

STG8M120F3D7

1200 V, 8 A trench gate field-stop M series low-loss IGBT die in D7 packing

Datasheet - production data

Features

- 10 µs of short-circuit withstand time
- Low $V_{CE(sat)} = 1.85 \text{ V (typ.)} @ I_C = 8 \text{ A}$
- Positive V_{CE(sat)} temperature coefficient
- Tight parameter distribution
- Maximum junction temperature: T_J = 175 °C

Applications

- Motor control
- Industrial drives
- PFC
- UPS
- Solar
- General purpose inverter

Description

This device is an IGBT developed using an advanced proprietary trench gate field-stop structure. The device is part of the M series IGBTs, which represent an optimal balance between inverter system performance and efficiency where low-loss and short-circuit functionality are essential. Furthermore, the positive $V_{\text{CE(sat)}}$ temperature coefficient and tight parameter distribution result in safer paralleling operation.

Table 1: Device summary

Order code	V _{CE}	Icn	Die size	Packing
STG8M120F3D7	1200 V	8 A	3.44 x 3.44 mm ²	D7

Contents STG8M120F3D7

Contents

1	Mechan	nical parameters	3
2	Electric	cal ratings	4
	2.1	Absolute maximum ratings	4
	2.2	Electrical characteristics	4
3	Die laye	out	6
4	Additio	nal information	8
	4.1	Additional testing and screening	8
	4.2	Shipping	8
	4.3	Handling	8
	4.4	Wafer/die storage	8
5	Revisio	n history	g

1 Mechanical parameters

Table 2: Mechanical parameters

Symbol		Value	Unit
Die size including sc	ribe line	3.44 x 3.44	mm²
Wafer size		200	mm
Maximum possible dice	per wafer	2248	dice
Die thickness		110	μm
Front side passiva	ation	Silicone nitride	
Emitter pad size		1.94 x 2.41	mm²
Gate pad size		0.48 x 0.59	mm²
Front side metallization	composition	AlCu	
Front side metaliization	thickness	4.5	μm
Dools side metallination	composition	AI/Ti/NiV/Ag	
Back side metallization	thickness	0.65	μm
Die bond		Electrically conductive glue o	r soft solder
Recommended wire	bonding	≤500	μm

Electrical ratings STG8M120F3D7

2 Electrical ratings

2.1 Absolute maximum ratings

Table 3: Absolute maximum ratings (T_J = 25 °C unless otherwise specified)

Symbol	Parameter	Value	Unit
Vces	Collector-emitter voltage (V _{GE} = 0 V)	1200	V
V_{GE}	Gate-emitter voltage	±20	V
I _{CN} ⁽¹⁾	Continuous collector current at T = 100 °C	8	Α
I _{CP} ⁽¹⁾⁽²⁾	Pulsed collector current	24	Α
tsc ⁽³⁾	Short -circuit withstand time $V_{CC} = 600 \text{ V}$, $V_{GE} = 15 \text{ V}$, $V_{CE(peak)} \le 1200 \text{ V}$, $T_{Jstart} \le 150 \text{ °C}$	10	μs
TJ	Operating junction temperature range	-55 to 175	°C

Notes:

2.2 Electrical characteristics

Table 4: Static characteristics (tested on wafer unless otherwise specified)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)CES}	Collector-emitter breakdown voltage	I _C = 2 mA, V _{GE} = 0 V	1200			V
V _{CE(sat)}	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 8 A			2.4	V
$V_{GE(th)}$	Gate threshold voltage	$V_{CE} = V_{GE}$, $I_C = 500 \mu A$	5	6	7	V
Ices	Collector cut-off current	V _{GE} = 0 V, V _{CE} = 1200 V			25	μΑ
Iges	Gate-emitter leakage current	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$			±250	μΑ

Table 5: Electrical characteristics (not tested at chip level, verified by design/characterization)

	, , , , ,					
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
	Collector-emitter saturation voltage	V _{GE} = 15 V, I _C = 8 A	-	1.85	2.3	V
VCE(sat)		V _{GE} = 15 V, I _C = 8 A, T _J = 175 °C	1	2.2		>
Cies	Input capacitance		-	542		pF
Coes	Output capacitance	V _{CE} = 25 V, f = 1 MHz, V _{GE} = 0 V	-	74.4		pF
Cres	Reverse transfer capacitance	VGE = 0 V	-	21		pF
Qg	Total gate charge	V _{CC} = 960 V, I _C = 8 A, V _{GE} = 0 to 15 V	-	32		nC

⁽¹⁾Nominal collector current for die packaged in ST discrete solution. Current level depends on the assembly thermal properties and is limited by maximum junction temperature.

 $^{^{(2)}}$ Pulse width is limited by maximum junction temperature.

⁽³⁾Not tested at chip level, verified by design/characterization.

STG8M120F3D7 Electrical ratings

Table 6: Switching characteristics on inductive load

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	20	1	ns
tr	Current rise time		-	8.4	ı	ns
t _{d(off)}	Turn-off-delay time	$V_{CC} = 600 \text{ V}, I_{C} = 8 \text{ A}, V_{GE} = 15 \text{ V},$	-	126	-	ns
tf	Current fall time	$R_G = 33 \Omega$	-	136	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy		-	0.37	1	mJ
t _{d(on)}	Turn-on delay time		-	19	ı	ns
t _r	Current rise time		-	9.8	-	ns
t _{d(off)}	Turn-off-delay time	$V_{CC} = 600 \text{ V}, I_{C} = 8 \text{ A}, V_{GE} = 15 \text{ V},$	-	134	-	ns
tf	Current fall time	$R_G = 33 \Omega$, $T_J = 175 °C$	-	222	-	ns
E _{off} ⁽¹⁾	Turn-off switching energy		-	1.24	-	mJ

Notes:

⁽¹⁾Including the tail of the collector current.

The aforementioned values are not tested at chip level and are strongly dependent on the package/module design and the mounting technology. Refer to STGWA8M120DF3 datasheet for further information.

Die layout STG8M120F3D7

Die layout 3

- 3.44 -

Figure 1: Die drawing (dimensions are in mm)

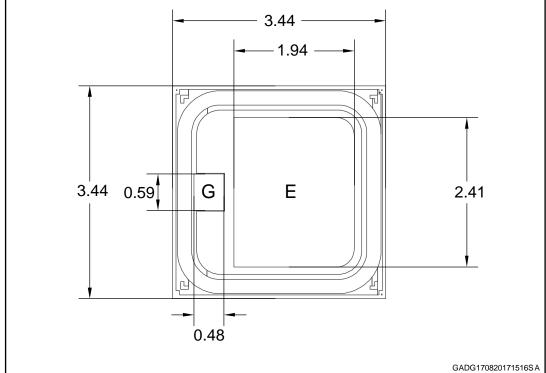


Table 7: Die delivery

Package option	Description	Details
D7	Wafer (8 inches) tested, inked, cut on sticky foil on 10.8" (276 mm) ring (see Figure 2: "D7 drawing and die orientation")	Wafer (8 inches) is held by ring protected by two carton shells, inside a plastic envelope sealed under vacuum. Maximum number of wafers for each package is 5, weight is about 3.7 Kg.

STG8M120F3D7 Die layout

Wafer Metallic ring

Gate pad

GADG180820170938S A

Figure 2: D7 drawing and die orientation

Additional information STG8M120F3D7

4 Additional information

4.1 Additional testing and screening

For customers requiring product supplied as known good die (KGD) or requiring specific die level testing (i.e. for dynamic and switching characterization), please contact the local ST sales office.

If KGD is requested, the shipping delivery is D8.

4.2 Shipping

Several shipping options are offered, consult the local ST sales office for availability:

- Die on film sticky foil suffix on sales type D7
- Carrier tape suffix on sales type D8

4.3 Handling

- Products must be handled only at ESD safe workstations. Standard ESD precautions and safe work environments are as defined in MIL-HDBK-263.
- Products must be handled only in a class 1000 or better-designated clean room environment.
- Singular die are not to be handled with tweezers. A vacuum wand with a non-metallic ESD protected tip should be used.

4.4 Wafer/die storage

Once the packaging is opened, the wafer must be stored in a dry, inert atmosphere, such as nitrogen.

Optimum temperature for storage is 18 °C ±2 °C with as few variations as possible to avoid parasitic polymerization of the adhesive. Sawn wafers must be processed within 12 weeks after receipt by customer.

After the customer opens the package, the customer is responsible for the products.

STG8M120F3D7 Revision history

5 Revision history

Table 8: Document revision history

Date	Revision	Changes
18-Aug-2017	1	Initial release
10-Nov-2017	2	Datasheet promoted from preliminary data to production data. Modified internal schematic on cover page. Minor text changes.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

