1.5 A

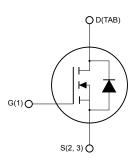
P_{TOT}

60 W

Automotive-grade N-channel 1200 V, 7.25 Ω typ., 1.5 A, MDmesh K5 Power MOSFET in an H²PAK-2 package

V_{DS}

1200 V


R_{DS(on)} max.

10 Ω

Features

H²PAK-2

AEC-Q101 qualified

Order code

STH2N120K5-2AG

- Very low FoM (figure of merit)
- Ultra-low gate charge
- 100% avalanche tested

Applications

Switching applications

Description

This very high voltage N-channel Power MOSFET is designed using MDmesh K5 technology based on an innovative proprietary vertical structure. The result is a dramatic reduction in on-resistance and ultra-low gate charge for applications requiring superior power density and high efficiency.

DTG1S23NZ

Product status STH2N120K5-2AG

Product summary ⁽¹⁾				
Order code STH2N120K5-2AG				
Marking	2N120K5			
Package	H²PAK-2			
Packing	Tape and reel			

1. HTRB test was performed at 80% of V_{(BR)DSS} according to AEC-Q101 rev. C. All other tests were performed according to AEC-Q101 rev. D.

1 Electrical ratings

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{GS}	Gate-source voltage	±30	V
1_	Drain current (continuous) at T _C = 25 °C	1.5	A
I _D	Drain current (continuous) at T _C = 100 °C	1	_ A
I _{DM} ⁽¹⁾	Drain current (pulsed)	2.5	Α
P _{TOT}	Total power dissipation at T _C = 25 °C	60	W
dv/dt ⁽²⁾	Peak diode recovery voltage slope	4.5	V/ns
dv/dt ⁽³⁾	MOSFET dv/dt ruggedness	50	V/ns
T _{stg}	Storage temperature range	-55 to 150	°C
T_J	Operating junction temperature range	-55 to 150	

^{1.} Pulse width is limited by safe operating area.

Table 2. Thermal data

Symbol	Parameter	Value	Unit
R _{thJC}	Thermal resistance, junction-to-case	2.08	°C/W
R _{thJA} ⁽¹⁾	Thermal resistance, junction-to-ambient	30	C/VV

^{1.} When mounted on a standard 1 inch² area of FR-4 PCB with 2-oz copper.

Table 3. Avalanche characteristics

Symbol	Parameter	Value	Unit
I _{AR} ⁽¹⁾	Avalanche current, repetitive or not repetitive	0.5	Α
E _{AS} ⁽²⁾	Single pulse avalanche energy	80	mJ

^{1.} Pulse width is limited by T_J max.

2. Starting $T_J = 25$ °C, $I_D = I_{AR}$, $V_{DD} = 50$ V.

DS12486 - Rev 6 page 2/13

^{2.} $I_{SD} \le 1.5 \; A, \; di/dt = 100 \; A/\mu s, \; V_{DS} \; (peak) < V_{(BR)DSS}, \; V_{DD} = 80\% \; V_{(BR)DSS}.$

^{3.} $V_{DS} \le 960 \ V$.

2 Electrical characteristics

(T_C = 25 °C unless otherwise specified)

Table 4. Static

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	V _{GS} = 0 V, I _D = 1 mA	1200			V
l	Zoro goto voltago drain ourrent	V _{GS} = 0 V, V _{DS} = 1200 V			0.5	
I _{DSS}	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 1200 V, T _C = 125 °C ⁽¹⁾			100	μA
I _{GSS}	Gate-body leakage current	V _{DS} = 0 V, V _{GS} = ±20 V			±100	nA
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}, I_{D} = 100 \mu A$	2	3	4	V
R _{DS(on)}	Static drain-source on-resistance	V _{GS} = 10 V, I _D = 0.5 A		7.25	10	Ω

^{1.} Specified by design, not tested in production.

Table 5. Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
C _{iss}	Input capacitance		-	124	-	
C _{oss}	Output capacitance $V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}, V_{GS} = 0 \text{ V}$		-	13	-	pF
C _{rss}	Reverse transfer capacitance		-	0.5	-	
C _{o(tr)} ⁽¹⁾	Time-related equivalent capacitance	V _{GS} = 0 V, V _{DS} = 0 to 960 V	-	15	-	pF
C _{o(er)} ⁽²⁾	Energy-related equivalent capacitance	V _{GS} = 0 V, V _{DS} = 0 to 300 V	-	5	-	рі
R _g	Intrinsic gate resistance	f = 1 MHz, I _D = 0 A	-	16	-	Ω
Qg	Total gate charge	V _{DD} = 960 V, I _D = 1.5 A, V _{GS} = 0 to 10 V	-	5.3	-	
Q _{gs}	Gate-source charge	(see Figure 13. Test circuit for gate		0.8	-	nC
Q _{gd}	Gate-drain charge	charge behavior)	-	3.5	-	

^{1.} $C_{o(tr)}$ is a constant capacitance value giving the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

Table 6. Switching times

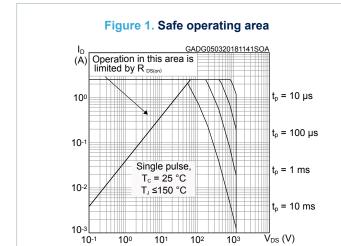
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time	V _{DD} = 600 V, I _D = 0.75 A,	-	10.3	-	
t _r	Rise time	$R_G = 4.7 \Omega$, $V_{GS} = 10 V$	-	7.8	-	
t _{d(off)}	Turn-off delay time	(see Figure 12. Test circuit for resistive load switching times and	-	34	-	ns
t _f	Fall time	Figure 17. Switching time waveform)	-	39	-	

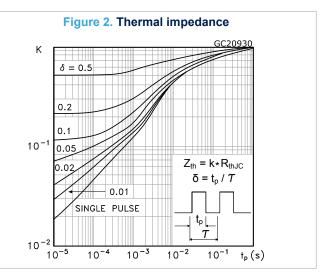
DS12486 - Rev 6 page 3/13

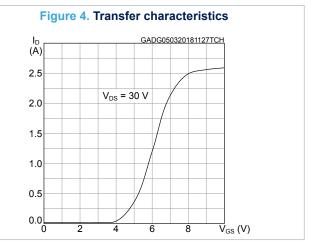
^{2.} $C_{o(er)}$ is a constant capacitance value giving the same stored energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS} .

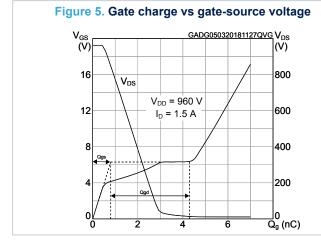
Table 7. Source-drain diode

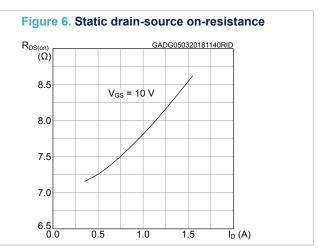
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		1.5	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		-		2.5	Α
V _{SD} ⁽²⁾	Forward on voltage	V _{GS} = 0 V, I _{SD} = 1.5 A	-		1.5	V
t _{rr}	Reverse recovery time	I _{SD} = 1.5 A, di/dt = 100 A/μs,	-	350		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V	-	1.35		μC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	7.7		Α
t _{rr}	Reverse recovery time	$I_{SD} = 1.5 \text{ A}, \text{ di/dt} = 100 \text{ A/}\mu\text{s},$	-	600		ns
Q _{rr}	Reverse recovery charge	V _{DD} = 60 V, T _J = 150 °C	-	2.09		μC
I _{RRM}	Reverse recovery current	(see Figure 14. Test circuit for inductive load switching and diode recovery times)	-	7.7		Α


^{1.} Pulse width is limited by safe operating area.


DS12486 - Rev 6 page 4/13


^{2.} Pulse test: pulse duration = $300 \mu s$, duty cycle 1.5%.




2.1 Electrical characteristics (curves)

DS12486 - Rev 6 page 5/13

10 º

10 -1

10 -1

10 º

10 1

10 ²

 C_{RSS}

 $\vec{\mathsf{V}}_{\mathsf{DS}}\left(\mathsf{V}\right)$

temperature

V_{GS(th)}
(norm.)

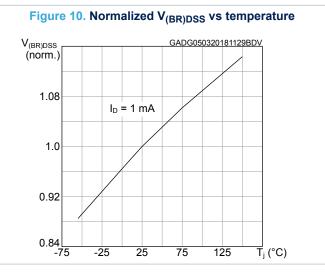
1.2 $I_D = 100 \, \mu A$ 1.0

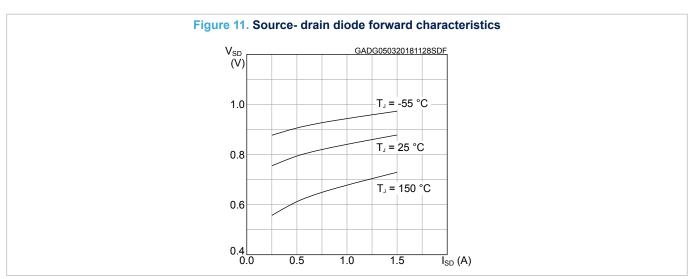
0.8

0.4

-75

-25


25


75

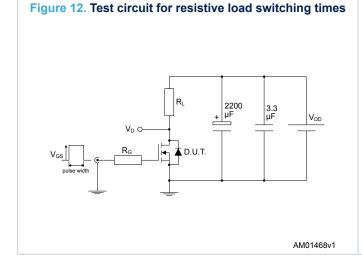
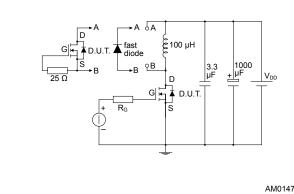
125 T_j (°C)

Figure 8. Normalized gate threshold voltage vs

Figure 9. Normalized on-resistance vs temperature $R_{\text{DS(on)}}$ GADG050320181128RON (norm.) 2.5 V_{GS} = 10 V 2.0 1.5 1.0 0.5 0.0L -75 -25 25 75 125 T_j (°C)

DS12486 - Rev 6 page 6/13

Test circuits

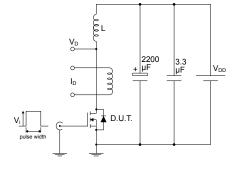

Figure 13. Test circuit for gate charge behavior I_G= CONST 100 Ω 2.7 kΩ 47 kΩ AM01469v10

Figure 14. Test circuit for inductive load switching and diode recovery times

AM01470v1

Figure 15. Unclamped inductive load test circuit

AM01471v1

Figure 16. Unclamped inductive waveform

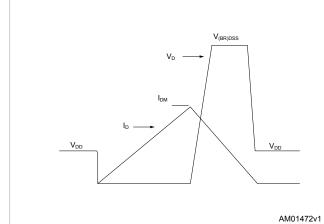
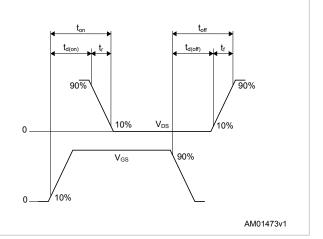
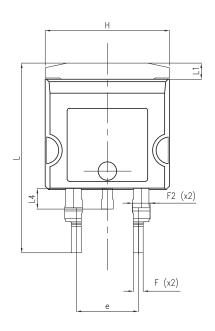
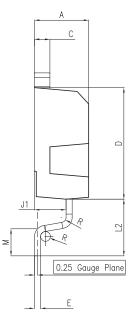
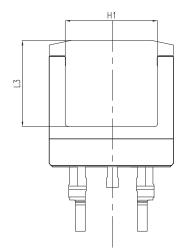



Figure 17. Switching time waveform

DS12486 - Rev 6 page 7/13




4 Package information


To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

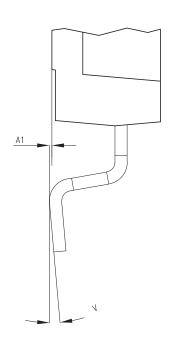

4.1 H²PAK-2 package information

Figure 18. H²PAK-2 package outline

8159712_10

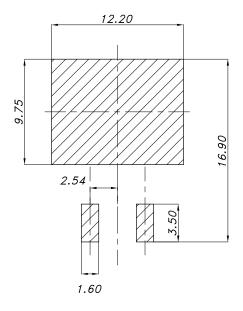
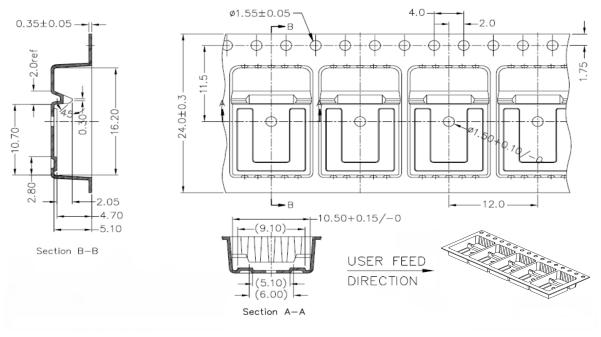

DS12486 - Rev 6 page 8/13

Table 8. H²PAK-2 package mechanical data

Dim.	mm				
DIM.	Min.	Тур.	Max.		
Α	4.30		4.70		
A1	0.03		0.20		
С	1.17		1.37		
D	8.95		9.35		
е	4.98		5.18		
E	0.50		0.90		
F	0.78		0.85		
F2	1.14		1.70		
Н	10.00		10.40		
H1	7.40	-	7.80		
J1	2.49		2.69		
L	15.30		15.80		
L1	1.27		1.40		
L2	4.93		5.23		
L3	6.85		7.25		
L4	1.50		1.70		
M	2.60		2.90		
R	0.20		0.60		
V	0°		8°		

Figure 19. H²PAK-2 recommended footprint

8159712_10


Note: Dimensions are in mm.

DS12486 - Rev 6 page 9/13

4.2 H²PAK-2 packing information

Figure 20. H²PAK-2 tape drawing (dimensions are in mm)

DM01095771_2

DS12486 - Rev 6 page 10/13

Revision history

Table 9. Document revision history

Date	Version	Changes
23-Mar-2018	1	Initial release. The document status is preliminary data.
30-Jul-2018	2	The document status was promoted from preliminary to production data. Updated title and features on cover page.
31-Jul-2018	3	Updated the current table. The date for revision 2 was erroneously reported as "19-Jun-2018" instead of "30-Jul-2018".
05-Sep-2018	4	Updated I _{DSS} parameter in <i>Table 4. Static</i> .
16-Jun-2020	5	Updated Section 4 Package information.
21-Aug-2025	6	Updated Section 4: Package information. Minor text changes.

DS12486 - Rev 6 page 11/13

Contents

1	Elec	trical ratings	2
2	Elec	trical characteristics	3
	2.1	Electrical characteristics (curves)	5
3	Test	circuits	7
4	Pac	kage information	8
	4.1	H²PAK-2 package information	8
	4.2	H²PAK-2 packing information	10
Rev	/ision	history	11

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS12486 - Rev 6 page 13/13