6.5.3 Interrupt pending register 2 (INT_PENDING_R2)

Table 71. INT_PENDING_R2

7	7	6	5	4	3	2	1	0
	-	-	-	-	-	-	THW_RI	THW_FA
F	₹	R	R	R	R	R	R	R

Address: 0x71Default: 0x00

• Description: Interrupt pending register 2 (see Section 6.5.1). This register is reset to the default value as long as RSTn is asserted. For all bits:

0: interrupt not pending

1: interrupt pending

[7:2]	reserved
[1]	THW_RI: Temperature rises above the TWRN_Rise threshold
[0]	THW_FA: Temperature falls below the TWRN_Fall threshold

6.5.4 Interrupt pending register 3 (INT_PENDING_R3)

Table 72. INT_PENDING_R3

7	6	5	4	3	2	1	0
-	-	-	-	-	-	BUCK2_OCP	BUCK1_OCP
R	R	R	R	R	R	R	R

Address: 0x72

Default: 0x00

 Description: Interrupt pending register 3 (see Section 6.5.1). This register is reset to the default value if RSTn is asserted. For all bits:

0: interrupt not pending

1: interrupt pending

[7:2]	reserved
[1]	BUCK2_OCP: Overcurrent detected on BUCK2
[0]	BUCK1_OCP: Overcurrent detected on BUCK1

DS14839 - Rev 2 page 91/127

6.5.5 Interrupt pending register 4 (INT_PENDING_R4)

Table 73. INT_PENDING_R4

7	6	5	4	3	2	1	0
-	-	-	LDO5_OCP	LDO4_OCP	LDO3_OCP	LDO2_OCP	-
R	R	R	R	R	R	R	R

Address: 0x73Default: 0x00

• Description: Interrupt mask register 1 to 4 (see Section 6.5.1). This register is reset to the default value if RSTn is asserted. For all bits:

0: interrupt not pending

1: interrupt pending

[7:5]	reserved
[4]	LDO5_OCP: Overcurrent detected on LDO5
[3]	LDO4_OCP: Overcurrent detected on LDO4
[2]	LDO3_OCP: Overcurrent detected on LDO3
[1]	LDO2_OCP: Overcurrent detected on LDO2
[0]	reserved

6.5.6 Interrupt clear registers (INT_CLEAR_Rx) (x = 1 to 4)

Table 74. INT_CLEAR_Rx

7	6	5	4	3	2	1	0
			Same as INT_	PENDING_Rx			
W/R0	W/R0	W/R0	W/R0	W/R0	W/R0	W/R0	W/R0

Address: 0x74/0x75/0x76/0x77

Default: 0x00

Description: Interrupt clear registers 1 to 4 (see Section 6.5.1).

Writing 1 clears the corresponding interrupt bit in INT_PENDING_Rx.

The bit is self-cleared, and always reads 0.

DS14839 - Rev 2 page 92/127

6.5.7 Interrupt mask registers (INT_MASK_Rx) (x = 1 to 4)

Table 75. INT_MASK_Rx

7	6	6 5		3	2	1	0
			Same as INT_	PENDING_Rx			
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0x78/0x79/0x7A/0x7B

Default: 0xFF

Description: Interrupt mask registers 1 to 4 (see Section 6.5.1).

Writing 0 unmasks the corresponding interrupt bit in INT_PENDING_Rx. These registers are reset to the default value if RSTn is asserted.

For all bits:

0: interrupt is unmasked1: interrupt is masked

6.5.8 Interrupt source registers (INT_SRC_Rx) (x = 1 to 4)

7	7 6 5			3	2	1	0
			Same as INT_	PENDING_Rx			
R	R	R	R	R	R	R	R

Address: 0x7C/0x7D/0x7E/0x7F

• Default: 0xXX, where X depends on the actual state of interrupt sources

Description: Interrupt source registers 1 to 4 (see Section 6.5.1).

For all bits:

0: interrupt source is not present

1: interrupt source is present

6.5.9 Interrupt debug latch registers (INT_DBG_LATCH_Rx) (x = 1 to 4)

Table 76. INT_DBG_LATCH_Rx

7	6	5	4	3	2	1	0
			Same as INT_	PENDING_Rx			
W/R0	W/R0	W/R0	W/R0	W/R0	W/R0	W/R0	W/R0

Address: 0x80/0x81/0x82/0x83

Default: 0x00

Description: Interrupt debug latch registers 1 to 4 (see Section 6.5.1).

Setting a bit emulates the corresponding interrupt event. The bit is self-cleared, and always reads 0.

DS14839 - Rev 2 page 93/127

6.6 NVM registers

6.6.1 NVM status register (NVM_SR)

Table 77. NVM_SR

7	6	5	4	3	2	1	0
-	-	-	-	-	-	NVM_WRITE_FAIL	NVM_BUSY
R	R	R	R	R	R	R	R

Address: 0x8EDefault: 0x00

• Description: NVM status register.

[7:2]	reserved
	NVM_WRITE_FAIL: Error in writing to the NVM. The LOCK_NVM bit is set.
[1]	0: Write is successful or no write operation performed
	1: Write to the NVM failed
	NVM_BUSY: NVM controller status 0: NVM controller is in an idle state
[0]	0: NVM controller is in an idle state
[0]	1: NVM controller is in a busy state
	Self-cleared when the operation is completed

6.6.2 NVM control register (NVM_CR)

Table 78. NVM_CR

7	6	5	4	3	2	1	0
-	-	-	-	-	-	NVM_C	MD[1:0]
R	R	R	R	R	R	R/W	R/W

Address: 0x8FDefault: 0x00

Description: NVM control register.

[7:2]	reserved
	NVM_CMD[1:0]: NVM controller command bits to control the NVM operation on the NVM shadow register bits.
	00: No operation
[1:0]	01: Program (write shadow register to the NVM)
[1:0]	10: Read (load NVM content into shadow register)
	11: No operation
	Self-cleared when the operation is completed

DS14839 - Rev 2 page 94/127

6.7 NVM shadow registers

All NVM shadow registers are reloaded from the NVM content in the INIT&LOAD state and in the CHECK&LOAD state. Then mirror registers or mirror bit fields (in Section 6.3 and Section 6.5) are set to the default value

6.7.1 NVM main control shadow register 1 (NVM_MAIN_CTRL_SHR1)

Table 79. NVM_MAIN_CTRL_SHR1

7	6	5	4	3	2	1	0
VINOK_HYST[1:0]		VINOK_RISE[1:0]		NVM_WDG_T	NVM_WDG_TMR_SET[1:0]		AUTO_TURN_ON
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x90
- Default: Depends on the PMIC part number
- Description: NVM main control shadow register 1.

	VINOK_HYST[1:0]:VINOK_HYST threshold voltage
	00: 200 mV
[7:6]	01: 300 mV
[1.10]	10: 400 mV
	11: 500 mV
	VINOK_RISE[1:0]:VINOK_Rise threshold voltage
	00: 3.1 V
[5:4]	01: 3.3 V
	10: 3.5 V
	11: 4.0 V
	NVM_WDG_TMR_SET [1:0]: watchdog timer duration default value
	00: 10 s
[3:2]	01: 20 s
	10: 50 s
	11: 100 s
	NVM_WDG_EN: watchdog default value
[1]	0: Watchdog is disabled
	1: Watchdog is enabled
	AUTO_TURN_ON:
[0]	0: PMIC does not start automatically on VIN rising
[0]	1: PMIC starts automatically on VIN rising
	Note: It is ignored if PKEY_EN_CFG is set to '1'

DS14839 - Rev 2 page 95/127

6.7.2 NVM main control shadow register 2 (NVM_MAIN_CTRL_SHR2)

Table 80. NVM_MAIN_CTRL_SHR2

7	6	5	4	3	2	1	0
RANK_I	RANK_DLY[1:0] RST_DLY[1:0		LY[1:0]	NVM_PKEY_LKP_OFF	NVM_PKEY_LKP_EN_FSLS	NVM_PKEY_LKP_TMR[1:0]	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0x91

Default: Depends on the PMIC part number Description: NVM main control shadow register 2.

	RANK_DLY[1:0]: power-up/power-down step (RANK) duration:								
	00: 1.5 ms								
[7:6]	01: 3 ms								
[7:6]	10: 4.5 ms								
	11: 6 ms								
	(see Section 5.2)								
	RST_DLY[1:0]: RST release delay after POWER_UP sequence:								
	00: no delay								
[5:4]	01: 1.5 ms								
[5.4]	10: 3 ms								
	11: 6 ms								
	(see Section 5.2)								
	NVM_PKEY_LKP_OFF: PONKEYn long key press turn-off condition default value (see Section 5.4.6)								
[3]	0: no effect								
[3]	1: A PONKEYn long key press triggers a turn-off condition								
	Note: This bit is valid only if PONKEYn selected (PKEY_EN_CFG = 0)								
	NVM_PKEY_LKP_EN_FSLS : PONKEYn long key press / EN (Enable) fail-safe lock state skipping default value (see Section 5.4.5.1)								
[2]	0: no effect								
	1: A PONKEYn long key press or Enable allows the PMIC to go from the FAIL_SAFE_LOCK state to the OFF state								
	NVM_PKEY_LKP_TMR[1:0]: PONKEYn long key press timer duration default value								
	00: 2 s								
[1:0]	01: 5 s								
[1.0]	10: 10 s								
	11: 15 s								
	Note: These bits are valid only if PONKEYn selected (PKEY_EN_CFG = 0)								

DS14839 - Rev 2 page 96/127

6.7.3 NVM rank shadow register 1 (NVM_RANK_SHR1)

Table 81. NVM_RANK_SHR1

7	6	5	4	3	2	1	0	
-	-	I	BUCK2_RANK[2:0]]	BUCK1_RANK[2:0]			
R	R	R/W	R/W	R/W	R/W	R/W	R/W	

- Address: 0x92
- Default: Depends on the PMIC part number
- Description: NVM rank shadow register 1 (see Section 5.2).

[7:6]	reserved
	BUCK2_RANK[2:0]:
	000: rank0
	001: rank1
	010: rank2
[5:3]	011: rank3
	100: rank4
	101: rank5
	110: rank0
	111: rank0
	BUCK1_RANK[2:0]:
	BUCK1_RANK[2:0]:
	BUCK1_RANK[2:0]: 000: rank0
[2:0]	BUCK1_RANK[2:0]: 000: rank0 001: rank1
[2:0]	BUCK1_RANK[2:0]: 000: rank0 001: rank1 010: rank2
[2:0]	BUCK1_RANK[2:0]: 000: rank0 001: rank1 010: rank2 011: rank3
[2:0]	BUCK1_RANK[2:0]: 000: rank0 001: rank1 010: rank2 011: rank3 100: rank4

DS14839 - Rev 2 page 97/127

6.7.4 NVM rank shadow register 5 (NVM_RANK_SHR5)

Table 82. NVM_RANK_SHR5

7	6	5	4	3	2	1	0
-	-		LDO2_RANK[2:0]	-	-	-	
R	R	R/W	R/W	R/W	R	R	R

Address: 0x96

Default: Depends on the PMIC part number

Description: NVM rank shadow register 5 (see Section 5.2).

[7:6]	reserved
	LDO2_RANK[2:0]:
	000: rank0
	001: rank1
	010: rank2
[5:3]	011: rank3
	100: rank4
	101: rank5
	110: rank0
	111: rank0
[2:0]	reserved

6.7.5 NVM rank shadow register 6 (NVM_RANK_SHR6)

Table 83. NVM_ RANK_SHR6

7	6	5	4	3	2	1	0	
-	-		LDO4_RANK[2:0]		LDO3_RANK[2:0]			
R	R	R/W	R/W	R/W	R/W	R/W	R/W	

Address: 0x97

Default: Depends on the PMIC part number

Description: NVM rank shadow register 6.
 Same bit field as Section 6.1

6.7.6 NVM rank shadow register 7 (NVM_RANK_SHR7)

Table 84. NVM_RANK_SHR7

7	6	5	4	3	2	1	0
-	-	-	-	-	LDO5_RANK[2:0]		
R	R	R	R	R	R/W	R/W	R/W

Address: 0x98

Default: Depends on the PMIC part number Description: NVM rank shadow register 7.

Same bit field as Section 6.1.

DS14839 - Rev 2 page 98/127

6.7.7 NVM BUCK mode shadow register 1 (NVM_BUCK_MODE_SHR1)

Table 85. NVM_BUCK_MODE_SHR1

7	6	5	4	3	2	1	0	
-	-	-	-	BUCK2_PRE	G_MODE[1:0]	BUCK1_PREG_MODE[1:0]		
F	2	F	2	R/	W	R/	W	

- Address: 0x9A
- Default: Depends on the PMIC part number
- Description: NVM BUCK mode shadow register 1 (see Section 5.2).

[7:4]	reserved
	BUCK2_PREG_MODE[1:0]:
	00: BUCK2 operates in high power mode (HP)
[3:2]	01: reserved
	10: BUCK2 operates in forced PWM mode (CCM)
	11: reserved
	BUCK1_PREG_MODE[1:0]:
	00: BUCK1 operates in high power mode (HP)
[1:0]	01: reserved
	10: BUCK1 operates in forced PWM mode (CCM)
	11: reserved

6.7.8 NVM BUCK1 output voltage shadow register (NVM_BUCK1_VOUT_SHR)

Table 86. NVM_BUCK1_VOUT_SHR

7	6	5	4	3	2	1	0
BUCK1_VRANGE_CFG	VOUT[6:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x9C
- Default: Depends on the PMIC part number
- Description: NVM BUCK1 output voltage shadow registers.

The contents of this register are copied into BUCK1_MAIN_CR1 and BUCK1_ALT_CR1 in the CHECK&LOAD state (see Section 4.3.2).

	BUCK1_VRANGE_CFG: BUCK1 range voltage setting
[7]	1: High voltage range
	0: Low voltage range
[6:0]	VOUT[6:0]: BUCK1 default output voltage settings. See Table 20.

DS14839 - Rev 2 page 99/127

6.7.9 NVM BUCK2 output voltage shadow register (NVM_BUCK2_VOUT_SHR)

Table 87. NVM_BUCK2_VOUT_SHR

7	6	5	4	3	2	1	0
-	VOUT[6:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0x9D
- Default: Depends on the PMIC part number
- Description: NVM BUCK2 output voltage shadow registers.

The contents of this register are copied into BUCK2_MAIN_CR1 and BUCK2_ALT_CR1 in the CHECK&LOAD state (see Section 4.3.2).

[7]	reserved
[6:0]	VOUT[6:0]: BUCK2 default output voltage settings. See Section 4.3.2.

6.7.10 GPO Config shadow register (NVM_MAIN_CTRL_SHR3)

Table 88. NVM_MAIN_CTRL_SHR3

7	6	5	4	3	2	1	0
-	-	-	-	-	-	GPO2_POL	GPO1_POL
R	R	R	R	R	R	R/W	R/W

- Address: 0x9F
- Default: Depends on the PMIC part number
- Description: GPO config shadow registers.

[7:2]	reserved
[1]	GPO2_POL: GPO2 Polarity Configuration 0: GPO2 is active high 1: GPO2 is active low
[0]	GPO1_POL: GPO1 Polarity Configuration 0: GPO1 is active high 1: GPO1 is active low

DS14839 - Rev 2 page 100/127

6.7.11 GPO Rank shadow register 1 (NVM_RANK_SHR9)

Table 89. NVM_RANK_SHR9

	7	6	5	4	3	2	1	0	
ſ	-	-		GPO2_RANK[2:0]		GPO1_RANK[2:0]			
	R	R	R/W	R/W	R/W	R/W	R/W	R/W	

Address: 0xA0

Default: Depends on the PMIC part number

Description: GPO Rank shadow register 1.

[7:6]	reserved
	GPO2_RANK[2:0]:
	000: rank0
	001: rank1
	010: rank2
[5:3]	011: rank3
	100: rank4
	101: rank5
	110: rank0
	111: rank0
	GPO1_RANK[2:0]:
	000: rank0
	001: rank1
	010: rank2
[2:0]	011: rank3
	100: rank4
	101: rank5
	110: rank0
	111: rank0

DS14839 - Rev 2 page 101/127

6.7.12 NVM LDOx shadow register (NVM_LDOx_SHR) (x = 2/5)

Table 90. NVM_LDOx_SHR

7	6	5	4	3	2	1	0
-	-	VOUT[4:0]					
R	R	R/W	R/W	R/W	R/W	R/W	R

- Address: 0xA3/A5
- Default: Depends on the PMIC part number
- Description: NVM LDO2/LDO5 control shadow registers.

The contents of this register are copied into LDOx_MAIN_CR and LDOx_ALT_CR in the CHECK&LOAD state (see Section 5.1.2.4).

[7:6]	reserved
[5:1]	VOUT[4:0]: LDOx default output voltage settings. See Section 4.2.6.
[0]	reserved

6.7.13 NVM LDO3 control shadow register (NVM_LDO3_SHR)

Table 91. NVM_LDO3_SHR

7	6	5	4	3	2	1	0
NVM_SNK_SRC	-		VOUT[4:0]				
R/W	R	R/W	R/W	R/W	R/W	R/W	R

- Address: 0xA4
- Default: Depends on the PMIC part number
- Description: NVM LDO3 control shadow register.

The content of this register is copied into LDO3_MAIN_CR and LDO3_ALT_CR in the CHECK&LOAD state (see Section 5.1.2.4).

	NVM_SNK_SRC: Select default sink/source mode operation.
[7]	0: LDO3 operates in normal mode by default
	1: LDO3 operates in sink/source mode by default
[6]	reserved
[5:1]	VOUT[4:0]: LDOx default output voltage settings. See Table 19.
[0]	reserved

DS14839 - Rev 2 page 102/127

6.7.14 NVM pull-down control shadow register 1 (NVM_PD_SHR1)

Table 92. NVM_PD_SHR1

7	7	6	5	4	3	2	1	0
-	-	-	-	-	NVM_BUC	K2_PD[1:0]	NVM_BUC	K1_PD[1:0]
F	₹	R	R	R	R/W	R/W	R/W	R/W

- Address: 0xA9
- Default: Depends on the PMIC part number
- Description: NVM pull-down control shadow register 1.

The content of this register is copied into BUCKS_PD_CR in the INIT&LOAD and the CHECK&LOAD states.

[7:4]	reserved
	NVM_BUCK2_PD[1:0]: BUCK2 pull-down selection.
	00: no pull-down
[3:2]	01: slow pull-down active when BUCK2 is disabled (EN = 0)
	10: fast pull-down active when BUCK2 is disabled (EN = 0)
	11: slow pull-down forced active
	NVM_BUCK1_PD[1:0]: BUCK1 pull-down selection.
	00: no pull-down
[1:0]	01: slow pull-down active when BUCK1 is disabled (EN = 0)
	10: fast pull-down active when BUCK1 is disabled (EN = 0)
	11: slow pull-down forced active

DS14839 - Rev 2 page 103/127

6.7.15 NVM pull-down control shadow register 3 (NVM_PD_SHR3)

Table 93. NVM_PD_SHR3

7	6	5	4	3	2	1	0
-	-	-	NVM_LDO5_PD	NVM_LDO4_PD	NVM_LDO3_PD	NVM_LDO2_PD	-
R	R	R	R/W	R/W	R/W	R/W	R

- Address: 0xAB
- Default: Depends on the PMIC part number
- Description: NVM pull-down control shadow register 3.

The content of this register is copied into LDOS_PD_CR in the INIT&LOAD and the CHECK&LOAD states.

[7:5]	reserved
	NVM_LDO5_PD:
[4]	0: no pull-down
	1: pull-down active when LDO5 is disabled (EN = 0)
	NVM_LDO4_PD:
[3]	0: no pull-down
	1: pull-down active when LDO4 is disabled (EN = 0)
	NVM_LDO3_PD:
[2]	0: no pull-down
	1: pull-down active when LDO3 is disabled (EN = 0)
	NVM_LDO2_PD:
[1]	0: no pull-down
	1: pull-down active when LDO2 is disabled (EN = 0)
[0]	reserved

DS14839 - Rev 2 page 104/127

6.7.16 NVM BUCKs output current limitation shadow register 1 (NVM_BUCKS_IOUT_SHR1)

Table 94. NVM_BUCKS_IOUT_SHR1

7	6	5	4	3	2	1	0
-	-	-	-	BUCK2_ILIM[1:0]		BUCK1_	ILIM[1:0]
R	R	R	R	R/W	R/W	R/W	R/W

- Address: 0xAC
- Default: Depends on the PMIC part number
- Description: NVM BUCKs output current limitation shadow register 1.

[7:4]	reserved				
	BUCK2_ILIM[1:0]: output current limitation				
	00: 500 mA				
[3:2]	01: 1000 mA				
	10: 1500 mA				
	11: 2000 mA				
	BUCK1_ILIM[1:0]: output current limitation				
	00: 500 mA				
[1:0]	01: 1000 mA				
	10: 1500 mA				
	11: 2000 mA				

6.7.17 NVM BUCKs output current limitation shadow register 2 (NVM_BUCKS_IOUT_SHR2)

Table 95. NVM_BUCKS_IOUT_SHR2

7	6	5	4	3	2	1	0
HICCUP	-	-	-	-	-	-	
R/W	R/W	R	R	R	R	R	R

- Address: 0xAD
- Default: Depends on the PMIC part number
- Description: NVM BUCKs output current limitation shadow register 2.

	HICCUP_DLY[1:0]: output current limitation
	00: 0 ms
[7:6]	01: 100 ms
	10: 500 ms
	11: 1000 ms
[5:0]	reserved

DS14839 - Rev 2 page 105/127

6.7.18 NVM LDOs output current limitation shadow register (NVM_LDOS_IOUT_SHR)

Table 96. NVM_LDOS_IOUT_SHR

7	6	5	4	3	2	1	0
-	-	-	-	LDO5_ILIM[1:0]		LDO2_I	LIM[1:0]
R	R	R	R	R/W R/W		R/W	R/W

- Address: 0xAE
- Default: Depends on the PMIC part number
- Description: NVM LDOs output current limitation shadow register.

[7:4]	reserved					
	LDO5_ILIM[1:0]: output current limitation					
	00: 50 mA					
[3:2]	01: 100 mA					
	10: 200 mA					
	11: 400 mA					
	LDO2_ILIM[1:0]: output current limitation					
	00: 50 mA					
[1:0]	01: 100 mA					
	10: 200 mA					
	11: 400 mA					

DS14839 - Rev 2 page 106/127

6.7.19 NVM fail-safe overcurrent protection shadow register 1 (NVM_FS_OCP_SHR1)

Table 97. NVM_FS_OCP_SHR1

7	6	5	4	3	2	1	0
-	-	-	-	-	-	NVM_FS_OCP_BUCK2	NVM_FS_OCP_BUCK1
R	R	R	R	R	R	R/W	R/W

- Address: 0xAF
- Default: Depends on the PMIC part number
- Description: NVM fail-safe overcurrent protection shadow register 1 (see Section 5.4.6.1: Turn-OFF condition triggered by software switch-off).

[7:2]	reserved			
	NVM_FS_OCP_BUCK2: BUCK2 OCP management mode selection.			
[1]	0: OCP Hiccup mode (Level 0)			
	1: OCP fail-safe PMIC turn-off (Level 1)			
	NVM_FS_OCP_BUCK1: BUCK1 OCP management mode selection.			
[0]	0: OCP Hiccup mode (Level 0)			
	1: OCP fail-safe PMIC turn-off (Level 1)			

DS14839 - Rev 2 page 107/127

6.7.20 NVM fail-safe overcurrent protection shadow register 2 (NVM_FS_OCP_SHR2)

Table 98. NVM_FS_OCP_SHR2

7	6	5	4	3	2	1	0
-	-	-	NVM_FS_OCP_LDO5	NVM_FS_OCP_LDO4	NVM_FS_OCP_LDO3	NVM_FS_OCP_LDO2	-
R	R	R	R/W	R/W	R/W	R/W	R

- Address: 0xB0
- Default: Depends on the PMIC part number
- Description: NVM fail-safe overcurrent protection shadow register 2 (see Section 5.4.6.1: Turn-OFF condition triggered by software switch-off).

[7]	reserved
	NVM_FS_OCP_LDO5: LDO5 OCP management mode selection.
[4]	0: OCP Hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	NVM_FS_OCP_LDO4: LDO4 OCP management mode selection.
[3]	0: OCP Hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	NVM_FS_OCP_LDO3: LDO3 OCP management mode selection.
[2]	0: OCP Hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
	NVM_FS_OCP_LDO2: LDO2 OCP management mode selection.
[1]	0: OCP Hiccup mode (Level 0)
	1: OCP fail-safe PMIC turn-off (Level 1)
[0]	reserved

DS14839 - Rev 2 page 108/127

6.7.21 NVM fail-safe shadow register 1 (NVM_FS_SHR1)

Table 99. NVM_FS_SHR1

7	6	5	4	3	2	1	0		
	VIN_FLT_CNT_MAX[3:0]				PKEY_FLT_CNT_MAX[3:0]				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W		

- Address: 0xB1
- Default: Depends on the PMIC part number
- Description: NVM fail-safe shadow register 1 (see Section 5.4.5).

VIN_FLT_CNT_MAX[3:0]: setting of the maximum number of occurrences triggered by a VIN falling below VINOK_Fall hard-fault source.

0000: 0 hard-faults allowed (PMIC goes in FAIL_SAFE_LOCK_STATE when the 1st hard-fault condition occurs)

0001: 1 hard-fault allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 2nd hard-fault condition occurs)

...

1110: 14 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 15th hard-fault condition occurs)

1111: ∞ hard-faults allowed (fail-safe disabled: the PMIC always restarts when the hard-fault condition occurs)

PKEY_FLT_CNT_MAX[3:0]: setting of the maximum number of occurrences triggered by a PONKEYn long key press hard-fault source.

0000: 0 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 1st hard-fault condition occurs)

0001: 1 hard-fault allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 2nd hard-fault condition occurs)

...

1110: 1 hard-faults allowed (the PMIC goes into FAIL_SAFE_LOCK_STATE when the 15th hard-fault condition occurs)

1111: ∞ hard-faults allowed (fail-safe disabled: the PMIC always restarts when a hard-fault condition occurs)

DS14839 - Rev 2 page 109/127

6.7.22 NVM fail-safe shadow register 2 (NVM_FS_SHR2)

Table 100. NVM_FS_SHR2

7	6	5	4	3	2	1	0
	TSHDN_FLT_0	CNT_MAX[3:0]	OCP_FLT_CNT_MAX[3:0]				
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0xB2
- Default: Depends on the PMIC part number
- Description: NVM fail-safe shadow register 2 (see Section 5.4.5).

TSHDN_FLT_CNT_MAX[3:0]: setting of the maximum number of occurrences triggered by a thermal shutdown hard-fault source.

0000:0 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 1st hard-fault condition occurs)

0001:1 hard-fault allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 2nd hard-fault condition occurs)

...

1110: 14 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 15th hard-fault condition occurs)

1111: ∞ hard-faults allowed (fail-safe disabled: the PMIC always restarts when a hard-fault condition occurs)

OCP_FLT_CNT_MAX[3:0]: setting of the maximum number of occurrences triggered by regulator overcurrent hard-fault source.

0000:0 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 1st hard-fault condition occurs)

0001: 1 hard-fault allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 2nd hard-fault condition occurs)

...

1110: 14 hard-faults allowed (the PMIC goes in FAIL_SAFE_LOCK_STATE when the 15th hard-fault condition occurs)

1111: ∞ hard-faults allowed (fail-safe disabled: the PMIC always restarts when a hard-fault condition occurs)

DS14839 - Rev 2 page 110/127

6.7.23 NVM fail-safe shadow register 3 (NVM_FS_SHR3)

Table 101. NVM_FS_SHR3

7	6	5 4		3 2		1	0
-	FAIL_SAFE_LOCK_DIS	RST_FLT_CI	WDG_FLT_CNT_MAX[3:0]				
R	R/W	R/W	R/W	R/W	R/W	R/W	R/W

- Address: 0xB3
- Default: Depends on the PMIC part number
- Description: NVM fail-safe shadow register 3 (see Section 5.4.5).

[7]	reserved
	FAIL_SAFE_LOCK_DIS: disable fail-safe lock state (pass through)
[6]	0: FAIL_SAFE_LOCK feature enabled (the PMIC stays in the FAIL_SAFE_LOCK state)
	1: FAIL_SAFE_LOCK feature disabled (the PMIC passes through the FAIL_SAFE_LOCK state to go into the OFF state)
	RST_FLT_CNT_TMR [1:0]: reset fault counter timer settings. When the timer elapses, it automatically clears all fault counters (*_FLT_CNT)
	00: disabled
[5:4]	01: 1 minute
	10: 6 minutes
	11: 60 minutes
	WDG_FLT_CNT_MAX [3:0]: setting of the maximum number of occurrences triggered by a watchdog hard-fault source.
	0000:0 hard-faults allowed (the PMIC goes into the FAIL_SAFE_LOCK_STATE when the 1st hard-fault condition occurs)
[3:0]	0001: 1 hard-fault allowed (PMIC goes into the FAIL_SAFE_LOCK_STATE when the 2 nd hard-fault condition occurs)
	1110: 14 hard-faults allowed (the PMIC goes into the FAIL_SAFE_LOCK_STATE when the 15 th hard-fault condition occurs)
	1111: ∞ hard-faults allowed (fail-safe disabled: the PMIC always restarts when a hard-fault condition occurs)

DS14839 - Rev 2 page 111/127

6.7.24 NVM I²C device address shadow register (NVM_I²C_ADDR_SHR)

Table 102. NVM_I²C_ADD_SHR

7	6	5	4	3	2	1	0
LOCK_NVM	I ² C_ADDR[6:0]						
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0xB5

Default: Depends on the PMIC part number

Description: NVM I²C device address shadow register.

The contents of this register take effect after the NVM programming command, then the NVM reloads (INIT&LOAD state or CHECK&LOAD state or NVM read command).

The LOCK_NVM bit takes effect on both shadow registers write and NVM programming command. A successful program operation is enough to have the lock active (without any reload).

	LOCK_NVM: NVM write access lock:
[7]	0: NVM write allowed
	1: NVM write disabled
[6:0]	I ² C_ADDR [6:0]: I ² C device address.

6.7.25 NVM user free shadow register (NVM_USER_SHRx) (x = 1 to 2)

Table 103. NVM_USER_SHRx

7	6	5	4	3	2	1	0		
	NVM_USERx[7:0]								
R/W	R/W R/W R/W R/W R/W R/W R/W								

Address: 0xB6, 0xB7

Default: 0x00 (genuine PMIC) or user defined value

Description: User free shadow register 1 and 2.

Free usage scratch registers save end-product application data in the NVM. It requires an NVM programing command to save content in the NVM.

[7:0] NVM_USERx [7:0]: user defined value

DS14839 - Rev 2 page 112/127

6.7.26 NVM main control shadow register 4 (NVM_MAIN_CTL_SHR3)

Table 104. NVM_MAIN_CTRL_SHR4

7	6	5	4	3	2	1	0
VIN_D	LY[1:0]	-	-	NVM_PKEY_EN_PULL[1:0]		EN_POL_CFG	PKEY_EN_CFG
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W

Address: 0xB9

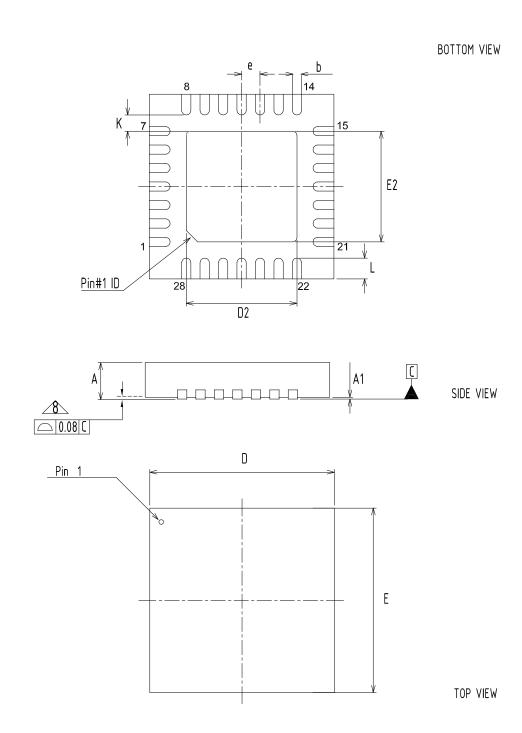
Default: 0x00 according to NVM

Description: NVM Main control shadow register 3.

	VIN_DLY [1:0]: V _{IN} additional delay
	00: no delay (default)
[7:6]	01: 10 ms delay
	10: 50 ms delay
	11: 100 ms delay
[5:4]	reserved
	NVM_PKEY_EN_PULL [1:0]: PONKEYn/EN pad pull resistor selection.
	00: no pull
[3:2]	01: pull-up active (R _{PU})
	10: pull-down active (R _{PD})
	11: no pull
	EN_POL_CFG: EN Polarity Config
[1]	0: active high (default)
	1: active low
	PKEY_EN_CFG: PONKEYn/EN feature enabled.
[0]	0: PONKEY functionality enabled (default)
	1: EN functionality enable

DS14839 - Rev 2 page 113/127

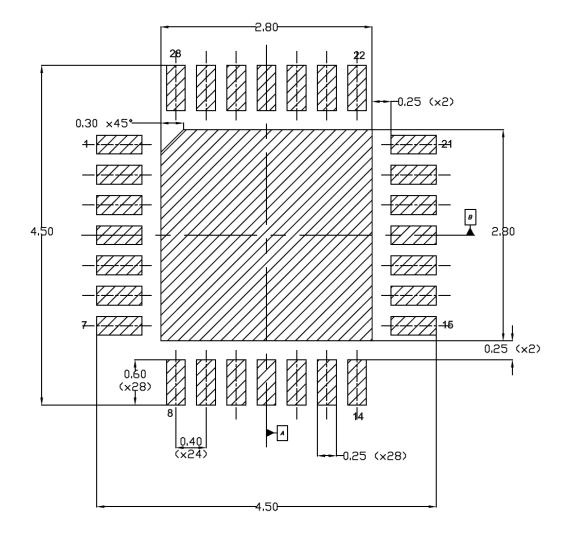
7 Package information


To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS14839 - Rev 2 page 114/127

VFQFPN 28L (4.0X4.0X1.0) package information

Figure 19. VFQFPN (4.0X4.0.X1.0) package outline



DS14839 - Rev 2 page 115/127

Symbol	mm					
Зушьог	Min.	Тур.	Max.			
Α	0.80	0.90	1.00			
A1	0.00	0.02	0.05			
b	0.15	0.20	0.25			
D		4.00				
E		4.00				
D2	2.25	2.40	2.50			
E2	2.25	2.40	2.50			
е		0.40				
L	0.35	0.45	0.55			
k	0.20					

Figure 20. Suggested footprint

DS14839 - Rev 2 page 116/127

9 Ordering information

Table 106. Ordering information

Order code	Part number	Marking	VIO (LDO2) programming option	Packing
STPMIC1LAPQR	STPMIC1LA	PM1LA	3.3 V	
STPMIC1LBPQR	STPMIC1LB	PM1LB	1.8 V	VFQFPN 28L (4.0x4.0x1.0)
STPMIC1LDPQR	STPMIC1LD	PM1LD	3.3 V	

DS14839 - Rev 2 page 117/127

Revision history

Table 107. Document revision history

Date	Version	Changes
26-Sep-2025	1	First release.
24-Oct-2025	2	Minor text changes.

DS14839 - Rev 2 page 118/127

Contents

1	Dev	ice con	figuration table	2
2	Турі	cal app	lication schematic	3
	2.1	Recon	nmended external components	4
	2.2	Pin ou	it and pin description	5
3	Elec	trical a	nd timing characteristics	7
	3.1		ute maximum ratings	
	3.2	Therm	nal characteristics	7
	3.3		ımption in typical application scenarios	
	3.4		ical and timing parameter specifications	
		3.4.1	General section.	
		3.4.2	Digital interface	
		3.4.3	LDO2 and LDO5	12
		3.4.4	LDO3	13
		3.4.5	LDO4	14
		3.4.6	BUCK1	15
		3.4.7	BUCK2	16
4	Pow	Power regulator descriptions		
	4.1	Overvi	iew	19
	4.2	LDO re	egulators	19
		4.2.1	LDO Common features	20
		4.2.2	LDO3 special features	21
		4.2.3	LDO4 special features	21
		4.2.4	LDO output voltage settings	21
		4.2.5	Examples of DDR memory power supply topology using LDOs	22
	4.3	Buck o	converters	23
		4.3.1	Buck converters common features	23
		4.3.2	Buck output voltage settings	26
5	Feat	ture des	scriptions	
	5.1	Functi	onal state machine	27
		5.1.1	Transition conditions	29
		5.1.2	State explanations	30
	5.2	POWE	ER_UP / POWER_DOWN sequence	32
		5.2.1	NO_SUPPLY and INIT&LOAD:	33
		5.2.2	OFF and CHECK&LOAD:	33
		5.2.3	POWER_UP:	33

	5.2.4	POWER_ON:	33
	5.2.5	POWER_DOWN:	33
5.3	Digital	pin description	34
	5.3.1	PONKEYn/EN	34
	5.3.2	RSTn	35
	5.3.3	INTn	35
	5.3.4	PWRCTRL1, PWRCTRL2	35
	5.3.5	GPO1, GPO2	35
5.4	Feature	e descriptions	36
	5.4.1	V _{IN} monitoring	36
	5.4.2	V _{INPOR}	36
	5.4.3	V _{INOK}	36
	5.4.4	V _{INLOW}	37
	5.4.5	Turn-on conditions	37
	5.4.6	Turn-off conditions	38
	5.4.7	Fail-safe management	39
	5.4.8	Hard-fault counters reset and auto-reset	40
	5.4.9	FAIL_SAFE_LOCK state skipping	40
	5.4.10	Power control management (PWRCTRLx)	41
	5.4.11	PWRCTRL delay high and delay low behaviors	43
	5.4.12	Regulator-independent reset detailed behaviors (PWRCTRL_RST)	44
	5.4.13	Reset management (RSTn) and mask_reset software option	45
	5.4.14	Thermal protection	46
	5.4.15	Overcurrent (OCP) and Hiccup mode	47
	5.4.16	Level 0: Independent regulator OCP Hiccup mode management	47
	5.4.17	Level 1: PMIC OCP fail-safe management	48
	5.4.18	Watchdog management	49
5.5	Progra	mming	49
	5.5.1	I ² C interface	49
	5.5.2	Non-volatile memory (NVM)	50
Regi	ister des	scriptions	52
6.1	Registe	er map	52
6.2	Status	registers	58
	6.2.1	Product ID status register (PRODUCT_ID_SR)	58
	6.2.2	Version status register (VERSION_SR)	58
	6.2.3	Turn-on status register (TURN_ON_SR)	59
	6.2.4	Turn-off status register (TURN_OFF_SR)	60

6

	6.2.5	Restart status register (RESTART_SR)	. 61
	6.2.6	Overcurrent protection status register 1 (OCP_SR1)	. 62
	6.2.7	Overcurrent protection status register 2 (OCP_SR2)	. 63
	6.2.8	Enable status register 1 (EN_SR1)	. 64
	6.2.9	Enable status register 2 (EN_SR2)	. 64
	6.2.10	Fail-safe counter status register 1 (FS_CNT_SR1)	. 65
	6.2.11	Fail-safe counter status register 2 (FS_CNT_SR2)	. 65
	6.2.12	Fail-safe counter status register 3 (FS_CNT_SR3)	. 66
	6.2.13	Mode status register (MODE_SR)	. 66
	6.2.14	GPO status register (GPO_SR)	. 67
6.3	Control	I registers	. 68
	6.3.1	Main control register (MAIN_CR)	. 68
	6.3.2	VINLOW monitoring control register (VINLOW_CR)	. 69
	6.3.3	PONKEYn long key press control register (PKEY_LKP_CR)	. 70
	6.3.4	Watchdog control register (WDG_CR)	. 71
	6.3.5	Watchdog timer control register (WDG_TMR_CR)	. 71
	6.3.6	Watchdog timer status register (WDG_TMR_SR)	. 72
	6.3.7	Fail-safe overcurrent protection control register 1 (FS_OCP_CR1)	. 72
	6.3.8	Fail-safe overcurrent protection control register 2 (FS_OCP_CR2)	. 73
	6.3.9	Pads pull control register (PADS_PULL_CR)	. 74
	6.3.10	Buck pull-down control register 1 (BUCKS_PD_CR)	. 75
	6.3.11	LDO pull-down control register (LDOS_PD_CR)	. 76
	6.3.12	Mask reset GPO control register (GPO_MRST_CR)	. 77
	6.3.13	Mask reset buck control register (BUCKS_MRST_CR)	. 78
	6.3.14	Mask reset LDO control register (LDOS_MRST_CR)	. 79
6.4	Power	supply control registers	. 80
	6.4.1	BUCKx MAIN mode control register 1 (BUCKx_MAIN_CR1) (x = 1 to 2)	. 80
	6.4.2	BUCKx MAIN mode control register 2 (BUCKx_MAIN_CR2) (x = 1 to 2)	. 80
	6.4.3	BUCKx ALTERNATE mode control register 1 (BUCKx_ALT_CR1) (x = 1 to 2)	. 81
	6.4.4	BUCKx ALTERNATE mode control register 2 (BUCKx_ALT_CR2) (x = 1 to 2)	. 81
	6.4.5	BUCKx PWRCTRL control register (BUCKx_PWRCTRL_CR) (x = 1 to 2)	. 82
	6.4.6	GPOx MAIN mode control register (GPOx_MAIN_CR) (x = 1, 2)	. 83
	6.4.7	GPOx ALTERNATE mode control register (GPOx_ALT_CR) (x = 1, 2)	. 83
	6.4.8	GPOx PWRCTRL control register (GPOx_PWRCTRL_CR) (x = 1, 2)	. 84
	6.4.9	LDOx MAIN mode control register (LDOx_MAIN_CR) (x = 2/5)	. 85
	6.4.10	LDOx ALTERNATE mode control register (LDOx_ALT_CR) (x = 2/5)	. 85
	6.4.11	LDOx PWRCTRL control register (LDOx_PWRCTRL_CR) (x = 2 to 5)	. 86
	6.4.12	LDO3 MAIN mode control register (LDO3_MAIN_CR)	. 87

DS14839 - Rev 2 page 121/127

	6.4.13	LDO3 ALTERNATE mode control register (LDO3_ALT_CR)	88
	6.4.14	LDO4 MAIN mode control register (LDO4_MAIN_CR)	88
	6.4.15	LDO4 ALTERNATE mode control register (LDO4_ALT_CR)	89
6.5	Interrup	ot registers	90
	6.5.1	Interrupt management overview	90
	6.5.2	Interrupt pending register 1 (INT_PENDING_R1)	90
	6.5.3	Interrupt pending register 2 (INT_PENDING_R2)	91
	6.5.4	Interrupt pending register 3 (INT_PENDING_R3)	91
	6.5.5	Interrupt pending register 4 (INT_PENDING_R4)	92
	6.5.6	Interrupt clear registers (INT_CLEAR_Rx) (x = 1 to 4)	92
	6.5.7	Interrupt mask registers (INT_MASK_Rx) (x = 1 to 4)	93
	6.5.8	Interrupt source registers (INT_SRC_Rx) (x = 1 to 4)	93
	6.5.9	Interrupt debug latch registers (INT_DBG_LATCH_Rx) (x = 1 to 4)	93
6.6	NVM re	egisters	94
	6.6.1	NVM status register (NVM_SR)	94
	6.6.2	NVM control register (NVM_CR)	94
6.7	NVM sl	hadow registers	95
	6.7.1	NVM main control shadow register 1 (NVM_MAIN_CTRL_SHR1)	95
	6.7.2	NVM main control shadow register 2 (NVM_MAIN_CTRL_SHR2)	96
	6.7.3	NVM rank shadow register 1 (NVM_RANK_SHR1)	97
	6.7.4	NVM rank shadow register 5 (NVM_RANK_SHR5)	98
	6.7.5	NVM rank shadow register 6 (NVM_RANK_SHR6)	98
	6.7.6	NVM rank shadow register 7 (NVM_RANK_SHR7)	
	6.7.7	NVM BUCK mode shadow register 1 (NVM_BUCK_MODE_SHR1)	99
	6.7.8	NVM BUCK1 output voltage shadow register (NVM_BUCK1_VOUT_SHR)	
	6.7.9	NVM BUCK2 output voltage shadow register (NVM_BUCK2_VOUT_SHR)	
	6.7.10	GPO Config shadow register (NVM_MAIN_CTRL_SHR3)	100
	6.7.11	GPO Rank shadow register 1 (NVM_RANK_SHR9)	101
	6.7.12	NVM LDOx shadow register (NVM_LDOx_SHR) (x = 2/5)	102
	6.7.13	NVM LDO3 control shadow register (NVM_LDO3_SHR)	102
	6.7.14	NVM pull-down control shadow register 1 (NVM_PD_SHR1)	103
	6.7.15	NVM pull-down control shadow register 3 (NVM_PD_SHR3)	104
	6.7.16	NVM BUCKs output current limitation shadow register 1 (NVM_BUCKS_IOUT_SHR1)) . 105
	6.7.17	NVM BUCKs output current limitation shadow register 2 (NVM_BUCKS_IOUT_SHR2)) . 105
	6.7.18	NVM LDOs output current limitation shadow register (NVM_LDOS_IOUT_SHR)	106
	6.7.19	NVM fail-safe overcurrent protection shadow register 1 (NVM_FS_OCP_SHR1)	107
	6.7.20	NVM fail-safe overcurrent protection shadow register 2 (NVM_FS_OCP_SHR2)	108
	6.7.21	NVM fail-safe shadow register 1 (NVM_FS_SHR1)	109

DS14839 - Rev 2 page 122/127

9	Ordering inf	ormation	117
_			
8	VFQFPN 28I	L (4.0X4.0X1.0) package information	115
7	Package info	ormation	114
	6.7.26	NVM main control shadow register 4 (NVM_MAIN_CTL_SHR3)	113
	6.7.25	NVM user free shadow register (NVM_USER_SHRx) (x = 1 to 2)	112
	6.7.24	NVM I ² C device address shadow register (NVM_I ² C_ADDR_SHR)	112
	6.7.23	NVM fail-safe shadow register 3 (NVM_FS_SHR3)	111
	6.7.22	NVM fail-safe shadow register 2 (NVM_FS_SHR2)	110

DS14839 - Rev 2 page 123/127

List of tables

Table 1.	Default configuration table	. 2
Table 2.	Passive components	
Table 3.	Pin description	
Table 4.	Absolute maximum ratings	. 7
Table 5.	Thermal characteristics	
Table 6.	Consumption in typical application scenarios	. 8
Table 7.	Electrical and timing parameter specifications (general section)	. 9
Table 8.	Electrical and timing parameter specifications (digital interface)	11
Table 9.	Electrical and timing parameter specifications	12
Table 10.	Electrical and timing parameter specifications (LDO3)	13
Table 11.	Electrical and timing parameter specifications (LDO4)	14
Table 12.	Electrical and timing parameter specifications (BUCK1)	15
Table 13.	Electrical and timing parameter specifications	16
Table 14.	General description	19
Table 15.	LDO output voltage settings	21
Table 16.	Buck output voltage settings	
Table 17.	PMIC state machine transition conditions	
Table 18.	Turn-on conditions from external trigger source summary	
Table 19.	Turn-off condition trigger sources	
Table 20.	Hard-fault fail-safe counters and waits before restarting timer	
Table 21.	Reset fault counter timer settings	
Table 22.	PWRCTRLx polarity truth table	
Table 23.	Regulator control truth table	
Table 24.	Slave address format	
Table 25.	Register address format	
Table 26.	Register data format.	
Table 27.	PRODUCT_ID_SR.	
Table 28.	.VERSION_SR	
Table 29.	TURN_ON_SR	
Table 30.	TURN_OFF_SR	
Table 31.	RESTART_SR	
Table 32.	Overcurrent protection status register 1 (OCP_SR1)	
Table 33.	Overcurrent protection status register 2 (OCP_SR2)	
Table 34.	EN SR1	
Table 35.	EN SR2	
Table 36.	FS_CNT_SR1	
Table 37.	FS_CNT_SR2	
Table 38.	FS CNT SR3	
Table 39.	MODE SR	
Table 40.	GPO SR	
Table 41.	MAIN CR	
Table 42.	VINLOW CR	
Table 43.	PKEY LKP CR.	
Table 44.	WDG CR	
Table 45.	WDG_GRC	
Table 46.	WDG_TMR_CR	
Table 46.	FS OCP CR1	
Table 47.	FS_OCP_CR1.	
Table 48.	PADS PULL CR	
Table 49.	BUCKS PD CR	
Table 50.	LDOS PD CR	
Table 52. Table 53.	GPO_MRST_CR	
เสมเช อง.		70

STPMIC1L

List of tables

Table 54.	LDOS_MRST_CR	
Table 55.	BUCKx_MAIN_CR1	
Table 56.	BUCKx_MAIN_CR2	
Table 57.	BUCKx_ALT_CR1	
Table 58.	BUCKx_ALT_CR2	
Table 59.	BUCKx_PWRCTRL_CR	
Table 60.	GPOx_MAIN_CR	
Table 61.	GPOx_ALT_CR	
Table 62.	GPOx_PWRCTRL_CR	
Table 63.	LDOx_MAIN_CR	
Table 64.	LDOx_ALT_CR	
Table 65.	LDOx_PWRCTRL_CR	
Table 66. Table 67.	LDO3_MAIN_CR	
Table 68.	LDO3_ACI_CR	
Table 69.	LDO4_MAIN_CR	
Table 70.	INT_PENDING_R1	
Table 70.	INT_PENDING_R2	
Table 71.	INT PENDING R3	
Table 72.	INT PENDING R4	
Table 73.	INT_CLEAR_RX	
Table 75.	INT_MASK_Rx	
Table 76.	INT_DBG_LATCH_Rx	
Table 77.	NVM SR	
Table 77.	NVM CR	
Table 79.	NVM_MAIN_CTRL_SHR1	
Table 80.	NVM_MAIN_CTRL_SHR2	
Table 81.	NVM_RANK_SHR1	
Table 82.	NVM_RANK_SHR5	
Table 83.	NVM_RANK_SHR6	
Table 84.	NVM_RANK_SHR7	
Table 85.	NVM_BUCK_MODE_SHR1	
Table 86.	NVM_BUCK1_VOUT_SHR	
Table 87.	NVM_BUCK2_VOUT_SHR	
Table 88.	NVM_MAIN_CTRL_SHR3	
Table 89.	NVM RANK SHR9	
Table 90.	NVM LDOx SHR	
Table 91.	NVM LDO3 SHR	
Table 92.	NVM_PD_SHR1	
Table 93.	NVM PD SHR3	
Table 94.	NVM_BUCKS_IOUT_SHR1	
Table 95.	NVM BUCKS IOUT SHR2	
Table 96.	NVM LDOS IOUT SHR	
Table 97.	NVM_FS_OCP_SHR1	
Table 98.	NVM FS OCP SHR2	
Table 99.	NVM FS SHR1	
Table 100.	NVM FS SHR2	
	NVM_FS_SHR3	
	NVM_I ² C_ADD_SHR	
	NVM_USER_SHRx	
	NVM_MAIN_CTRL_SHR4	
	VFQFPN 28L (4.0X4.0X1.0) mechanical data	
	Ordering information	
Table 107.	Document revision history	118

List of figures

Figure 1.	Typical application schematic	. 3
Figure 2.	Pin configuration VFQFPN 28L top view	. 5
Figure 3.	LDO startup/shutdown timings	20
Figure 4.	LDO3 uses in sink/source mode with DDR3L	
Figure 5.	LDO3 uses in LDO mode with lpDDR3	22
Figure 6.	Buck dynamic voltage scaling (DVS)	24
Figure 7.	Buck startup/shutdown timings	25
Figure 8.	PMIC state machine	28
Figure 9.	PMIC POWER_UP and POWER_DOWN sequence example	32
Figure 10.	PONKEYn debounce filter behavior	34
Figure 11.	V _{IN} monitoring thresholds	36
Figure 12.	PWRCTRLx logic circuitry principle	41
Figure 13.	Delay rising and delay falling behaviors example	44
Figure 14.	Regulator-independent reset behavior example	45
Figure 15.	Reset power-cycle sequence example	46
Figure 16.	Thermal protection thresholds	47
Figure 17.	I ² C read operation	50
Figure 18.	I ² C write operation	50
Figure 19.	VFQFPN (4.0X4.0.X1.0) package outline	115
Figure 20.	Suggested footprint	116

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS14839 - Rev 2 page 127/127