

Automotive power management IC for highly integrated processors

VFQFN56 + 4L 8x8x0.9 mm

Maturity status link

SPSB100G

Device summary SPSB100GTR SPSB100GBTR

Features

- AEC-Q100 grade 1 qualified
- Two configurable (6.5 V, 5 V, 3.3 V) buck converters and typ peak switching current limit of 3.0 A @ 2.4 MHz or 400 kHz
- One configurable (3.3 V, 1.25 V, 1.2 V, 1.1 V, 0.98 V) buck converter and typ peak switching current limit up to 6.0 A @ 2.4 MHz, with fine-tuning configurability around 0.98 V (0.95 V to 1.01 V)
- Overcurrent detection and limitation for all bucks
- Integrated soft-start on buck stages
- Boost controller 6 9 V with a max current capability of 3.5 A @ 400 kHz, for sustaining permanently low battery conditions and deep cranking pulses with boost modes
- One 5 V voltage regulator (120 mA) for CAN-FD supply
- One configurable (5 V or 3.3 V) low drop voltage tracker of buck regulator (10 mA)
- One high-side driver for contact monitoring (R_{ON} = 55 Ω) with open-load and overcurrent diagnosis
- Dedicated interrupt pin for failure communication
- Device can operate in low-power mode
- Very low quiescent current in deep sleep state
- MCU reset generator
- Configurable window watchdog with an extended long open window up to 9 s, with maskable function and enable/disable function through NVM bits
- 1 CAN-FD transceiver (ISO 11898-2/2016 compliant), which can be deactivated via SPI, with local failure and bus failure diagnosis
- Device contains temperature warning and protection
- Thermal clusters
- A/D conversion of supply voltages and internal temperature sensors
- STMicroelectronics standard serial peripheral interface (32-bit / ST_SPI) including 4-bit CRC
- · One fail-safe output
- · One input pin supporting static and dynamic error signal reporting
- Programmable periodic system wake-up feature
- Programmable periodic system wake-up feature extended up to 180 days (Very Long Duration Timer)
- Documentation available for customers that need support when dealing with ASIL requirements as per ISO26262

Description

The SPSB100G is a fully integrated automotive power management system IC, specifically designed for highly integrated application processors (e.g. Stellar G and P MCU families), offering low-power mode and high-current capability. The device comes with enhanced system power supply functionality and a CAN-FD physical communication layer (available only on the SPSB100G version).

It combines three switch-mode power supplies together with two integrated linear voltage regulators. The device further integrates two wake-up inputs and advanced fail-safe functionalities. The device also embeds a Long Duration Timer up to 180 days.

The boost controller is intended to sustain cold cranking pulses, start-stop, and weak battery conditions.

Different combinations make it possible to supply the system microcontroller, the integrated CAN-FD transceiver (only for the SPSB100G version), and external peripheral loads and sensors in several adjustable voltage and current ranges. The SPSB100G and the SPSB100GB are delivered out of STMicroelectronics factory with default values (rails, power-up and -down sequences) stored in the USER-NVM space as reported in System Supply Configuration 1, but can be also re-programmed by customers based on different application needs.

The STMicroelectronics standard SPI interface allows for control and diagnosis of the device and enables generic software development.

The device offers a set of features to support applications that need to fulfill functional safety requirements as defined by Automotive Safety Integrity Level (ASIL).

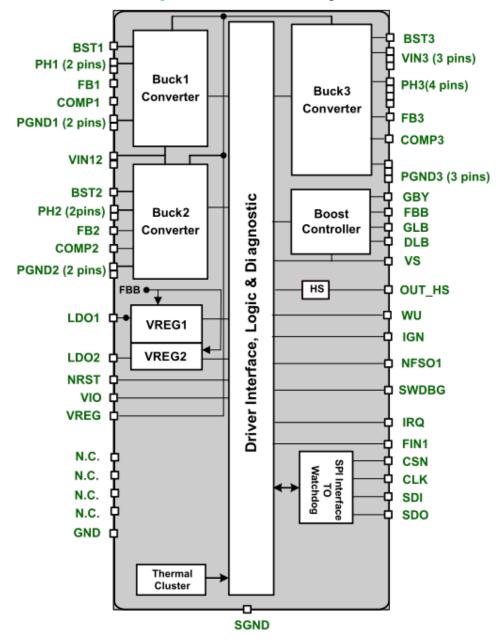
DS14964 - Rev 1 page 2/239

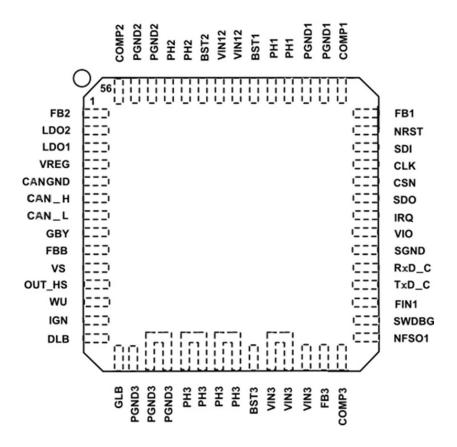
1 Block diagrams

BST3 BST1 VIN3 (3 pins) PH1 (2 pins) Buck1 PH3(FB3 FB1 PH3(4 pins) Buck3 Converter COMP1 Converter PGND1 (2 pins) COMP3 VIN12 PGND3 (3 pins) BST2 GBY Driver Interface, Logic & Di agnostic PH2 (2pins) **FBB** Buck2 Boost GLB Controller Converter DLB COMP2 VS PGND2 (2 pins) HS OUT_HS WU VREG1 LD01 🗘 (CAN Sup.) IGN VREG2 LDO2 NFSO1 NRST **SWDBG** VIO VREG IRQ FIN1 RxD_C SPI Interface TO CAN FD CSN TxD_C ISO 11898-2 CLK CAN_H /2016 SDI CAN_L SDO CANGND Thermal Cluster SGND

Figure 1. SPSB100G block diagram

DS14964 - Rev 1 page 3/239




Figure 2. SPSB100GB block diagram

DS14964 - Rev 1 page 4/239

1.1 Pin description

Figure 3. SPSB100G pin connection (top view)

DS14964 - Rev 1 page 5/239

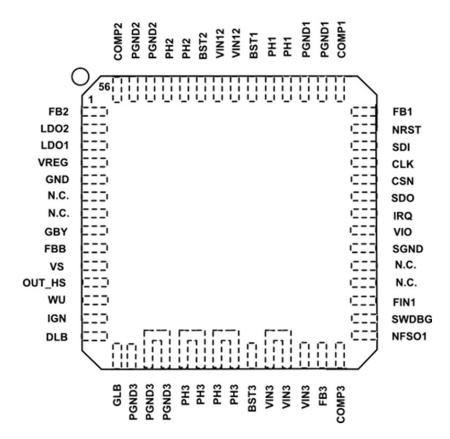


Figure 4. SPSB100GB pin connection (top view)

Table 1. Pin configuration

Pin number	Pin SPSB100G	Pin SPSB100GB	Description	I/O type
1	FB2	FB2	BUCK2 feedback voltage (to internal voltage monitors)	I
2	LDO2	LDO2	5 V/3.3 V voltage regulator - tracker of buck output	0
3	LDO1	LDO1	5 V voltage regulator 1 output (for CAN-FD supply)	0
4	VREG	VREG	Internal 3.3 V regulator output for buck bootstrap	0
5	CANGND	GND	CAN ground / Drain source monitoring ground	
6	CAN_H	N.C. ⁽¹⁾	CAN high level voltage I/O	I/O
7	CAN_L	N.C. ⁽¹⁾	CAN low level voltage I/O	I/O
8	GBY	GBY	Gate driver of external MOS bypass BOOST	0
9	FBB	FBB	BOOST feedback pin and supply for LDO1 & LDO2, OUT_HS, VREG, WU and IGN blocks	
10	VS	VS	Sensing boost input	I
11	OUT_HS	OUT_HS	High-side driver output to supply contacts	0
12	WU	WU	Wake-up input for static or cyclic monitoring of external contact	I

DS14964 - Rev 1 page 6/239

Pin number	Pin SPSB100G	Pin SPSB100GB	Description	I/O type
13	IGN	IGN	Wake-up input for static or cyclic monitoring of external contact with KL15 feature	I
14	DLB	DLB	Drain monitoring of external low-side MOS of BOOST	1
15	GLB	GLB	Gate driver of external low-side MOS of BOOST	0
16	PGND3	PGND3	BUCK3 power ground	
17	PGND3, 2 nd pin	PGND3, 2 nd pin	BUCK3 power ground	
18	PGND3, 3 rd pin	PGND3, 3 rd pin	BUCK3 power ground	
19	PH3	PH3	Switching node BUCK3	I/O
20	PH3, 2 nd pin	PH3, 2 nd pin	Switching node BUCK3	0
21	PH3, 3 rd pin	PH3, 3 rd pin	Switching node BUCK3	0
22	PH3,4 th pin	PH3,4 th pin	Switching node BUCK3	0
23	BST3	BST3	Boot-strap capacitor to supply BUCK3 high-side MOS gate-driver circuitry	
24	VIN3	VIN3	Input voltage BUCK3	I
25	VIN3, 2 nd pin	VIN3, 2 nd pin	Input voltage BUCK3	1
26	VIN3, 3 rd pin	VIN3, 3 rd pin	Input voltage BUCK3	1
27	FB3	FB3	BUCK3 feedback voltage (to internal voltage monitors)	I
28	COMP3	COMP3	BUCK3 error amplifier compensation network	
29	NFSO1	NFSO1	Fail safe output (active low, open drain)	0
30	SWDBG	SWDBG	Debug input to deactivate the window watchdog (active high) and enter pin for NVM emulation mode	I
31	FIN1	FIN1	FCCU sequence input	I
32	TxD_C	N.C. (1)	CAN transmit data input	I
33	RxD_C	N.C. (1)	CAN receive data output	0
34	SGND	SGND	Signal ground (analog and digital reference)	
35	VIO	VIO	I/O power supply (3.3 V or 5 V)	I
36	IRQ	IRQ	Interrupt (open-drain)	0
37	SDO	SDO	SPI serial data output	0
38	CSN	CSN	SPI chip select not input	I
39	CLK	CLK	SPI serial clock input	I
40	SDI	SDI	SPI serial data Input	I
41	NRST	NRST	Reset output to microcontroller, internal pull-up (open-drain)	Ο
42	FB1	FB1	BUCK1 feedback voltage (to internal voltage monitors)	I
43	COMP1	COMP1	BUCK1 error amplifier compensation network	

DS14964 - Rev 1 page 7/239

Pin number	Pin SPSB100G	Pin SPSB100GB	Description	I/O type
44	PGND1	PGND1	BUCK1 power ground	
45	PGND1, 2 nd pin	PGND1, 2 nd pin	BUCK1 power ground	
46	PH1	PH1	Switching node BUCK1	I/O
47	PH1, 2 nd pin	PH1, 2 nd pin	Switching node BUCK1	0
48	BST1	BST1	Bootstrap capacitor to supply BUCK1 high- side MOS gate-driver circuitry	
49	VIN12	VIN12	Input voltage BUCK1 and BUCK2	I
50	VIN12	VIN12	Input voltage BUCK1 and BUCK2	I
51	BST2	BST2	Bootstrap capacitor to supply BUCK2 high- side MOS gate-driver circuitry	
52	PH2	PH2	Switching node BUCK2	I/O
53	PH2, 2 nd pin	PH2, 2 nd pin	Switching node BUCK2	0
54	PGND2,	PGND2,	BUCK2 power ground	
55	PGND2, 2 nd pin	PGND2, 2 nd pin	BUCK2 power ground	
56	COMP2	COMP2	BUCK2 error amplifier compensation network	

^{1.} For the SPSB100GB version, it is recommended to connect the N.C. pins to ground.

DS14964 - Rev 1 page 8/239

2 Maximum ratings

2.1 Operating range

Within the operating range, the part operates as specified and without any parameter deviations. The device may not operate properly if maximum operating conditions are exceeded.

Once taken beyond the operative ratings and returned back to within the specified range, the part recovers with no damage or degradation.

Additional supply voltage and temperature conditions are given separately at the beginning of each electrical specification table.

All voltages are related to the potential at the CANGND pin internally connected to the substrate.

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vs (1) (2)	Global	3		29	V
F _{BB}	Boost output	7.7		29	V
VIN ₁₂	Buck1 & Buck2 supply pin	7.7		29	V
VIN ₃	Buck3 supply pin	3		7	V
VIO	Digital interface supply pin	3		5.5	V

Table 2. Operating conditions

2.1.1 Supply voltage ranges

All SPI communication, logic and oscillator parameters work down to $V_S = V_{PORVS_F}$ and are specified accordingly:

- SPI thresholds
- · Oscillator frequency (delay times correctly elapsed)
- Internal register status correctly kept (reset at default values for V_S < V_{PORVS} _F)
- Reset threshold correctly detected

2.2 Absolute maximum ratings

Maximum ratings are absolute ratings; exceeding any one of these values may cause permanent damage to the integrated circuit.

All voltages are related to the potential at the substrate ground pin.

Table 3. Absolute maximum ratings

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{S_LD}	DC supply voltage	Load dump 400 ms max.	-0.3		40	V
V _{S_rev}	DC supply voltage for reverse battery	Reverse battery with limited current at max. 30 mA	-1.0			V
V _{FBB_LD}	Boost output voltage range Supply for LDO1&2, OUT_HS, IGN & WU blocks	Load dump 400 ms max.	-0.3		40	V
V_{GLB}	Boost gate driver voltage range	$V_{GLB} < V_{FBB} + 0.3 V$	-0.3		13.4	V
V_{DLB}	Boost external drain voltage range		-0.3		40	V
V_{GBY}	Bypass gate driver voltage range	$V_{GBY} < V_{FBB} + 0.3 V$	-0.3		40	V

DS14964 - Rev 1 page 9/239

^{1.} V_S operating range from 3 V up to 6 V is intented as a transitory time during cranking conditions.

^{2.} The device is compatible to Jump start events up to 29 V maximum V_S voltage.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{REG}	3.3 V regulator output for bucks bootstrap		-0.3		4.6	V
V _{IN12_LD}	Buck1&2 input voltage range	$V_{\rm IN12}$ < $V_{\rm FBB}$ + 0.3 V, load dump 400 ms max.	-0.3		40	V
V _{FB1}	Buck1 feedback voltage range	V _{FB1} < V _{FBB} + 0.3 V	-0.3		20	V
V _{FB2}	Buck2 feedback voltage range	V _{FB2} < V _{FBB} + 0.3 V	-0.3		20	V
V _{PH1} (1)	Buck1 phase output voltage range		-0.3		40	V
V _{PH2} ⁽¹⁾	Buck2 phase output voltage range		-0.3		40	V
V _{BST1}	Buck1 bootstrap voltage range	V _{BST1} < V _{PH1} + 4.6 V	-0.3		40	V
V _{BST2}	Buck2 bootstrap voltage range	V _{BST2} < V _{PH2} + 4.6 V	-0.3		40	V
V _{COMP1}	Buck1 compensation voltage range		-0.3		4.6	V
V _{COMP2}	Buck2 compensation voltage range		-0.3		4.6	V
V _{IN3}	Buck3 input voltage range		-0.3		20	V
V _{FB3}	Buck3 feedback voltage range		-0.3		20	V
V _{PH3} ⁽¹⁾	Buck3 output phase voltage range		-0.3		20	V
V _{BST3}	Buck3 bootstrap voltage range	V _{BST3} < V _{PH3} + 4.6 V	-0.3		20	V
V _{COMP3}	Buck3 compensation voltage range		-0.3		4.6	V
V _{LDO1}	Stabilized supply voltage 1	V _{LDO1} < V _{FBB} + 0.3 V	-0.3		6.5	V
V _{LDO2}	Stabilized supply voltage 2	V _{LDO2} < V _{FBB} + 0.3 V	-0.3		20	V
V _{IO}	I/O supply voltage		-0.3		20	V
V _{SDI}	Logic input		-0.3		20	V
V _{CLK}	Logic input		-0.3		20	V
V _{CSN}	Logic input		-0.3		20	V
V _{SDO}	Logic output		-0.3		20	V
V _{RXD_C}	Logic output		-0.3		20	V
V _{NRST}	Open-drain output (with internal pull-up)		-0.3		20	V
V _{IRQ}	Open-drain output (with internal pull-up)		-0.3		20	V
V _{TXD_C}	Logic input		-0.3		20	V
V _{SWDBG}	Debug input pin voltage range		-0.3		20	V
V _{FIN1}	FIN1 input voltage range		-0.3		20	V
V _{NFSO1}	Open-drain output (without internal pull-up)		-0.3		40	V
V _{WU_LD}	DC WU input voltage	Load dump 400 ms max.	-0.3		40	V
V _{IGN_LD}	DC IGN input voltage	Load dump 400 ms max.	-0.3		40	V
I _{Input}	Current injection into FBB related input pins WU, IGN (2)		-20		20	mA
V _{CAN_H}	CAN bus I/O		-27		40	V
V _{CAN_L}	CAN bus I/O		-27		40	V
V _{OUT_HS}	Output voltage	V _{OUT_HS} < F _{BB} + 0.3 V	-0.3		40	V
I _{OUT_HS}	Current injection OUT_HS (2)		-20		20	mA

DS14964 - Rev 1 page 10/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{SGND} (3)	Maximum current at SGND (3)		-1.25		1.25	Α
I _{VIN12}	Maximum current at VIN12 (3) (for each pin)		-5		5	Α
I _{PGND1,} I _{PGND2}	Maximum current at PGND1&2 (3) (for each pin)		-5		5	Α
I _{PH1,} , I _{PH2}	Maximum current at PH1&2 (3) (for each pin)		-5		5	Α
I _{VIN3}	Maximum current at VIN3 (3) (for each pin)		-5		5	Α
I _{PGND3}	Maximum current at PGND3 (3) (for each pin)		-5		5	Α
I _{PH3}	Maximum current at PH3 (3) (for each pin)		-5		5	Α
V_{PGND}	PGND versus CANGND		-0.3		0.3	V
V_{GND}	SGND versus CANGND		-0.3		0.3	V

- 1. Transients on this pin can be tolerated for a duration < 100 ns, not exceeding -3 V.
- 2. Guaranteed by design.
- 3. Values for the absolute maximum DC current through the bond wires. This value does not consider maximum power dissipation or other limits. Guaranteed by design.

2.3 ESD robustness

Table 4. ESD protection

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Pins	All pins	HBM ⁽¹⁾	-2		2	kV
Power output pin	OUT_HS	HBM ⁽²⁾	-4		4	kV
Transceiver	CAN_H	HBM ⁽²⁾	-8		8	kV
Transceiver	CAN_H	Direct ESD (3)	-6		6	kV
Transceiver	CAN_L	HBM ⁽²⁾	-8		8	kV
Transceiver	CAN_L	Direct ESD (3)	-6		6	kV
Pins (4)	All pins	CDM (values for corner pins in brackets)	-500 / (-750)		500 / (750)	V

- 1. HBM (Human Body Model, 100 pF, 1.5 k Ω) according to AEC-Q100-002.
- 2. HBM with all non-zapped pins grounded.
- 3. Direct ESD Test according to ISO 10605 (150 pF, 330 Ω) and IEC62228-3.
- 4. CDM (Charged Device Model) according to AEC-Q100-011.

2.4 Temperature ranges and thermal data

Table 5. Temperature ranges and thermal data

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
T _{amb}	Operating temperature		-40	-	125	°C
T _j	Operating junction temperature		-40	-	175	°C
T _{stg}	Storage temperature		-55	-	150	°C

DS14964 - Rev 1 page 11/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
T _W	Thermal overtemperature warning threshold		140	-	160	°C
T _{SD}	Thermal shut-down junction temperature		165	-	185	°C
T _{SDC}	Central thermal shut-down junction temperature		175	-	195	°C
T _{SDhys}	Thermal shut-down temperature hysteresis		0	5	10	°C
T _{F_TJ}	Thermal warning/shut-down filter time	Covered by scan	60	75	90	μs
T _{F_TSDC}	Central thermal shut-down filter time	Covered by scan	25.6	32	38.4	μs
R _{Th j-amb}	Thermal resistance junction-to- ambient	JEDEC 2s2p board (JESD51-7)	25			°C/W
R _{Th j-Cbot}	Thermal resistance junction-to- Case bottom with uniform power dissipation on silicon die	JEDEC 2s2p board	0.5			°C/W

All parameters are guaranteed in the junction temperature range from -40 to +150 $^{\circ}$ C (unless otherwise specified). The device is still operational and functional up to 175 $^{\circ}$ C.

The SPSB100G embeds a multitude of junctions housed in a relatively small piece of silicon. The devices contain, among all the described features, two voltage regulators (one of which can operate as a voltage tracker) and three buck converters with internal power stages and one high-side driver. For this reason, using the thermal impedance of a single junction (i.e. the voltage regulator or major power dissipation contributor) does not allow prediction of the thermal behavior of the whole device, and therefore it is not possible to assess whether a device is thermally suitable for a given activation profile and load characteristics. Thermal information is provided as temperature readings by different clusters located close to the most dissipative junctions. Some representative and realistic case thermal profiles are described below:

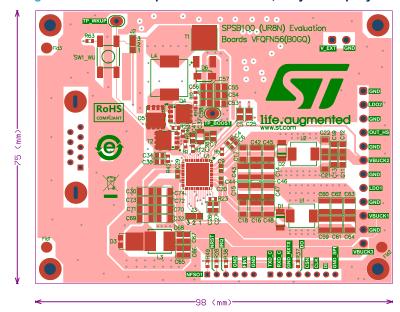


Figure 5. VFQFN56+4L printed circuit board, 4 layers - top layer

Two typical application scenarios related to system configuration 1 and differentiated based on the selected Buck1,2 frequencies are described below:

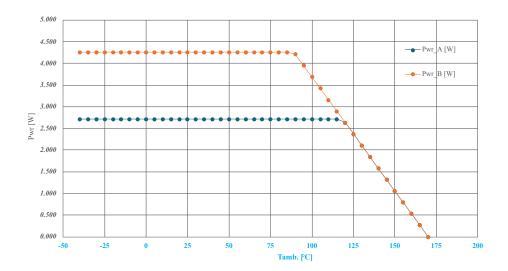
 $V_{bat} = 16 \text{ V}, R_{thja} = 25^{\circ}\text{C/W}, T_{jmax} = 170 ^{\circ}\text{C}$

Case A

DS14964 - Rev 1 page 12/239

- LDO1 (5 V): output load 100 mA
- LDO2 (5 V): output load 5 mA
- OUT_HS: I_{LOAD} = 20 mA
- Buck1 (3.3 V): output load 1 A at 400 kHz
- Buck2 (5.0 V): output load 1 A at 400 kHz
- Buck3 (0.98 V): output load 2 A at 2.4 MHz

Case B


- LDO1 (5 V): output load 100 mA
- LDO2 (5 V): output load 5 mA
- OUT_HS: I_{LOAD} = 20 mA
- Buck1 (3.3 V): output load 1 A at 2.4 MHz
- Buck2 (5.0 V): output load 1 A at 2.4 MHz
- Buck3 (0.98 V): output load 2 A at 2.4 MHz

Note:

- 1. Buck3 load current is already considered in the power dissipation calculation, so 1 A is referred to Buck1 external load current.
- 2. Selecting the switching frequency at 2.4 MHz for Buck1 and Buck2 will lower the regulators efficiency. In applications where high output power requirements significantly affect total power dissipation, using a 400 kHz switching frequency for Buck1 and Buck2 is recommended to reduce global power losses and simplify the thermal management design.

The curves below illustrate the range of ambient temperature within which the total power dissipation for use cases A and B can be sustained. The ambient temperature at which the curves drop indicates the point where the maximum total power dissipation must be reduced to prevent activation of the over-temperature.

Figure 6. Cases A and B power dissipation management vs. ambient temperature with Buck1 and Buck2 at 400 kHz and 2.4 MHz

DS14964 - Rev 1 page 13/239

3 Functional description

3.1 Supply configurations

The battery supplies the boost controller. F_{BB}, the boost output, supplies internal regulated voltages of analog and digital blocks, the wake-up blocks, the OUT_HS output, and fail-safe block. Buck1, Buck2, and Buck3 have independent supply pins in order to allow different supply configurations according to the application. Below, we describe the two main configurations where it is required to provide direct supply to the microcontroller core.

3.1.1 System supply configuration 1

Figure 7. SPSB100G direct supply of the microcontroller core

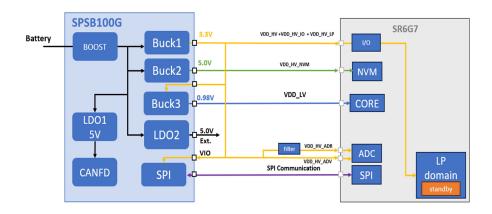


Figure 8. SPSB100GB direct supply of the microcontroller core

In the above configurations, only differentiated for the SPSB100G and SPSB100GB (without transceiver), the Buck3 is supplied by Buck1 and is configured to provide a 0.98 V high-current supply to the MCU CORE. Buck1 and Buck2 are supplied by the boost and supply the 3.3 V and the 5 V. Boost always supplies LDO1 and LDO2, both providing 5 V.

The configuration 1 setting description can be found in chapter 10.3.

The power-up and power-down sequence associated with this supply configuration are as follows:

DS14964 - Rev 1 page 14/239

Power-up sequence:

- Step 1: turn ON Buck1 at 3.3 V, wait PG (BUCK1_PG_OK flag)
- Step 2: turn ON Buck3 at 0.98 V, wait PG (BUCK3 PG OK flag)
- Step 3: turn ON Buck2 at 5 V, wait PG (BUCK2 PG OK flag)
- Step 4: turn ON LDO2 in tracker of Buck2, wait PG (LDO2_PG_OK flag)
- Step 5: turn ON LDO1, wait 0 ms
- Step 6: deassert NRST, wait 0 ms

Power-down sequence:

- Step 1: ASSERT NRST, wait 2 ms
- Step 2: turn OFF LDO2 and LDO1, wait 2 ms
- Step 3: turn OFF Buck3, wait 2 ms

3.1.2 Digital interface supply: VIO

The VIO pin supplies the SPI interface as well as the IRQ, FIN1, NRST, RxD C, TxD C pins.

The VIO pin can be supplied from one of the SPSB100G bucks, or from an external regulator.

Digital pin functionalities are guaranteed when $V_{IO} > V_{VIO_UV_R}$ (VIO_UV flag not raised).

3.2 Boost controller

The boost, or step-up controller, generates an output voltage that supplies the SPSB100G device and the buck converters only during a transitory time at power-up to reach a normal operating range (12 V battery range), or during low battery conditions, to sustain cranking.

In case the V_S voltage exceeds the $V_{TH_BYPASS_Rx}$ threshold, the converter will be deactivated and battery supplies the buck converters via a separate bypass MOSFET.

The live bit BOOST_ENA_STATUS reflects the state of the boost.

The block diagram of the boost is shown in the figure below:

Q2_Bypas L_Boost D1 Boost Vbat V_Boost KI-Rpr vs GBY D2 Boost CVBAT **Bypass Driver** GLB **Duty Cycle Control** Q1 Boost C Boost Boost ΔND Driver Vth Enable Logic Stage Rg_p Boost En Output voltage sense FBB

Figure 9. Boost controller block diagram

According to the sensed battery voltage on the VS pin (VS_LOW, VS_MID and VS_ HIGH thresholds), the boost duty cycle is suitably adjusted (BOOST_DC_Max when VS voltage is between VPORVS_F and VS_LOW, BOOST_DC_High when VS is between VS_LOW and VS_MID, Boost_DC_Min when VS is between VS_MID and VS_HIGH and BOOST_DC_Low when VS is higher than VS_HIGH) in order to keep the output voltage quite above the selected thresholds.

The system is compliant with the newly defined "Cold Cranking Pulse" required by start-stop systems. Moreover, a suitable bypass MOSFET is driven when the BOOST is not switching, in order to bypass the inductor, minimizing overall losses during normal operation.

The boost and the bypass drivers can be switched OFF permanently by setting BOOST_DIS=1 and BYPASS_DIS=1 respectively in the USER-NVM space.

DS14964 - Rev 1 page 15/239

If the BOOST function is used (BOOST DIS=0):

- at power-up, the bypass control is enabled when the state machine enters INIT state (after successful safety checks). If V_S > V_{TH_BYPASS_R}, the external bypass switch is turned on (BYPASS_STATUS=1) while the boost PWM is stopped. When V_S < V_{TH_BYPASS_F}, the external switch is turned off (BYPASS_STATUS=0) and boost switching is activated.
- in ACTIVE FULL-POWER mode and in RECOVERY-1 state, when V_S > V_{TH_BYPASS_R}, the external bypass switch is turned on after t_{F_BYPASS_EN} timing (BYPASS_STATUS=1) the boost PWM is stopped.
 FBB > V_{FBB_REGx} thresholds. When V_S < V_{TH_BYPASS_F}, the bypass switch is turned off after t_{F_BYPASS_DIS} timing (BYPASS_STATUS=0) and the boost switching is activated if FBB < V_{FBB_REGx} thresholds.
- in ACTIVE LOW-POWER mode, the BYPASS controller is disabled, turning the external switch (BYPASS_STATUS=0) off: the consumption on the battery is limited to few mA so no dissipation issue is expected on the D1_boost diode.
- in ACTIVE–LOW-POWER mode, the BOOST IP is disabled to reduce the overall SPSB100G consumption.
 It is woken up when the monitored V_S goes below V_{TH_BYPASS_Fx} for the remaining active BUCK with duty cycle BOOST_DC_LP.
- In RECOVERY-2 or DEEP-SLEEP state, the boost is always OFF and the BYPASS controller is always disabled (BYPASS STATUS=0).

If the BOOST function is not used (USER-NVM BOOST DIS=1 or SPI bit BOOST OFF=1):

- at power-up, the bypass control is enabled, turning on the external switch (BYPASS_STATUS=1), as soon
 as the state machine reaches the INIT state and following successful safety checks.
- in ACTIVE FULL-POWER mode and in RECOVERY-1 state, the BYPASS switch is turned on whatever the V_S voltage (BYPASS_STATUS=1).
- In ACTIVE LOW-POWER mode, DEEP-SLEEP or RECOVERY-2 state, the BYPASS controller is disabled, turning off the external switch (BYPASS STATUS=0).

The block diagram of the device when boost is not used is shown in the figure below. Note that the D1_rev_protection diode is needed only if there is no reverse battery protection solution already implemented in the application.

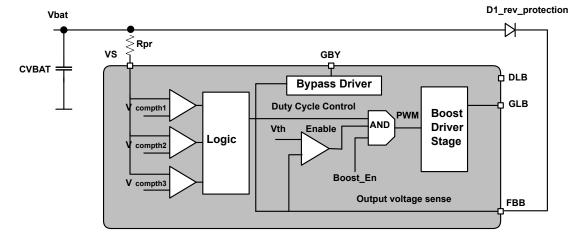


Figure 10. Boost controller disabled block diagram

3.2.1 Power-up/down and voltage drop behavior

The boost role is crucial for SPSB100G operation, so its behavior related to normal or accidental variations of the voltage supply should be clearly defined. The general behavior is described in the following figures.

DS14964 - Rev 1 page 16/239

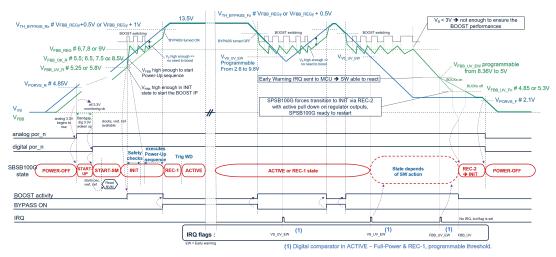
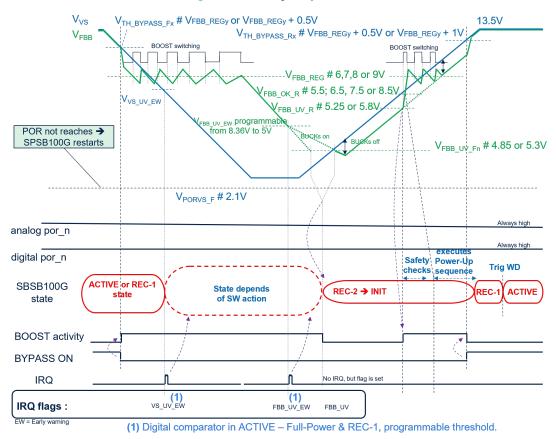



Figure 11. Battery plug/unplug behavior

Overvoltage cases are not critical for the boost itself (bypass is ON) but for the regulators (Bucks, LDOs...) that are directly supplied. These are managed according to configured thresholds (through VFBB_OV threshold) which trigger a power down sequence in any case. Power-up is initiated as long as the voltage decreases below the overvoltage FBB_OV_F.

DS14964 - Rev 1 page 17/239

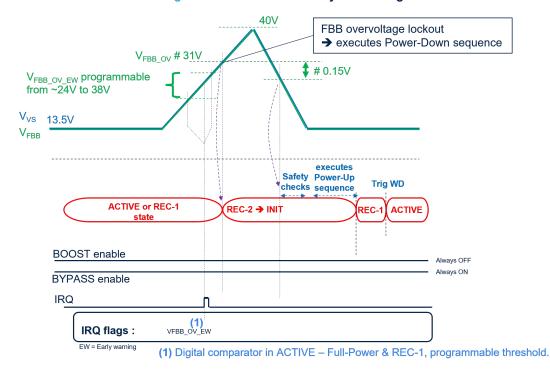


Figure 13. Behavior on battery over voltage

Undervoltage cases are critical for the regulators (Bucks, LDOs...) that are directly supplied. These are managed according to configured thresholds (through $V_{FBB_UV_F}$ threshold) which trigger a power-down sequence in any case. Undervoltage can be triggered based on FBB early warning thresholds. If FBB_UV_EW_PD is set high, the power-down sequence is triggered at the threshold defined by the FBB_UV_EW_TH[3:0] bits.

Power-up is initiated as long as the FBB voltage increases above the threshold V_{FBB OK Rx}.

3.2.2 Boost modes

It is possible to set two different boost modes for the SPSB100G through U-NVM bits:

- Boost Cranking mode when U-NVM bit BOOST_CRK_ONLY = 1.
- Boost Normal mode when U-NVM bit BOOST_CRK_ONLY = 0.

For both modes, the following points apply:

- Flexibility on boost regulation level (V_{FBB_REGx}) can be set in the FBB_REG_LEVEL_SEL[1:0] bit.
- Flexibility on comparator thresholds V_{TH_BYPASS_Rx} to enable and V_{TH_BYPASS_Fx} to disable the external bypass MOSFET can be set in the BYPASS_OFFSET_SEL and FBB_REG_LEVEL_SEL[1:0] bits.
- Flexibility on FBB level (V_{FBB_OK_Rx}) to execute the power-up sequence can be set in the FBB_OK_SEL[1:0] bits.
- Flexibility on FBB level (V_{FBB UV Rx}) to start the boost can be set in the FBB_UV_LEVEL_SEL bit.
- A programmable timer $t_{boost_crk_tox}$ to disable the boost when $V_S < V_{S_SENSEx}$ can be set in the BOOST_CRK_TO[2:0] bits.
 - The timer can be disabled if BOOST_CRK_TO = '000'.
 - When the timer expires, the flag BOOST_TIMER_CNT_END is set and generates an IRQ unless the MASK_BOOST_TIMER_CNT_END_IRQ is set.
 - The bit BOOST_CNT_END can be used to stop the timer when it is running by setting this bit to 1. To relaunch the timer, a transition from 1 to 0 for the bit BOOST_CNT_END is required.

3.2.2.1 Boost Cranking mode

To activate the Boost Cranking mode, it is required to set it via the U-NVM bit BOOST CRK ONLY at "1".

DS14964 - Rev 1 page 18/239

This mode allows SPSB100G to work as follows:

- Boost active for V_S < V_{S_SENSEx} (managing potential cranking condition)
- Boost inactive for V_S ≥ V_{S_SENSEx}

Where V_{SENSE} is a monitoring comparator that permits enabling/disabling boost, and is programmable in the U_NVM bit VS_SENSE_LEVEL_SEL[1:0] from 5.4 V to 5.85 V, with four steps of 150 mV.

Figure 14. Boost Cranking mode

Note:

Buck1,2 output current capabilities are linked to input voltage applied. Please refer to current limitations curves reported in Section 7.9: BUCK2 converter.

3.2.2.2 Boost Normal mode

To activate Boost normal mode, it is required to set it via the U-NVM bit BOOST_CRK_ONLY = 0.

DS14964 - Rev 1 page 19/239

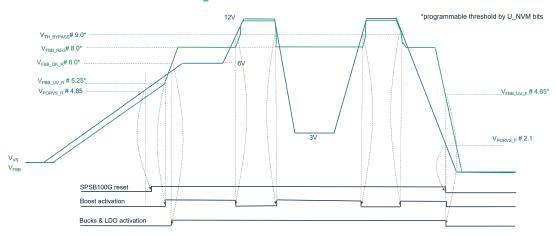
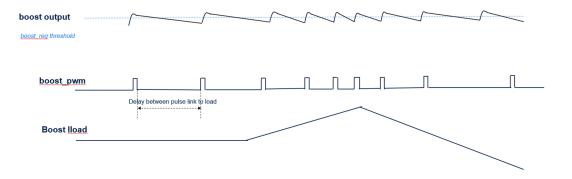



Figure 15. Boost Normal mode

Figure 16. Boost Normal mode - pulses with high/medium load

3.3 Buck converters

3.3.1 Buck1 converter

The Buck1 regulator is a synchronous converter compatible with battery level, with integrated power MOS. Stability compensation network is external.

Output voltages are programmable via the USER -NVM through the bit BUCK1_PU_VALUE.

The switching frequency can be selected either at 400 kHz or 2.4 MHz, by USER-NVM bit BUCK1_FREQ. To limit emission in the audio bandwidth, refresh frequency can be forced at 25 kHz by USER-NVM bit BUCK1_REFRESH_FREQ set low (1 kHz when high). The drawback to this will be additional consumption in low-power mode.

The spread-spectrum feature is configurable via the SPI bit BUCK1_SPREAD_ENA (disabled by default).

Buck1 integrates a low-power mode (automatically set by LOW_POWER_SET in the SPI) which optimizes its efficiency in active low-power mode (Buck1 is a mandatory regulator in active low-power mode).

Buck1 can be disabled/enabled in active full power via the SPI bit VBUCK1_ENA (only after SPI_PROTECT_ACCESS has been set). In active low-power mode, enabling Buck1 is not allowed.

The live bit VBUCK1_ENA_STATUS reflects the state of Buck1 output.

Note that after the first power-up, the control bit VBUCK1_ENA needs to be aligned with live bit VBUCK1_ENA_STATUS.

DS14964 - Rev 1 page 20/239

In active full-power, the Buck1 converter provides the following diagnostics:

- UV detection to monitor the output voltage (flag is BUCK1_UV). Buck1 is therefore switched off after tbuck1_UV_TO, except if SPI bit MASK_BUCK1_UV_POWER_OFF is set
- Undervoltage detection generates an IRQ, except if MASK_BUCK1_IRQ is set
- OV detection to monitor the output voltage (flag is BUCK1_OV bit). Buck1 is therefore switched off after tbuck1_OV_TO. The status register bit BUCK1_OV must be read and cleared before switching ON the regulator via the SPI bit VBUCK1_ENA to allow a proper start-up (only when Buck1 is not critical for the MCU).
- Overvoltage detection generates an IRQ, except if MASK_BUCK1_IRQ is set.
- Power-good detection is used to signal Buck power-on success (flag is BUCK1_PG_OK bit) and IRQ is generated except if MASK_BUCK1_PG_IRQ is set.
- If not, after TBUCK1 PG TO timeout, Buck1 is switched off and the flag BUCK1 PG TIMEOUT is set.
- Unsuccessful power-good detection generates an IRQ except if MASK_BUCK1_PG_TIMEOUT_IRQ is set.
- Configurable overcurrent protection through U-NVM BUCK1_IPEAK (flag is BUCK1_OC bit). Buck1 is therefore switched off after a time of tbuck1 OC TO except if MASK BUCK1 OC POWER OFF is set.
- Overcurrent detection generates an IRQ except if MASK_BUCK1_OC_IRQ is set.
- Warning temperature detection by a local thermal sensor (flag is TW CL1).
- Warning temperature detection generates an IRQ except if MASK CL1 TW IRQ is set.
- Overtemperature detection by a local thermal sensor (flag is TSD_CL1, see also Section 4.7) and buck1 is switched off.
- Buck1 internal regulators detection (flag is BUCK1_INT_FAIL) and Buck1 is switched off.
- Internal fail generates an IRQ except if MASK_BUCK1_IRQ is set.
- After a fault detection (UV, OV, OC, FBLOSS, TSD_CL1 or PG timeout), Buck1 can be re-enabled by setting BUCK1_ENA = 0, followed by BUCK1_ENA=1.
- Buck1 feedback (FB1) pin disconnection (flag is BUCK1_FBLOSS). Buck1 is switched off.
- FB1 pin disconnection generates an IRQ except if MASK_BUCK1_IRQ is set.

In active low- power, the Buck1 converter provides the following diagnostics:

- UV detection to monitor the output voltage (flag is BUCK1_UV). Buck1 is therefore switched off except if SPI bit MASK_BUCK1_UV_POWER_OFF is set.
- Undervoltage detection generates an IRQ except if MASK_BUCK1_IRQ is set.
- OV detection to monitor the output voltage (flag is BUCK1_OV bit). Buck1 is therefore switched off.
- Overvoltage detection generates an IRQ except if MASK_BUCK1_IRQ is set.
- Overcurrent protection (flag is BUCK1_OC bit). Buck1 is therefore switched off except if MASK_BUCK1_OC_POWER_OFF is set.
- Overcurrent detection generates an IRQ except if MASK_BUCK1_OC_IRQ is set.
- Buck1 feedback (FB1) pin disconnection (flag is BUCK1 UV). Buck1 is switched off.
- FB1 pin disconnection generates an IRQ except if MASK_BUCK1_IRQ is set.
- Overtemperature detection by the central thermal sensor (flag is TSD_CL0, see also Section 4.7) and device power-down sequence is executed.

In ACTIVE and REC-1 states, when BUCK1_REGFAIL_GO_REC is set at 1 in the USER-NVM, in case of PG timeout, OV, UV, INT_FAIL, OC, FBLOSS, or TSD events, the device executes a power-down sequence, enters REC-2 state and makes an automatic retry. PG_TIMEOUT, OV, UV, OC, INT_FAIL, FBLOSS or TSD flags are not blocking a re-enable of the BUCK1.

According to a suitably configured output voltage, it can also be used to supply another buck. It is not recommended to use MASK_BUCK1_OC_POWER_OFF and MASK_BUCK1_UV_POWER_OFF at the same time.

3.3.2 Buck2 converter

The Buck2 converter is the same as the Buck1.

The Buck2 regulator is a synchronous converter compatible with battery level, with an integrated power MOS. Stability compensation network is external.

Output voltages are programmable via the USER -NVM through the bit BUCK2 PU VALUE.

DS14964 - Rev 1 page 21/239

The switching frequency can be selected either at 400 kHz or 2.4 MHz, by USER-NVM BUCK2_FREQ. To limit emission in the audio bandwidth, refresh frequency can be forced at 25 kHz by USER-NVM bit BUCK2_REFRESH_FREQ set low (1 kHz when high). The drawback to this will be additional consumption in low-power mode.

The spread-spectrum feature is configurable via the SPI bit BUCK2_SPREAD_ENA (disabled by default).

Buck2 integrates a low-power mode (automatically set by LOW_POWER_SET in the SPI) which optimize its efficiency in active low-power mode. (Buck2 can be optionally enabled in active low-power mode).

Buck2 can be disabled via the SPI bit VBUCK2_ENA. (only after SPI_PROTECT_ACCESS has been set). In active low-power mode, enabling Buck2 is not allowed.

The live bit VBUCK2_ENA_STATUS reflects the state of Buck2 output.

Note that after the first power-up, the control bit VBUCK2_ENA needs to be aligned with live bit VBUCK2_ENA_STATUS.

In active full-power, the Buck2 converter provides the following diagnostics:

- UV detection to monitor the output voltage (flag is BUCK2_UV). Buck2 is therefore switched off after tbuck2_UV_TO except if SPI bit MASK_BUCK2_UV_POWER_OFF is set.
- Undervoltage detection generates an IRQ except if MASK_BUCK2_IRQ is set.
- OV detection to monitor the output voltage (flag is BUCK2_OV bit). Buck2 is therefore switched off after tbuck2_OV_TO. Status register bit BUCK2_OV must be read and cleared before switching ON the regulator via the SPI bit VBUCK2_ENA to allow a proper start-up (only when Buck2 is not critical for the MCU).
- Overvoltage detection generates an IRQ except if MASK_BUCK2_IRQ is set.
- Power-good detection is used to signal Buck power-on success (flag is BUCK2_PG_OK bit) and IRQ is generated except if MASK_BUCK2_PG_IRQ is set.
- If not, after TBUCK2 PG TO timeout, Buck2 is switched off and the flag BUCK2 PG TIMEOUT is set.
- Unsuccessful power-good detection generates an IRQ except if MASK_BUCK2_PG_TIMEOUT_IRQ is set.
- Configurable overcurrent protection through U-NVM BUCK2_IPEAK (flag is BUCK2_OC bit). Buck2 is therefore switched off after tbuck2_OC_TO except if MASK_BUCK2_OC_POWER_OFF is set.
- Overcurrent detection generates an IRQ except if MASK_BUCK2_OC_IRQ is set.
- Warning temperature detection by a local thermal sensor (flag is TW CL2).
- Warning temperature detection generates an IRQ except if MASK_CL2_TW_IRQ is set.
- Overtemperature detection by local thermal sensor (flag is TSD_CL2, see also Section 4.7) and buck2 is switched off.
- Buck2 internal regulators detection (flag is BUCK2_INT_FAIL). Buck2 is switched off.
- Internal fail generates an IRQ except if MASK_BUCK2_IRQ is set.
- Buck2 feedback (FB2) pin disconnection (flag is BUCK2 FBLOSS). Buck2 is switched off.
- FB2 pin disconnection generates an IRQ except if MASK_BUCK2_IRQ is set.
- After a fault detection (UV, OV, OC, FBLOSS, TSD_CL2 or PG timeout), Buck2 can be re-enabled by setting BUCK2_ENA = 0, followed by BUCK2_ENA=1.

In active low-power, the Buck2 converter provides the following diagnostics:

- UV detection to monitor the output voltage (flag is BUCK2_UV). Buck2 is therefore switched off except if SPI bit MASK_BUCK2_UV_POWER_OFF is set.
- Undervoltage detection generates an IRQ except if MASK_BUCK2_IRQ is set.
- OV detection to monitor the output voltage (flag is BUCK2_OV bit) Buck2 is therefore switched off.
- Overvoltage detection generates an IRQ except if MASK_BUCK2_IRQ is set.
- Overcurrent protection (flag is BUCK2_OC bit). Buck2 is therefore switched off except if MASK_BUCK2_OC_POWER_OFF is set.
- Overcurrent detection generates an IRQ except if MASK BUCK2 OC IRQ is set.
- Buck2 feedback (FB2) pin disconnection (flag is BUCK2_UV). Buck2 is switched off.
- FB2 pin disconnection generates an IRQ except if MASK_BUCK2_IRQ is set.
- Overtemperature detection by the central thermal sensor (flag is TSD_CL0, see also Section 4.7) and device power-down sequence is executed.

DS14964 - Rev 1 page 22/239

In ACTIVE and REC-1 states, when BUCK2_REGFAIL_GO_REC is set at 1 in the USER-NVM, in case of PG timeout, OV, UV, INT_FAIL, OC, FBLOSS or TSD events, the device executes a power-down sequence, enters REC-2 state and makes an automatic retry. PG_TIMEOUT, OV, UV, OC, INT_FAIL, FBLOSS or TSD flags are not blocking a re-enable of the BUCK2.

It is not recommended to use MASK_BUCK2_OC_POWER_OFF and MASK_BUCK2_UV_POWER_OFF at the same time.

3.3.3 Buck3 converter

The Buck3 is a post-regulator and needs to be supplied by Buck1 or Buck2 through the VIN3 pin.

The Buck3 converter is similar to the Buck1 but with double current capability. Moreover, if the output voltage is configured at 0.98 V, a further SPI fine-tuning in steps of 10 mV is available (BUCK3_FTUNE[2:0] control bits), covering a range from 0.95 V to 1.01 V.

Output voltages are programmable via the USER -NVM through the bit BUCK3 PU VALUE.

The spread-spectrum feature is configurable via the SPI bit BUCK3_SPREAD_ENA (disabled by default).

To limit emission in the audio bandwidth, refresh frequency can be forced at 25 kHz by USER-NVM bit BUCK3_REFRESH_FREQ set low (1 kHz when high).

Buck3 can be disabled via the SPI bit VBUCK3_ENA (only after SPI_PROTECT_ACCESS has been set). Buck3 must be disabled before entering active low-power mode and must not be enabled in this mode.

The live bit VBUCK3 ENA STATUS reflects the state of BUCK3 output.

Note that after the first power-up, the control bit VBUCK3_ENA needs to be aligned with live bit VBUCK3_ENA_STATUS.

The Buck3 converter provides the following diagnostics:

- UV detection to monitor the output voltage (flag is BUCK3_UV). Buck3 is therefore switched off after tbuck3_UV_TO except if SPI bit MASK_BUCK3_UV_POWER_OFF is set
- Undervoltage detection generates an IRQ except if MASK_BUCK3_IRQ is set
- OV detection to monitor the output voltage (flag is BUCK3_OV bit). Buck3 is therefore switched off after tbuck3_OV_TO. Status register bit BUCK3_OV must be read and cleared before switching ON the regulator via the SPI bit VBUCK3_ENA to allow a proper start-up (only when Buck3 is not critical for the MCU).
- Overvoltage detection generates an IRQ except if MASK_BUCK3_IRQ is set.
- Power-good detection is used to signal Buck power-on success (flag is BUCK3_PG_OK bit) and IRQ is generated except if MASK_BUCK3_PG_IRQ is set.
- If not, after TBUCK3 PG TO timeout, Buck3 is switched off and the flag BUCK3 PG TIMEOUT is set.
- Unsuccessful power-good detection generates an IRQ except if MASK BUCK3 PG TIMEOUT IRQ is set.
- Configurable overcurrent protection through U-NVM BUCK3_IPEAK (flag is BUCK3_OC bit). Buck3 is therefore switched off after tbuck3_OC_TO except if MASK_BUCK3_OC_POWER_OFF is set.
- Overcurrent detection generates an IRQ except if MASK_BUCK3_OC_IRQ.
- Warning temperature detection by a local thermal sensor(flag is TW_CL3).
- Warning temperature detection generates an IRQ except if MASK_CL3_TW_IRQ is set.
- Overtemperature detection by a local thermal sensor (flag is TSD_CL3, see also Section 4.7) and Buck3 is switched off.
- Buck3 internal regulators detection (flag is BUCK3_INT_FAIL). Buck3 is switched off.
- Internal fail generates an IRQ except if MASK_BUCK3_IRQ is set.
- After a fault detection (UV, OV, OC, INT_FAIL, TSD_CL3 or PG timeout), Buck3 can be re-enabled by setting BUCK3 ENA = 0, followed by BUCK3 ENA=1.
- In ACTIVE and REC-1 states, when BUCK3_REGFAIL_GO_REC is set at 1 in the USER-NVM, in case of PG timeout, OV, UV, OC, INT_FAIL or TSD events, the device executes a power-down sequence, enters REC-2 state and makes an automatic retry. PG_TIMEOUT, OV, UV, OC, INT_FAIL or TSD flags are not blocking a re-enable of the BUCK3.

It is not recommended to use MASK_BUCK3_OC_POWER_OFF and MASK_BUCK3_UV_POWER_OFF at the same time.

DS14964 - Rev 1 page 23/239

3.4 Linear voltage regulators

3.4.1 LDO1

The LDO1 is dedicated to supplying the CAN-FD in ACTIVE state or to supplying external loads (only for the SPSB100GB). It is supplied by the FBB pin. LDO1 has a 5 V output and a 120 mA current capability.

It can be enabled/disabled through the LDO1_ENA control bit (only after SPI_PROTECT_ACCESS has been set).

The voltage regulator is protected against undervoltage (flag is LDO1 UV) and LDO1 is therefore switched off.

The undervoltage detection generates an IRQ except if it is masked with MASK LDO1 IRQ.

The live bit LDO1_ENA_STATUS reflects the state of LDO1 output.

Note:

Note that, after the first-power up, it is necessary the control bit LDO1_ENA needs to be aligned with live bit LDO1_ENA_STATUS.

- Power-good is used to signal LDO1 power-on success (flag is LDO1_PG_OK bit).
- If not, after T_{LDO1 PG TO} timeout, LDO1 is switched off and flag LDO1_PG_TIMEOUT is set.
- Power-on success generates an IRQ except if it is masked with MASK_LDO1_PG_IRQ.
- Unsuccessful power-good detection generates an IRQ except if MASK_LDO1_PG_TIMEOUT_IRQ is set.
- After a fault detection (UV or PG timeout), LDO1 can be re-enabled by setting LDO1_ENA = 0, followed by LDO1_ENA=1, Fail flags are not blocking to re-enable the LDO1.

The output voltage is stable for ceramic load capacitors C_{LDO1} > 1 μF .

Warning temperature detection by a local thermal sensor (flag is TW_CL0).

Warning temperature detection generates an IRQ except if MASK_CL0_TW_IRQ is set.

In case the device temperature exceeds the TSD_CL0 threshold, the device executes a power-down sequence before entering REC-2 state.

3.4.2 LDO2

The SPSB100G embeds one low-dropout tracking regulator designed to provide an output voltage that closely tracks the bucks' reference at +/-10 mV while delivering up to 10 mA on the LDO2 output pin. The LDO2 voltage tracker is supplied by the FBB pin.

The LDO2_ENA SPI bit is used to enable/disable this LDO (only after SPI_PROTECT_ACCESS has been set). LDO2 must be disabled before entering ACTIVE low-power mode, and must not be enabled in this mode.

LDO2 can be configured by means of the USER-NVM LDO2_TRK bits to track one of Buck1, Buck2 or Buck3, if related output voltages are 5 V or 3.3 V (see Table 6).

Tracking configuration	LDO2_TRK[0,1] USER- NVM configuration bits	Selected voltage source	Source output voltage	LDO2 behavior
4	00	Buck1	3.3 V or 5 V	Tracks Buck1
1	00	Bucki	6.5 V	OFF what ever LDO2_ENA
2	01	Buck2	3.3 V or 5 V	Tracks Buck2
2	01	Buckz	6.5 V	OFF what ever LDO2_ENA
3	1x	Buck3	0.98 V - 1.25 V	OFF what ever LDO2_ENA
3	IX.	Bucks	3.3 V	Tracks Buck3

Table 6. Voltage regulators configuration

LDO2 is supplied by the FBB pin.

The tracking regulator provides the following diagnostics:

The live bit LDO2_ENA_STATUS reflects the state of LDO2 output.

Note:

Note that, after the first-power up, it is necessary the control bit LDO2_ENA needs to be aligned with live bit LDO2_ENA_STATUS.

DS14964 - Rev 1 page 24/239

- Overvoltage detection to monitor the output voltage (flag is LDO2_OV bit) and LDO2 is therefore switched
 off.
- Overvoltage detection generates an IRQ except if MASK_LDO2_IRQ is set.
- Undervoltage detection (flag is LDO2_UV bit) and LDO2 is therefore switched off.
- Undervoltage detection generates an IRQ except if MASK_LDO2_IRQ is set.
- Power-good is used to signal LDO2 power-on success (flag is LDO2 PG OK bit).
- If not, after T_{LDO2 PG TO} timeout, LDO2 is switched off and flag LDO2_PG_TIMEOUT is set.
- The power-on success generates an IRQ, except if it is masked with MASK LDO2 PG IRQ.
- Unsuccessful power-good detection generates an IRQ except if MASK LDO2 PG TIMEOUT IRQ is set.
- Warning temperature detection by a local thermal sensor (flag is TW_CL4).
- Warning temperature detection generates an IRQ except if MASK_CL4_TW_IRQ is set.
- Overtemperature detection by a local thermal sensor (flag is TSD_CL4, see also Section 4.7) and LDO2 is switched off.
- After a fault detection (UV, OV, TSD_CL4 or PG timeout), LDO2 can be re-enabled by setting LDO2_ENA =
 0, followed by LDO2_ENA=1, Fail flags are not blocking to re-enable the LDO2.
- LDO2 is switched off if a fault on the tracked regulator is detected.
- In active and REC-1 states, when LDO2_REGFAIL_GO_REC is set at 1 in the USER-NVM, in case of PG
 timeout, OV, UV, or TSD events, the device executes a power-down sequence, enters REC-2 state, and
 makes an automatic retry.

3.5 Operating modes

The device can work in a normal operation mode (ACTIVE state - FULL-POWER mode) or in a reduced operation mode (ACTIVE state - LOW-POWER mode).

The transition between FULL-POWER and LOW-POWER mode is managed via an SPI command (LOW POWER SET control bit, only after SPI PROTECT ACCESS has been set).

In ACTIVE state, the device is fully controllable and configurable through the SPI.

Moreover, a DEEP-SLEEP state is available in order to minimize current consumption during not-operating time frames via the SPI command DO_POWER_DOWN (only after SPI_PROTECT_ACCESS has been set). Status bits DEEP-SLEEP_FROM_DO_POWER_DOWN will be set at "01" if transitioning from ACTIVE state, or "1x" if transition from REC-1 state.

DEEP-SLEEP_FROM_DO_POWER_DOWN can be cleared via the CLR_DEEP_SLEEP_FROM_DO_POWER_DOWN bit.

DS14964 - Rev 1 page 25/239

The table below shows the availability and operational behavior of regulators and functions across different operating modes. In some modes, a regulator can be actively turned ON or OFF, allowing dynamic control. In other modes, the regulator remains permanently OFF and cannot be enabled.

Table 7. Regulators and functions availability by operating modes

Regulators	FULL-POWER	LOW-POWER	DEEP-SLEEP
BOOST	ON/OFF (1)	ON/OFF (1)	OFF
Buck 1	ON/OFF (2)	ON/OFF (3)	OFF
Buck 2	ON/OFF (2)	ON/OFF (3)	OFF
Buck 3	ON/OFF (2)	OFF	OFF
LDO 1	ON/OFF (2)	ON/OFF (3)	OFF
LDO 2	ON/OFF (2)	OFF	OFF
Wake up mechanisms	FULL-POWER	LOW-POWER	DEEP-SLEEP
WU, IGN	ON/OFF (3)	ON/OFF (3)	ON/OFF (3)
LDT	ON/OFF (3)	ON/OFF (3)	ON/OFF (3)
CAN	ON/OFF (3)	ON/OFF (3)	ON/OFF (3)
OUT_HS cyclic	ON/OFF (3)	ON/OFF (3)	ON/OFF (3)
Others	FULL-POWER	LOW-POWER	DEEP-SLEEP
NFSO	ON/OFF (3)	ON/OFF (3)	OFF (4)
NRST	ON	ON	OFF
IRQ	ON	ON	OFF
FCCU	ON/OFF (3)	OFF	OFF
CAN FD	ON/OFF (3)	ON/OFF (3)	OFF
OUT_HS	ON/OFF (3)	ON/OFF (3)	ON/OFF (3)
ADC	ON	OFF	OFF
TSDC	ON	ON	OFF
TSD	ON	OFF	OFF
SPI	ON	ON	ON/OFF
Watchdog	ON/OFF (5)	ON/OFF (3)	OFF
BYPASS	ON/OFF (1)	OFF	OFF

- 1. ON/OFF depends on battery voltage level. Can be set OFF by NVM/SPI.
- 2. ON if included in the Power-ON sequence by NVM or by SPI programming.
- 3. SPI programmable.
- 4. Can be set High or low by NVM.
- 5. ON/OFF by NVM.

3.5.1 Wake-up from DEEP-SLEEP to ACTIVE state

A wake-up from DEEP-SLEEP state will transit the device to the INIT state, as described in Section 3.6.3

To avoid disabling all wake-up capability, a hard protection is implemented: the SPI writing to disable the last wake-up possibility defined in Table 8 is not taken into account and a status register bit SPI_ALL_WAKEUP_DISABLE is set, and generates an IRQ except if MASK_SPI_ERROR_IRQ is set.

Current consumption in DEEP-SLEEP mode is calculated as I_{VS_DP} + wake-up current consumption contributions.

This can be initiated by one or more of the following events:

DS14964 - Rev 1 page 26/239

Wake up source	Description	Flag
CAN bus activity	Can be configured by SPI (CAN_WU_ENA bit)	CAN_WAKE
Level change of wake-up (WU)	Can be configured by SPI (WU_ENA bit)	WU_WAKE
Level change of wake-up (IGN)	Can be configured by SPI (IGN_ENA bit)	IGN_WAKE
Cyclic monitoring (WU)	Can be configured by SPI (WU_FILT bit with TIMER_ENA=1)	WU_WAKE
Cyclic monitoring (IGN)	Can be configured by SPI (IGN_FILT bit with TIMER_ENA=1)	IGN_WAKE
Timer	Can be configured by SPI (TIMER_WAKE_ENA bit with TIMER_ENA=1)	TIMER_WAKE
Long duration timer	Can be configured by SPI (LDT_MODE bit with LDT_ENA=1)	LDT_WAKE

Table 8. Wake up events description

3.5.2 Wake-up events in ACTIVE mode

All enabled wake-up events described in Table 8 in ACTIVE mode are signaled to the microcontroller by an interrupt request on the IRQ pin.

3.6 Functional overview - state machine

To make the reading easier, the state machine description has been split into three parts. First, the state diagram is presented with the normal transitions (Chapter Section 3.6.1), then transitions resulting in a fault event detection are shown (Chapter Section 3.6.2), and finally the full state machine is described and states and transitions detailed (Chapter Section 3.6.3).

3.6.1 State machine without fault transitions

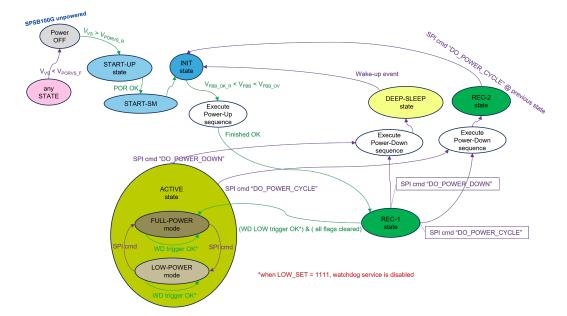


Figure 17. State machine without fault transitions

Until the voltage on the VS pin reaches V_{PORVS_R} for the first time, the device is in POWER-OFF state. After that, the device transitions to the START-UP state, where internal power supplies are established. Then, a core logic reset is released and the START-SM state is reached, where oscillators start and the NVM is read and checked. Refer to Chapter Section 3.8 for details on the USER-NVM space programming.

DS14964 - Rev 1 page 27/239

After start-up completion, the device reaches the INIT state, where a digital BIST is ran, and when the FBB voltage reaches V_{FBB_OK_R}, the device executes a power-up sequence, which turns ON all regulators as per application requirements stored in the USER-NVM space. The sequence includes the NRST pin deassertion to high level and, at the same time, the start of the watchdog long open window. See the power-up sequence description in Section 3.7.1 for details. After the power-up sequence, the device enters the RECOVERY-1 state: The SPSB100G is waiting for the MCU to boot up and trig the watchdog, except if LOW_SET[3:0] = 1111, before expiration of the watchdog long open window timeout. After a valid trig of the watchdog during its long open window timeout, the device enters ACTIVE state in FULL-POWER mode. In the ACTIVE state, the device is fully controllable by SPI. The MCU can configure SPSB100G features as per application needs to optimize ECU performances and global power consumption. In particular, some regulators can be switched OFF by SPI and the SPSB100G can be set to LOW-POWER mode, to reduce ECU power consumption while delivering the strict minimum power supply and supervision to the MCU. Later, the MCU can reconfigure the SPSB100G in FULL-POWER mode by SPI.

In ACTIVE state, the MCU can also request a power cycle from the SPSB100G: a power-down sequence is then executed, followed by digital BIST in INIT state, before executing a power-up sequence. In ACTIVE state, the MCU can also request a power-down from the SPSB100G: a power-down sequence is then executed, and DEEP-SLEEP state is reached. It is left upon a wake-up event. Wake-up event sensitivity is programmable by SPI in ACTIVE state, and includes cyclic sensing of the WU pin with cyclic powering of OUT_HS, edge and level detection on IGN, and CAN wake-up frame detection.

3.6.2 State machine focusing on fault transitions

3.6.2.1 NVM fault management

NVM fault management is explained in Section 3.8.1.

3.6.2.2 Watchdog trig and FCCU monitor fault management

The watchdog is launched during the power-up sequence when the NRST pin is deasserted high, starting with a long open window timeout. After the power-up sequence, the SPSB100G reaches RECOVERY-1 state, which is dedicated to watchdog and FCCU monitor fault management.

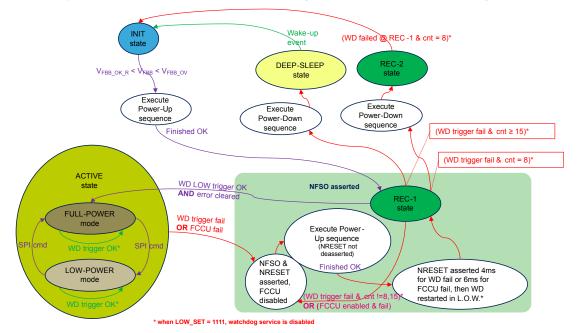


Figure 18. State machine details with WD trig and FCCU monitor fault management

While in RECOVERY-1 state, a read and clear of error flags and a proper trig of the watchdog in long open window timeout initiates a transition to ACTIVE state.

If the watchdog is triggered without clearing all flags, then the device remains in RECOVERY-1 state and the watchdog runs with normal window timings.

DS14964 - Rev 1 page 28/239

In ACTIVE state, the watchdog runs with normal window timings. Proper trig of the watchdog maintains the SPSB100G in ACTIVE state, while a failure in the watchdog service or a fault detected on the FCCU monitor will:

- increment the watchdog trig fault counter (only on watchdog trig fault)
- assert NRST pin low
- disable and reset the FCCU monitor
- initiate a power-up sequence: This is mandatory to power regulators that may have been switched off by SPI back up.
- disable the BYPASS external MOSFET

Then, the NRST pin remains asserted for 4 ms at least (in case of watchdog trig fault), or 6 ms at least (in case of FCCU monitor fault). Before being released, the watchdog starts a long open window timeout and the SPSB100G reaches RECOVERY-1 state.

In case of successive faults in servicing the watchdog in long open window, the watchdog trig fault counter is incremented, a power-up sequence is run, a 4 ms NRST pulse is generated, and a long open window timeout is restarted.

If the watchdog is properly served during the long open window, then the watchdog trig fault counter is reset and the SPSB100G enters ACTIVE state.

8 successive watchdog trig faults will force the SPSB100G to initiate a power cycle through the RECOVERY-2 and INIT states. In case of 15 successive watchdog trig faults, the SPSB100G enters DEEP-SLEEP state.

The FCCU monitor is disabled and its configuration reset after the first watchdog trig fault. The FCCU monitor can be reconfigured and enabled through SPI in RECOVERY-1 or ACTIVE state.

3.6.2.3 Power-up fault management

The power-up sequence can be programmed to wait for the power-good signal of any of the turned-on regulators (see the power-up sequence description in Section 3.7.1 for details). In such a case, a timeout counter is run. It is longer than the maximum rising time of the SPSB100G regulators.

If the timeout elapses, the SPSB100G executes a power-down sequence, the power-up retry counter POWUP_RETRY_CNT is incremented, and the SPSB100G retries 4 times to power up the regulators (POWUP_RETRY_CNT counter can be cleared by CLR_POWUP_RETRY_COUNT bit). If 4 successive faults occur and the PU_LOOP_FOR_EVER bit is not set, then the SPSB100G enters DEEP-SLEEP state, clears the POWUP_RETRY_CNT and generates a status register flag FORCED_SLEEP_POWUP. If PU_LOOP_FOR_EVER bit is set, the SPSB100G will retry to power up forever.

The same retry loop applies if a fault on a regulator is detected during the power-up sequence, and the regulator has its REGFAIL GO REC configuration bit set to 1. See Section 3.6.2.5 for details.

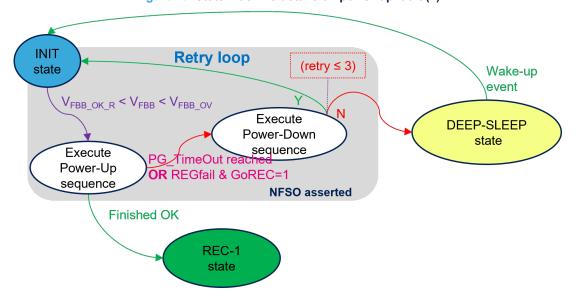


Figure 19. State machine details on power-up fault (1)

The behavior is similar if the power-up sequence timeout is reached when the sequence is executed after a watchdog trig fault or an FCCU monitor fault detection as shown in the following figure.

DS14964 - Rev 1 page 29/239

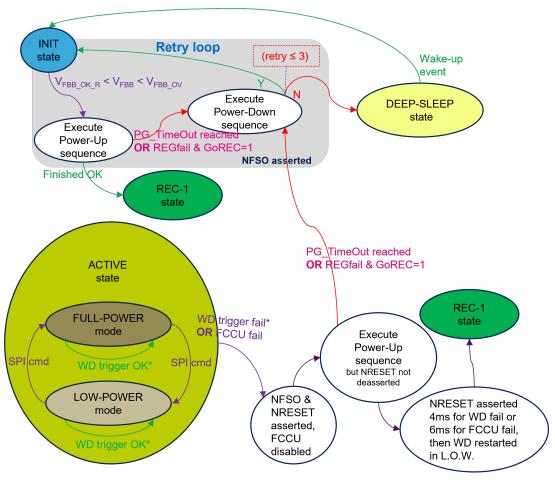


Figure 20. State machine details on power-up fault (2)

3.6.2.4 Central thermal sensor fault management

The central thermal sensor plays a major role in protecting the whole device. This sensor is monitoring the temperature of the SPSB100G core. If the SPSB100G core temperature exceeds the TSDC threshold, a power-down sequence is run, and the SPSB100G enters RECOVERY-2 state.

In RECOVERY-2 state, all regulators are OFF and the TSD event counter TSD_CNT_FAIL is incremented. After the temperature cools down, if TSD_CNT_FAIL is less than 3, then SPSB100G transits to INIT state and initiates a power-up sequence. If not, then the SPSB100G transitions to DEEP-SLEEP state until a wake-up event and generates a status register flag FORCED_SLEEP_TSD.

The TSD event counter, TSD_CNT_FAIL, is readable via the SPI and can be cleared by CLR_TSD_CNT_FAIL bit. This counter is incremented after a TSD event on any of the clusters.

DS14964 - Rev 1 page 30/239

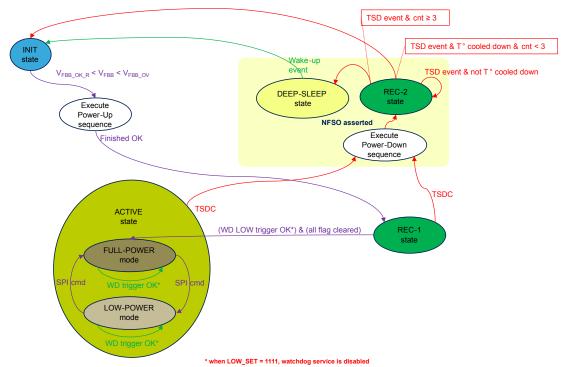


Figure 21. State machine details on TSDC fault

3.6.2.5 Regulator fault management

Each SPSB100G regulator has the following monitors:

- Temperature sensor with a warning threshold (TW) and a shut-down threshold (TSD)
- Undervoltage comparator (UV)
- Overvoltage comparator (OV) except for LDO1
- Power-good comparator (PG_TIMEOUT)
- Overcurrent comparator (OC) on Bucks
- Internal regulator comparator (INT_FAIL) on Bucks
- FB pin disconnection (FBLOSS for Buck1 and Buck2)

The user can decide how the SPSB100G shall react on an event of those monitors. This is done through the USER-NVM bit REGFAIL GO REC for each of them.

A TW event sets the associated flag and generate an interruption, while the reaction to a TSD, UV, PG_TIMEOUT, OC, INT_FAIL, FBLOSS and OV event depends on the regulator REGFAIL_GO_REC bit.

When REGFAIL_GO_REC is set to '1', a fault detected on regulator TSD, UV, PG_TIMEOUT, OC, INT_FAIL, FBLOSS and OV monitors initiates a power-down sequence, then the state machine transitions to INIT state and runs a power-up sequence. If a fault is detected, then the retry sequence described in Section 3.6.2.3 is executed. In case of TSD, the SPSB100G reaction is the same as for a TSDC event described in Section 3.6.2.4.

A fault event counter REG_FAIL_CNT is incremented when a power-down sequence is initiated by a regulator fault event. When the counter reaches 3, the SPSB100G transitions to DEEP-SLEEP state, where the counter is reset and the SPI flag FORCED_SLEEP_REGFAIL is set. REG_FAIL_CNT is clearable by SPI bit CLR REG FAIL CNT.

DS14964 - Rev 1 page 31/239

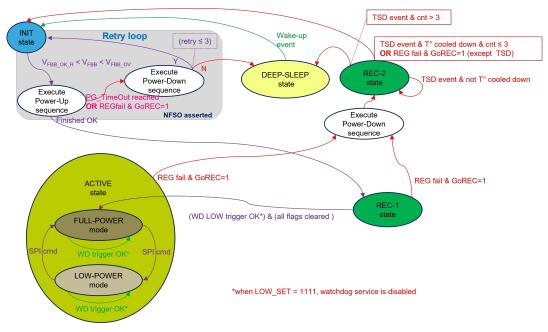


Figure 22. Regulator fault reaction with REGFAIL_GO_REC = 1

When REGFAIL_GO_REC is reset to '0', a fault detected on regulator, TSD, UV, OC, INT_FAIL, FBLOSS and OV monitors will:

- Set the associated flag
- Send an interruption. The interruption can be masked for UV, OC, INT_FAIL, FBLOSS and OV and TW, not for TSD.
- Switch the regulator OFF if the action is not masked. Action of UV and OC is maskable, while an INT_FAIL, FBLOSS, OV and TSD event always switches the regulator OFF. TW event never switches the regulator OFF.

The state machine does not change its state if REGFAIL_GO_REC is reset to '0'.

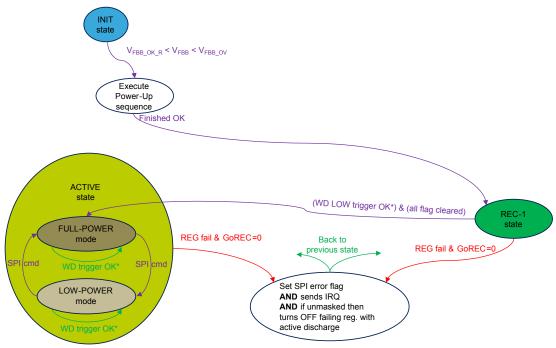


Figure 23. Regulator fault reaction with REGFAIL_GO_REC = 0

* when LOW_SET = 1111, watchdog service is disabled

DS14964 - Rev 1 page 32/239

3.6.2.6 FBB voltage drop management

The SPSB100G monitors the voltage on the FBB pin. The state machine reacts in case the FBB pin voltage drops below the $V_{FBB_UV_F}$ threshold by executing a power-down sequence and transitioning to RECOVERY-2 then INIT state. In INIT state, the SPSB100G restarts when the FBB pin voltage rises above $V_{FBB_OK_R}$.

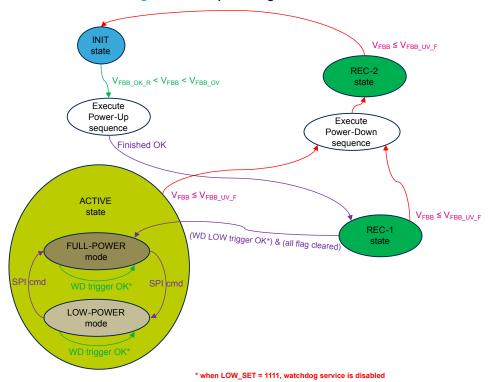


Figure 24. FBB pin voltage fault reaction

In case the VS pin voltage drops below V_{PORVS_F} , a hard reset of the SPSB100G is generated independently of the SPSB100G's current state, the POWER-OFF state is forced. The SPSB100G starts up again after the VS pin voltage rises above V_{PORVS_R} .

SPSB100G unpowered

Power $V_{VS} > V_{PORVS_R}$ START-UP state

any
STATE

Figure 25. VS pin voltage fault reaction

3.6.3 States and transitions description

The following figure shows the entire state machine.

DS14964 - Rev 1 page 33/239

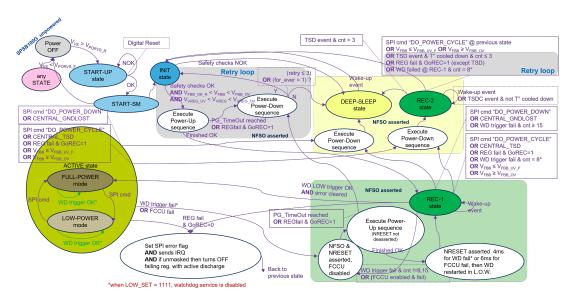


Figure 26. State machine

SPSB100G states can be read by status register bits DEV STATE.

3.6.3.1 Power-OFF state

Power-OFF state is the default state when the SPSB100G is not powered.

This state is entered unconditionally when the VS pin voltage drops below VPORVS F.

3.6.3.2 START-UP state

START-UP state is entered from Power-OFF state when the VS pin voltage reaches VPORVS_R.

In this state, internal power supplies are established, and the digital core reset is released.

SPSB100G transitions to START-SM state.

3.6.3.3 START-SM state

START-SM state is entered after START-UP completion when the digital core reset is released.

In this state, oscillators start and the main state machine is executed. It is possible to enter USER-NVM programming mode, refer to Section 3.8 for details.

When USER-NVM programming mode is not entered, the SPSB100G transitions automatically from START-SM to INIT state.

3.6.3.4 INIT state

INIT state is entered

- after completion of START-SM state and the NVM is loaded without error
- from DEEP-SLEEP state upon a wake-up event
- from RECOVERY-2 state when
- MCU sent the SPI command DO_POWER_CYCLE (only after SPI_PROTECT_ACCESS has been set) in ACTIVE or RECOVERY-1 state
- FBB pin voltage is below VFBB_UV_F and VS pin voltage above V_{PORVS F}
- Once thermal sensors detected a TSD event, the chip temperature has cooled down and the TSD counter has not reached 3
- A fault has been detected on a critical regulator output voltage (REGFAIL_GO_REC=1)
- 8 successive watchdog trigger faults have been detected
- In case a fault has been detected during the power-up sequence and the power-up retry counter does not reach 3, or LOOP_FOR_EVER bit is set to 1

DS14964 - Rev 1 page 34/239

3.6.3.5.1

In the INIT state, when the FBB pin voltage rises above V_{FBB_OK_R} (the minimum voltage allowing the SPSB100G to power up), the SPSB100G executes the digital BIST before initiating a power-up sequence.

3.6.3.5 ACTIVE state

ACTIVE state is the state reached after a successful power-up sequence, after the MCU has performed a read & clear of SPI error flags in RECOVERY-1 state, and triggered the watchdog in long open window timeout.

In ACTIVE state, the SPSB100G can be configured in FULL-POWER or LOW-POWER modes.

In both modes, the MCU can configure the watchdog timings and control the NFSO1 pin through the SPI. Reaction to fault detection is independent of the POWER modes.

FULL-POWER mode

FULL-POWER mode is the default mode when entering ACTIVE state from RECOVERY-1 state.

In FULL-POWER mode, all features of the SPSB100G are accessible and configurable by SPI registers, in particular the MCU can switch some regulators OFF to optimize ECU power consumption.

In FULL-POWER mode, regulator monitors are active and analog & digital BIST can be run on demand by the MCU. Watchdog is running and must be served, except if LOW_SET = 1111. The NFSO1 pin is controllable by SPI register.

3.6.3.5.2 LOW-POWER mode

LOW-POWER mode is accessible by SPI in ACTIVE state from FULL-POWER mode. In this mode the SPSB100G power consumption is reduced by:

- Turning OFF low-level hardware monitors
- Turning OFF the redundant voltage and current bias blocks
- Turning OFF NVM run time checks
- Turning OFF the ADC
- Analog and digital BIST shall not be executed on demand

In LOW-POWER mode

- The watchdog is running and must be served (except if WD_LP_ENA is set at 0), its timing is configurable to further reduce power consumption
- Central thermal monitoring is active
- If Buck1 and/or Buck2 and/or LDO1 is/are kept ON in a low-power setting, then OV and UV monitoring are active. See Section 6 for functional safety details.
- Other regulators must be turn OFF before to enter in LOW-POWER mode

The MCU can decide to leave this mode by SPI command and return to FULL-POWER mode.

In LOW-POWER mode, the VIO must be supplied and SPSB100G offers three possibilities:

- All regulators are turned OFF: In this case, VIO must be supplied by an external regulator
- Only Buck1 is kept ON in its low-power configuration. Buck1, or an external regulator, is used to supply VIO
- Buck1 and 2 are kept ON in their low-power configuration. Buck1 or 2, or an external regulator, is used to supply VIO.

3.6.3.5.3 Transitions between FULL-POWER and LOW-POWER modes

Transitions between the two modes are the responsibility of the MCU.

DS14964 - Rev 1 page 35/239

To transition to LOW-POWER mode, the following sequence must be performed by the MCU:

- Assert low NFSO1 output (optional)
- Reconfigure watchdog timing (optional)
- Disable watchdog by setting WD LP ENA = 0 (optional)
- Turn off FCCU monitoring feature
- Turn OFF Buck3 and LDO2 regulators
- Buck1 and/or Buck2 can be kept ON if one of it is used to supply VIO
- LDO1 can be kept ON to allow CAN-FD transceiver to transmit (optional)
- Configure wake-up sources and IRQ generation (optional)

Until this step, the SPSB100G is still in FULL-POWER mode, but with tuned settings.

Set SPI bit LOW_POWER_SET to 1 (only after SPI_PROTECT_ACCESS has been set)

This last action sets the SPSB100G in LOW-POWER mode, and the SPSB100G generates an interruption to confirm the proper transition to LOW-POWER mode (except if MASK_LP_READY_IRQ is set) and sets status bit LP_READY.

To transit from LOW-POWER to FULL-POWER mode, the following sequence must be performed by the MCU:

Clear SPI bit LOW_POWER_SET to 0 (only after SPI_PROTECT_ACCESS has been set)

This first action sets the SPSB100G in FULL-POWER mode, the SPSB100G generates an interruption to confirm the proper transition to FULL-POWER mode and sets status bit FP_READY. The MCU must wait for this confirmation before continuing, then:

- Turn ON other regulator(s) as per application needs
- Reconfigure watchdog timing to satisfy functional safety requirements (optional)
- Turn ON FCCU monitoring feature
- Trigger watchdog during LOW
- Configure wake-up sources and IRQ generation (optional)
- De-assert NFSO1 output

The low-level hardware monitoring is turned back ON when SPI bit LOW_POWER_SET is cleared. If a hardware fault is detected, the SPSB100G transitions asynchronously to DEEP-SLEEP state.

LOW_POWER_SET, FP_READY and LP_READY are not automatically cleared in case of transition due to hard fail.

3.6.3.6 RECOVERY-1 state

The SPSB100G enters RECOVERY-1 state in two cases

- from INIT state after the power-up sequence ended successfully
- from ACTIVE state after a WD trigger issue or a FCCU fault is detected

When entering RECOVERY-1 state

- NFSO1 output is asserted low
- FCCU monitoring is turned OFF
- WD starts a LOW, except if LOW_SET = 1111

In this state all voltage regulators are set according the power-up sequence settings stored in the USER-NVM. If any of the voltage regulators configured in the power-up sequence were switched off in ACTIVE state through the SPI, they are enabled upon entering RECOVERY-1 state.

The transition from RECOVERY-1 to ACTIVE state is started after the MCU has read and cleared error flags (if any, see chapter Section 9.8) and trigged the WD in LOW.

In RECOVERY-1 state, the MCU cannot de-assert NFSO1 output. Further WD trigger fault will generate a NRST low pulse of at least 4 ms. See the Watchdog paragraph for further details (Chapter Section 3.10). If FCCU is enabled by the MCU and an FCCU fault is detected, then the SPSB100G remains in RECOVERY-1 state and generates an NRST low pulse of at least 6 ms. See the FIN1 paragraph for details (Chapter Section 3.11).

DS14964 - Rev 1 page 36/239

3.6.3.7 RECOVERY-2 state

The SPSB100G enters RECOVERY-2 state from ACTIVE state and generates status register bit FSM_TO_REC2 = 0 in case of:

- DO POWER CYCLE SPI command (only after SPI PROTECT ACCESS has been set)
- The temperature of the central sensor exceeds the TSDC threshold
- A fault on one of the regulators occurs, and its REGFAIL GO REC configuration bit is set to 1
- The FBB pin voltage falls below its power-down threshold

The SPSB100G enters RECOVERY-2 state from ACTIVE state and generates status register bit REC2_FROM_DO_POWER_CYCLE = 01 in case of DO_POWER_CYCLE SPI command (only after SPI_PROTECT_ACCESS has been set). REC2_FROM_DO_POWER_CYCLE can be cleared by CLR_REC2_FROM_DO_POWER_CYCLE bit.

The SPSB100G enters RECOVERY-2 state from RECOVERY-1 state and generates status register bit FSM_TO_REC2 = 1 in case of:

- DO_POWER_CYCLE SPI command (only after SPI_PROTECT_ACCESS has been set)
- The temperature of the central sensor surpassed the TSDC threshold
- A fault on one of the regulators occurred and its REGFAIL_GO_REC configuration bit is set to 1
- 8 consecutive WD trigger faults
- The FBB pin voltage falls below its power-down threshold

The SPSB100G enters RECOVERY-2 state from RECOVERY-1 state and generates status register bit REC2_FROM_DO_POWER_CYCLE = 1X in case of DO_POWER_CYCLE SPI command (only after SPI_PROTECT_ACCESS has been set). REC2_FROM_DO_POWER_CYCLE can be cleared by CLR_REC2_FROM_DO_POWER_CYCLE bit.

When entering RECOVERY-2 state

- the NFSO1 output is asserted low
- FCCU monitoring is turned OFF
- NRST is asserted low and regulators are turned off according to the programmed power-Ddown sequence
- In case of a TSD event, the TSD counter is incremented and the SPSB100G waits for the temperature to cool down

From RECOVERY-2 state, the SPSB100G transitions to DEEP-SLEEP state for unrecoverable faults, or to INIT state to power up again.

3.6.3.8 DEEP-SLEEP state - Unrecoverable faults

The SPSB100G enters DEEP-SLEEP state from ACTIVE - FULL-POWER mode or REC-1 states in case of:

- DO POWER DOWN SPI command (only after SPI PROTECT ACCESS has been set)
- Power ground lost

The SPSB100G enters DEEP-SLEEP state from RECOVERY-1 state in case of:

- DO POWER DOWN SPI command (only after SPI PROTECT ACCESS has been set)
- Power ground lost
- 15 consecutive WD trigger faults

The SPSB100G enters DEEP-SLEEP state from RECOVERY-2 state in case of:

- The temperature of one sensor surpassed the TSD threshold and TSD counter (TSD_CNT_FAIL) reached
 3
- The counter of regulator (REG_FAIL_CNT) fail events reached 3

When entering DEEP-SLEEP state from ACTIVE or RECOVERY-1 states

- the NFSO1 output is asserted low
- FCCU monitoring is turned OFF
- NRST is asserted low and regulators are turned off according to the programmed power-down sequence

The SPSB100G remains in DEEP-SLEEP state until a wake-up event occurs. The design of the SPSB100G has been optimized to offer very low power consumption while being wake-able by external events.

DS14964 - Rev 1 page 37/239

DEEP-SLEEP state is also entered

- in case of HW low-level error, refer to Section 4.8 for details
- from INIT state in case of safety check error, refer to Section 4.17 for details
- in case of repeated power-up fault (refer to chapter Section 3.6.2.3)

3.7 Power-up and power-down sequence

The power-up and power-down sequences turn all the regulators ON and OFF automatically. The sequences are executed by the device state machine as described in Section 3.6 and are fully programmable through the USER-NVM space to cover a broad range of applications.

The sequences control Buck1, 2, 3 and LDO1, 2 regulators, together with the NRST pin.

3.7.1 Power-up sequence

The power-up sequence consists of 7 steps as described below.

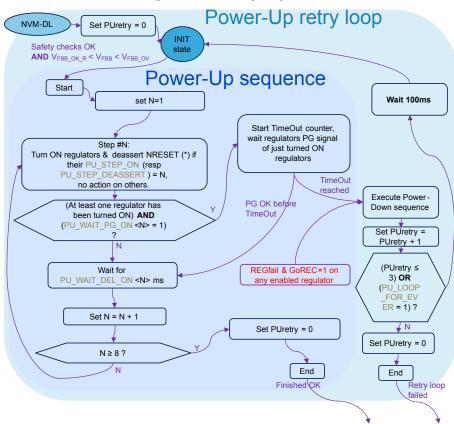


Figure 27. Power-up sequence

Each of Buck1, 2, 3, and LDO1, 2 can be turned ON with USER-NVM bits BUCK1_PU_STEP_ENA, BUCK2_PU_STEP_ENA, BUCK3_PU_STEP_ENA, LDO1_PU_STEP_ENA, LDO2_PU_STEP_ENA at any step from 1 to 7. None, or more than one, regulator can be turned ON at any step.

The NRST pin can be deasserted at any step from 1 to 7, with USER-NVM bits NRESET_PU_STEP_DEASSERT independently of regulators setting. Note that the watchdog timeout starts at the step where NRST is deasserted. After a regulator has been turned ON at step N, the sequence offers the possibility to wait for power-good signal with USER-NVM bits PU_WAIT_PG_ENA_X (X equal to steps from 1 to 7):

- If this option is selected, then the device waits for PG signal of all regulators turned ON at step N. A timeout is used to detect a fault; if the timeout expires, a power-down sequence is executed and a retry procedure is started as described in Section 3.6.2.3.
- If not, or when the PG level is reached, the sequence is paused for a programmable delay with USER-NVM bits PU_WAIT_DEL_ENA_X (X equal to steps from 1 to 7) before proceeding to the next step.

DS14964 - Rev 1 page 38/239

While the sequence executes, any regulator fault is managed as per its REGFAIL_GO_REC setting as described in Section 3.6.2.5.

3.7.2 Power-down sequence

The power-down sequence consists of 7 steps as described below.

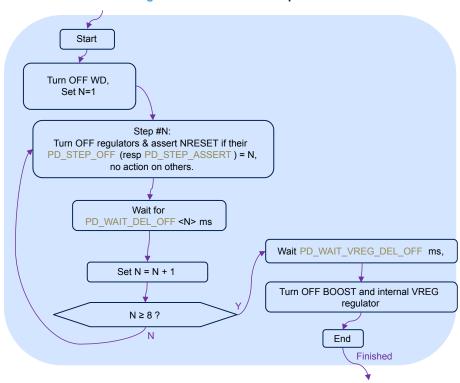


Figure 28. Power-down sequence

Each of Buck1, 2, 3, and LDO1, 2 can be turned OFF with USER-NVM bits BUCK1_PD_STEP_OFF, BUCK2_PD_STEP_OFF, BUCK3_PD_STEP_OFF, LDO1_PD_STEP_OFF, LDO2_PD_STEP_OFF at any step from 1 to 7. None, or more than one regulator can be turned OFF at any step.

The NRST pin can be asserted at any step from 1 to 7 with USER-NVM bits NRESET_PD_STEP_ASSERT, independently of regulator settings. Note that the watchdog is stopped before step 1.

After a regulator has been turned OFF at step N, the sequence offers the possibility to wait for a programmable delay with USER-NVM bits PD_WAIT_DEL_OFF_X (X equal to steps from 1 to 7).

When the sequence ends, an extra delay can be programmed before turning OFF the BOOST and internal VREG with USER-NVM bits PD_WAIT_VREG_DEL_OFF.

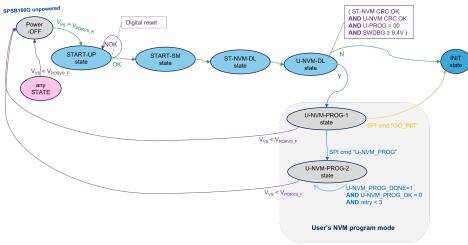
3.8 User NVM modification procedure

The SPSB100G integrates a Non-Volatile Memory (NVM) to store ST factory trim data and customer personalization data. Trim data are stored in the ST-NVM space, while customer data are stored in the USER-NVM space.

The SPSB100G is delivered out of ST factory with default values stored in the USER-NVM space. Default values ensure proper behavior of the application with a SR6x microcontroller, as in the Configuration 1 shown in Figure 7. Details of default power-up and -down settings can be found in Section 3.1.1.

The customer has the option to reprogram the USER-NVM space only once, or use the default values stored by ST.

The U_NVM_RELEASE<15:0> bits in the USER-NVM space can be used to store a USER-NVM configuration release. The default value is 0d.


DS14964 - Rev 1 page 39/239

The following figure illustrates how to program the NVM. The following color code is used to indicate the offered possibilities:

- Green: The SPSB100G starts up with valid data stored in the ST-NVM and USER-NVM (USER-NVM previously programed by ST or by the customer)
- Blue: The SBSP100 enters the USER-NVM programming procedure
- Orange: The USER-NVM emulation feature is used

Figure 29. NVM programming procedure

3.8.1 Start-up with valid NVM data and NVM faults management

The ST-NVM data are read in the ST-NVM-DL state, then the USER-NVM data are read in the U-NVM_DL state. If the conditions to enter the USER-NVM modification procedure are not met, the state machine proceeds to INIT state where further safety checks will be performed.

3.8.2 USER-NVM emulation procedure

It is possible to emulate the USER-NVM content using the data stored in the RAM image.

This can only be done when the USER-NVM has not been programmed by the user.

To do so, force the voltage on the SWDBG higher than $V_{NVM_EMU_H}$ (20 V max), before plugging in the power supply, to enter the USER-NVM modification mode. The modification mode is entered after current ST- and U-NVM data have been read and their CRC checked.

First, the state machine enters the USER-NVM-PROG-1 state. In this state, the user must supply V_{IO} externally (3.3 or 5.0 V).

At this stage, the SWDBG pin can be released and does not have to be maintained higher than $V_{NVM_EMU_H}$. The user can then modify the USER-NVM RAM through SPI access and the U_NVM SPI registers from DCR10 up to DCR28 can be written.

When completed, the user can set the GO_INIT through SPI access. This results in the state machine transitioning to the INIT state.

It is forbidden to enable regulators in the USER-NVM-PROG-1 state.

The USER-NVM emulated values are lost if the power supply at the VS pin is below VPORVS R.

During emulation mode, the values of the U_NVM_CRC0 and U_NVM_CRC1 bits in DCR17 and DCR25 are not considered by the device.

In USER-NVM emulation mode, the runtime check of the USER-NVM is disabled. For this reason, the USER-NVM emulation mode shall be used for debug purposes only.

3.8.3 USER-NVM programming procedure

The user can emulate the USER-NVM as many times as they want, as long as the USER-NVM is not programmed by the user. Once programmed by the user, the USER-NVM cannot be emulated and the device proceeds with valid data stored in the USER-NVM.

DS14964 - Rev 1 page 40/239

To program the USER-NVM, it is necessary to first emulate the USER-NVM with the desired configuration. During this emulation for programming, the user must perform at least a write to DCR17 and DCR25 with any value corresponding to their need. This is necessary to initiate some bits that will be used to allow for proper programming. The USER-NVM uses NVM CRC to check that NVM content is correct, but during programming, the user does not have to take care of this because the correct CRC will be calculated by the SPSB100G from emulated data and will be programmed with emulated data.

Then, instead of the GO_INIT bit set through SPI access, the user must set the U-NVM_PROG bit (only after SPI_PROTECT_ACCESS has been set). This starts the USER-NVM programming and sets the device to USER-NVM-PROG-2 state.

When the USER-NVM programming is completed, the status bit NVM_PROG_DONE is set. The user can read this status bit through SPI access. When this bit is set, the user can read the NVM_PROG_OK status bit to verify that the USER-NVM programming has been completed correctly, because the USER-NVM programming is followed by the USER-NVM verification.

If the USER-NVM programming has failed and the NVM_PROG_OK status bit is low when the NVM_PROG_DONE status bit is set, the user may request a new programming by resetting the U-NVM_PROG control bit (only after SPI_PROTECT_ACCESS has been set), then setting this bit again. This operation can be done twice, so there is a maximum programming possibility of three times. If at the end of three USER_NVM programming requests, NVM_PROG_OK is still low when NVM_PROG_DONE is high, the chip cannot be programmed anymore and cannot start correctly. In this case, any new programming request will be ignored. After a valid USER-NVM programming procedure, the U_NVM SPI registers from DCR10 to DRC28 can only be readable.

3.8.4 Loading USER-NVM data into RAM image

To program the USER-NVM, it is necessary to load the data (CRC included) into a dedicated portion of the RAM. This is done automatically by the state machine.

3.9 Wake-up inputs: IGN and WU

3.9.1 Standard wake-up functionality

Both inputs can be configured as wake-up sources (through the IGN_ENA and WU_ENA control bits). In particular, the IGN input can be used as a wake-up source connected to ignition (KL15) via a resistor.

The voltage can also be read back via SPI through 10-bit ADC monitoring (IGN[9..0] bits, in addition to WU[9..0] ones).

Each wake-up input is sensitive to any level transition (positive and negative edge) and can be configured for static or cyclic monitoring of the input voltage level by suitable setting of WU_FILT and IGN_FILT bits, which allows to choose between static or cyclic monitoring with a timer. When the configuration of a timer is changed, the timer is automatically restarted using the new configuration.

For static contact monitoring, a filter time of t_{WU_stat} , t_{IGN_stat} is implemented. The filter is started when the input voltage crosses the specified thresholds V_{wuthp} , V_{IGNthp} (both thresholds are linked to the V_{FBB} level). The wake-up status bits (WU_WAKE and IGN_WAKE bits) are set only if this threshold is exceeded for longer than t_{WU_stat} , t_{IGN_stat} .

Cyclic contact monitoring instead allows for periodical (not threshold dependent) activation of the wake-up input to read the status of the external contact. The periodical activation is driven by a timer whose settings (on-time and period) can be configured through the T1 PER[2..0] and T1 ENA[2..0] bits.

The input signal is filtered with a filter time of t_{WU_cyc} (t_{IGN_cyc}) after a delay (80% of the configured timer on-time). A wake-up is processed if the status has changed from the previous cycle. Therefore, the wake-up status WU_WAKE and IGN_WAKE bits are set only if the status during a subsequent on-time is different, after the configured delay and t_{WU_cyc} (t_{IGN_cyc}). This can be done only if WU_CONFIG and IGN_CONFIG are configured as wake-up inputs.

In ACTIVE LOW-POWER or DEEP-SLEEP modes, the WU and IGN inputs are configurable with an internal pull-up or pull-down current source according to the WU_PU and IGN_PU SPI bits set up.

In ACTIVE FULL-POWER mode, the inputs have an internal pull-down resistor (RWU_act) and the input status can be read by WU_STATE and IGN_STATE. This can be done only if WU_CONFIG and IGN_CONFIG are configured as wake-up inputs and if WU_ENA and IGN_ENA are set high.

The output OUT_HS can be used to supply the external contacts with the timer setting according to the cyclic monitoring of the wake-up input.

DS14964 - Rev 1 page 41/239

If WU_ENA = 1 and WU_CONFIG = 1, the wake-up capability and the voltage measurement through ADC are both activated on the WU pin.

If IGN_ENA = 1 and IGN_CONFIG = 1, the wake-up capability and the voltage measurement through ADC are both activated on the IGN pin.

3.9.2 Extended wake-up functionality

It is possible to inhibit the DEEP-SLEEP transition by using the WAKEUP_GO_TO_DEEP_SLEEP_INH bit. For example, when the SPSB100G is woken up by external transceivers as shown below:

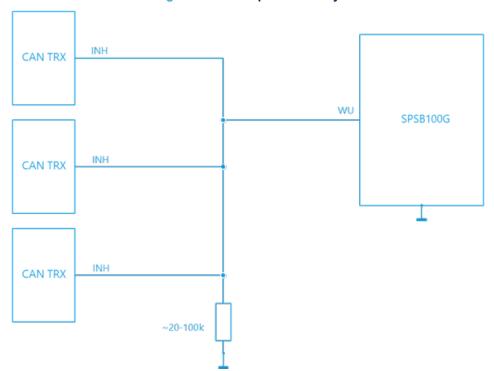


Figure 30. Wake-up functionality

To activate this extended wake-up functionality for the SPSB100G, the bit WAKEUP_GO_TO_DEEP_SLEEP_INH must be set to "1". In this case, the request via the DCR bit DO_POWER_DOWN to transition to DEEP-SLEEP mode will be considered only if no wake-up events occur before the execution of the power-down sequence. In this case, the SPSB100G inhibits the transition to DEEP-SLEEP state and the SPSB100G remains in ACTIVE state.

Note: Extended wake-up functionality is intended to force the MCU to take into account all wake-up events before requesting the power-down sequence.

3.10 Configurable time-out window watchdog

During normal operation, the watchdog monitors the microcontroller within a programmable trigger cycle (see Figure 66 and Figure 67).

After a power-up sequence, the watchdog starts with a long open window t_{LW} . The watchdog allows the microcontroller to run its own setup, and then to start the window watchdog by setting WD TRIG=1.

The long open window (t_{LW}) is configurable via the USER-NVM through the bits LOW_SET [3..0].

Subsequently, the microcontroller has to serve the watchdog by alternating the watchdog trigger bit within the safe trigger area T_{SWX} (see Figure 66). The trigger time is configurable via SPI.

A correct watchdog trigger signal will immediately start the next cycle.

A watchdog trig will not take into account if the NRST pin is low.

DS14964 - Rev 1 page 42/239

If LOW_SET [3..0] is set at "1111", the long open window is set to an infinite duration. In this case, if the application does not require a watchdog, the microcontroller must not trigger the watchdog. So, the device will transition from REC-1 to ACTIVE FULL-POWER after a read and clearing of error flags. If the watchdog is triggered even with LOW_SET [3..0] set to "1111", the watchdog starts with the default window and then has to be served. Note that in the case of LOW_SET = 1111, so in case the watchdog service is disabled, it must be considered in the safety analysis based on FIT calculation, as described in the Safety Manual.

The watchdog trigger time can be configured by setting the WD_TIME [3..0] bits (only after SPI_PROTECT_ACCESS has been set) and the default value is 0001 (window 2). The change of watchdog window timing through WD_TIME in the SPI registers cannot be done when the watchdog is in long open window counting.

The microcontroller can read the LOW_STATUS bit to ascertain if the watchdog is in long open window phase (when LOW_STATUS is high) or in normal window (when LOW_STATUS is low). When in the long open window phase, the LOW_STATUS bit is high even if the watchdog is in infinite long open window. When not in infinite long open window, if FSM is in ACTIVE_HP or ACTIVE_LP state, the LOW_STATUS is low and watchdog counts in normal window. When LOW_STATUS is high, the current watchdog LOW is given by LOW_SET[3:0]. When LOW_STATUS is low, the current watchdog window is given by WD_TIME_STATUS[3:0]. During REC-1 FSM state, WD_TIME[3:0] cannot be written because the watchdog is counting in a long open window.

In case of WD_FAIL or FCCU_FAIL, the watchdog starts in a long open window when NRST rises. In this case, the watchdog trig bit is automatically cleared. So, the microcontroller can trigger the watchdog with a WD_TRIG bit high.

The new value of WD_TIME is loaded into the watchdog module on the next trig event after the SPI configuration. The following watchdog cycle uses the new programmed value.

This means that when a watchdog is running on a current window, to change the window, the microcontroller must:

- 1. write the new watchdog window in WD TIME(3-0)
- 2. trig the watchdog in the current window.

Doing this, the watchdog restarts using the new window.

It is possible to disable the watchdog in ACTIVE – LOW-POWER mode only through the WD_LP_ENA bit set to "0" (only after SPI_PROTECT_ACCESS has been set). If WD_LP_ENA is set high again during ACTIVE - LOW-POWER mode, the watchdog will stay disabled and will restart with a long open window after the transition from ACTIVE-LP to ACTIVE-FP.

Note:

Using WD LP ENA = 0 can mask a MCU issue during LOW-POWER mode.

Fault conditions can be detected through the following bits:

The status bit WD_ENA_ECHO indicates that the watchdog is running when high. The status bit
WD_ENA_ECHO_ERROR indicates a watchdog echo error and generates an IRQ. This error can be
masked by MASK_WD_ENA_ECHO_ERROR_IRQ. In case of watchdog fail, a flag WDFAIL is set and the
watchdog fail counter WDFAIL_CNT is incremented up to 15 consecutive watchdog trig faults. After 15
consecutive watchdog trig faults, the bit FORCED_SLEEP_WDFAIL is set and the device will reach the
DEEP-SLEEP state.

Note:

The bit FORCED_SLEEP_WDFAIL will be set even if the device will not transition to DEEP-SLEEP, in case WAKEUP_GO_TO_DEEP_SLEEP_INH is used. See chapter Section 3.9.2.

- WDFAIL_CNT can be reset by the CLR_WDFAIL_CNT bit.
- The microcontroller can ascertain the current state of the watchdog by reading WD_TIMER_STATE = 0, WD trig is a too early window trig, WD_TIMER_STATE = 1, WD trig is in valid window trig.

Note:

A delay of 120 µs should be added after WD_TIMER_STATE reaches 1 to guarantee a valid window when WD_TIME setting = 0x00, 0x01, 0x02, 0x09 to 0x0F and a delay of 1.2 ms when WD_TIME setting = 0x03 to 0x08.

Watchdog mask function:

In the ACTIVE state, it is possible to temporarily mask the watchdog fail effect by masking the NRST via SPI, setting WD_NRST_MASK = 1 (only after SPI_PROTECT_ACCESS has been set). In this case, the NRST is still asserted high during the eight successive watchdog trig faults.

After a power cycle, the WD_NRST_MASK is cleared to "0" (default value). If WD_NRST_MASK = 0, the NRST happens normally in case of WDG fail.

DS14964 - Rev 1 page 43/239

The following steps manage the watchdog mask function for the MCU bootloader:

- 1. Before going to the bootloader, the MCU needs to deactivate FCCU and read the status register to make sure no fccu fail is present.
- 2. MCU sets WD_NRST_MASK=1 and enters the bootloader to reflash software or to do other operations.
- 3. After exiting the bootloader, the MCU has to make three consecutive trigs: 1 0 1.
- 4. It will reset the WD internal counter whatever the state of the WD: RESET, LONG_OPEN, NORMAL. If in LOW or NORMAL, wd fail will occur (sending trigs at 1 in RESET state ensures the reset of the counter).
- 5. Wait at least 5 ms (the NRST duration) to ensure being in the long open window.
- 6. The MCU can read LOW_STATUS to be sure of being in LOW (optional).
- 7. Unmask NRST: WD_NRST_MASK=0.
- 8. Start feeding WD with trig at '1' as needed in LOW.

3.11 FIN1 input

SPSB100G integrates an MCU fault monitoring called FCCU. FCCU block can be configured to detect error reported by the MCU through FIN1 input. Two error reporting protocols are available: static and dynamic protocols.

3.11.1 Static protocol

In this protocol MCU signals its own errors to SPSB100G by driving FIN1 input pin at low or high level. MCU shall configure the SPSB100G FCCU block as following:

- FCCU PROTOCOL shall be reset to 0
- FCCU_STATIC_ERROR shall be reset to 0 if MCU signals error driving FIN1 low, or set to 1 if MCU signals
 error driving FIN1 high
- MCU shall drive FIN1
- FCCU_ENA shall be set at 1 to enable the monitoring feature (only after SPI_PROTECT_ACCESS has been set)

3.11.2 Dynamic protocol

In this protocol, the MCU signals its own error to SPSB100G by increasing the period, or half period, of the toggling signal sent to FIN1 input.

The FCCU block shall be programmed to monitor the half period of the toggling signal received on FIN1. The FCCU block is made of a counter clocked by a 400 kHz clock derived from the main oscillator, the counter is reset at each transition on FIN1 input. If the counter overflows, an error is signaled.

The counter overflow threshold is programmed on FCCU_COUNTER<12:0> (only after SPI_PROTECT_ACCESS has been set). The oscillator accuracy shall be considered to calculate the value of this threshold, the following formula can be used:

FCCU_COUNTER > FIN1_half_period * (400 kHz+ main oscillator accuracy)

Example: with an MCU toggling signal at 4 882.8 Hz (min) with 50% of duty cycle, and 20% accuracy of SPSB100G oscillator

FCCU_COUNTER > $(204.8 / 2) \mu s * (400 \text{ kHz} * 1.2) = 49.15$, gives FCCU_COUNTER = 50 at minimum The MCU shall configure the SPSB100G FCCU block as follows:

- FCCU_PROTOCOL shall be set to 1
- FCCU_STATIC_ERROR can be used to configure an internal pull-up (set to 1) or an internal pull-down (reset to 0) on FIN1 input
- FCCU_COUNTER shall be loaded to the overflow threshold (only after SPI_PROTECT_ACCESS has been set)
- MCU shall drive FIN1 with the proper toggling signal
- FCCU_ENA shall be set at 1 to enable the monitoring feature (only after SPI_PROTECT_ACCESS has been set)

Each time a transisiton is detected on FIN1 input, the register FCCU_LAST_STABLE<12:0> is loaded with the last value of the FCCU counter. The MCU can read back this value through SPI.

DS14964 - Rev 1 page 44/239

3.11.3 Reaction on error

When an error is detected by the MCU fault monitoring, the NRST pin is asserted low, the status bit FCCUFAIL shall be set, the state machine reacts as described in Chapter Section 3.6.2.2. The live status bit FIN1_STATE shows the current state of the FIN1 input.

To properly restart FCCU block after a FCCUFAIL detection, MCU has to write FCCU_ENA=0, clear FCCUFAIL flag and re enable the monitoring by setting FCCU_ENA=1.

The live bit FCCU ENA STATUS reflect the state of FCCU block.

3.12 High-side output OUT HS

In ACTIVE, FULL-POWER or LOW-POWER modes, and in DEEP-SLEEP states, the high-side driver output OUT_HS can be configured for supplying external loads or contacts.

The High-side output can either be controlled:

- Permanently ON (OUTHS_[1..0] = 01)
- Permanently OFF (OUTHS_[1..0] = 00)
- Through an Internal Timer (OUTHS [1..0] = 1x).

In timer mode configuration (when TIMER_ENA= 1) the activation period can be configured through the bits T1_PER [2..0] in the following range {10, 20, 50,100, 200, 500, 1000, 2000 ms}.

On-time is configurable through bits T1_ENA[1..0] in the following range {0.1, 0.3, 1, 10, 20 ms}.

In case the wake-up Inputs WU and IGN are configured in cyclic sense mode (WU_FILT=1, IGN_FILT=1), the capture of their input state is synchronized with the high-side timer mode:

- A switched ON delay time tDON_OUT_HS is applied after the high-side is turned ON
- A switched OFF delay time tDOFF OUT HS is applied after the high-side is turned OFF
- A fixed filter time of tWU_cyc is applied after blanking time has elapsed before refreshing the WU_WAKE or IGN_WAKE.
- In case of status change detection between the previous and the new captured state, the status bits WU_WAKE and IGN_WAKE will be set in status register. Depending on the dedicated settings applied on each wake-up input, wake-up detection could wake up the SPSB100G and/or generate an interrupt signal on the IRQ pin.

In case of overcurrent, detection is done by OUTHS_OC bit, OUTHS driver is switched off after filter time toc_out_hs and an IRQ is generated except if MASK_OUTHS_IRQ is set.

After an OC detection, OUTHS can be re-enabled by clearing status bit OUTHS_OC.

In case of open load, detection is done by OUTHS_OL bit, an IRQ is generated except if MASK_OUTHS_IRQ is set

The live bit OUTHS ENA STATUS reflects the state of OUTHS output.

Note:

The high-side driver OUT_HS is intended to drive resistive loads only. Therefore, only limited energy (E < 1 mJ) can be dissipated by the internal ESD diodes in freewheeling condition. For inductive loads (L > 100 μ H), an external freewheeling diode connected between GND and the OUT_HS pin is required.

3.13 Fail-safe output - NFSO1

The NFSO1 is asserted low when a fault event is detected. The objective of this pin is to drive an electrical safe circuitry independent from the MCU to deactivate the whole system and set the ECU to a protected and known state.

The NFSO1 pin is an open-drain output. An external pull-up circuitry must be connected to VIO or VBAT. The NFSO1 pin is controlled by an asynchronous OR of

- asynchronous supervisor of internal voltage reference. When a difference between the main and monitoring voltage reference is detected, the NFSO1 pin is asserted low
- synchronous monitor of main oscillator. When an oscillator frequency drift or a stuck-at condition is detected, the NFSO1 pin is asserted low
- when a watchdog or FCCU fail occurs, the NFSO1 pin is asserted low
- the SPI control bit NFSO_ASSERT_LOW writing effect is considered only in ACTIVE FULL-POWER mode (only after SPI_PROTECT_ACCESS has been set)
 - NFSO ASSERT LOW = 1: pin is asserted low
 - NFSO_ASSERT_LOW = 0: pin is in high impedance. Its level is defined by external pull-up

DS14964 - Rev 1 page 45/239

To avoid extra current drain consumption in DEEP-SLEEP due to the external pull-up on the NFSO1 pin, the default state can be selected via the user-NVM bit NFSO_STATE_IN_DEEP_SLEEP. When NFSO_STATE_IN_DEEP_SLEEP = 0, the NFSO1 pin is asserted (low), instead when NFSO_STATE_IN_DEEP_SLEEP = 1, the NFSO1 in deasserted (high) in DEEP-SLEEP.

The state machine can only set NFSO_ASSERT_LOW to 1, while the MCU can set, reset and read it, making the NFSO1 pin fully controllable by the MCU in ACTIVE state.

The SPI bit NFSO1_ECHO is sensing the NFSO1 state on its silicon pad:

- NFSO1 ECHO = 0: NFSO1 output pad is asserted low
- NFSO1_ECHO = 1: The NFSO1 output pad is pulled up by external circuitry

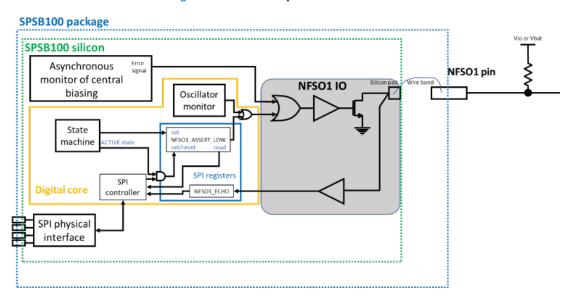


Figure 31. NFSO1 implementation details

After a battery plug, after each power-up sequence, during a power-down sequence, or in INIT, REC-1, REC-2, DEEP-SLEEP states, the NFSO1 pin is asserted low. This is ensured by the state machine that sets the SPI bit NFSO_ASSERT_LOW to 1. In ACTIVE state, the MCU can decide to release the NFSO1 pin through the SPI when the application is ready to start.

Note that NFSO1 reaction on fault is masked to avoid to react due to an ABIST request. This implementation generates a false NFSO_ECHO_ERROR flag in case of an ABIST request is done before asserting NFSO high (by SPI command writing NFSO_ASSERT_LOW = 0).

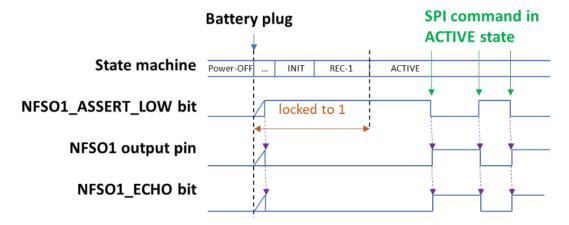


Figure 32. NFSO1 output pin behavior at battery plug

DS14964 - Rev 1 page 46/239

MASK_BUCK1_IRQ

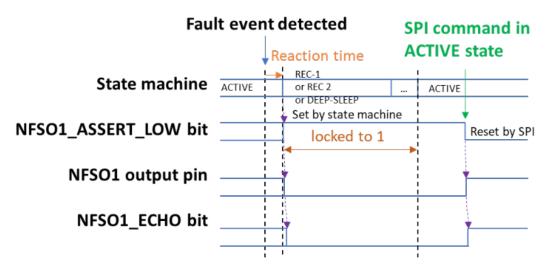


Figure 33. NFSO1 output pin behavior after a failure is detected

3.14 Interrupt - IRQ

BUCK1_INT_FAIL

The IRQ pin is an open-drain with an internal pull-up for echo generation. An external pull-up to V_{IO} level close to the MCU is strongly recommended. The IRQ pin is set low if any of the following events occur, as shown in the table below.

SPI status bit name	IRQ generated	IRQ SPI mask name
ABIST_COMPLETE	Y	not maskable
LBIST_COMPLETE	Y	not maskable
BOOST_IN_LP	Y	MASK_BOOST_IN_LP_IRQ
BOOST_VDSMON_ERROR	Y	MASK_BOOST_VDSMON_IRQ
BUCK1_OC	Y if BUCK1_REGFAIL_GO_REC=0	MASK_BUCK1_OC_IRQ
BUCK1_OV	Y if BUCK1_REGFAIL_GO_REC=0	MASK_BUCK1_IRQ
BUCK1_FB	Y if BUCK1_REGFAIL_GO_REC=0	MASK_BUCK1_IRQ
BUCK1_PG_OK	Y	MASK_BUCK1_PG_IRQ
BUCK1_PG_TIMEOUT	Y	MASK_BUCK1_PG_TIMEOUT_IRQ
BUCK1_UV	Y if BUCK1_REGFAIL_GO_REC=0	MASK_BUCK1_IRQ
BUCK2_OC	Y if BUCK2_REGFAIL_GO_REC=0	MASK_BUCK2_OC_IRQ
BUCK2_OV	Y if BUCK2_REGFAIL_GO_REC=0	MASK_BUCK2_IRQ
BUCK2_FB	Y if BUCK2_REGFAIL_GO_REC=0	MASK_BUCK2_IRQ
BUCK2_PG_OK	Y	MASK_BUCK2_PG_IRQ
BUCK2_PG_TIMEOUT	Y	MASK_BUCK2_PG_TIMEOUT_IRQ
BUCK2_UV	Y if BUCK2_REGFAIL_GO_REC=0	MASK_BUCK2_IRQ
BUCK3_OC	Y if BUCK3_REGFAIL_GO_REC=0	MASK_BUCK3_OC_IRQ
BUCK3_OV	Y if BUCK3_REGFAIL_GO_REC=0	MASK_BUCK3_IRQ
BUCK3_PG_OK	Y	MASK_BUCK3_PG_IRQ
BUCK3_PG_TIMEOUT	Y	MASK_BUCK3_PG_TIMEOUT_IRQ
BUCK3_UV	Y if BUCK3_REGFAIL_GO_REC=0	MASK_BUCK3_IRQ

Table 9. IRQ events

DS14964 - Rev 1 page 47/239

Y if BUCK1_REGFAIL_GO_REC=0

SPI status bit name	IRQ generated	IRQ SPI mask name
BUCK2_INT_FAIL	Y if BUCK2_REGFAIL_GO_REC=0	MASK_BUCK2_IRQ
BUCK3_INT_FAIL	Y if BUCK3_REGFAIL_GO_REC=0	MASK_BUCK3_IRQ
BYPASS_VDSMON_ERROR	Υ	MASK_BYPASS_VDSMON_IRQ
NFSO1_ECHO_ERROR	Υ	MASK_NFSO1_ECHO_ERROR_IRQ
FBB_OV	Y	MASK_FBB_OV_IRQ
FBB_OV_EW	Υ	MASK_FBB_OV_EW_IRQ
FBB_UV	Υ	MASK_FBB_UV_IRQ
FBB_UV_EW	Υ	MASK_FBB_UV_EW_IRQ
FCCU_ENA_ECHO_ERROR	Y	MASK_FCCU_ENA_ECHO_ERROR_IR Q
IRQ_REQUEST	Y	not maskable
LDO1_PG_OK	Y	MASK_LDO1_PG_IRQ
LDO1_PG_TIMEOUT	Υ	MASK_LDO1_PG_TIMEOUT_IRQ
LDO1_UV	Y	MASK_LDO1_IRQ
LDO2_OV	Y	MASK_LDO2_IRQ
LDO2_PG_OK	Y	MASK_LDO2_PG_IRQ
LDO2_PG_TIMEOUT	Y	MASK_LDO2_PG_TIMEOUT_IRQ
LDO2_UV	Y	MASK_LDO2_IRQ
NVM_PROG_DONE	Y	not maskable
OUTHS_OC	Y	MASK_OUTHS_IRQ
OUTHS_OL	Y	MASK_OUTHS_IRQ
SPI_ALL_WAKEUP_DISABLE	Y	MASK_SPI_ERROR_IRQ
SPI_REG_COMP_ERROR	Y	MASK_SPI_ERROR_IRQ
SPI_CLK_CNT	Y	MASK_SPI_ERROR_IRQ
SPI_CRC_ERR	Y	MASK_SPI_ERROR_IRQ
SPI_CSN_TIMEOUT	Υ	MASK_SPI_ERROR_IRQ
SPI_LBISTED	Y	MASK_SPI_ERROR_IRQ
SPI_SDI_STUCK_HIGH	Y	MASK_SPI_ERROR_IRQ
SPI_SDI_STUCK_LOW	Y	MASK_SPI_ERROR_IRQ
SPI_STATUS_WRT	Y	MASK_SPI_ERROR_IRQ
SPI_UNDEF_ADD	Y	MASK_SPI_ERROR_IRQ
VS_UV_EW	Y	MASK_VS_EW_IRQ
TSD_CL1	Y if BUCK1_REGFAIL_GO_REC=0	not maskable
TSD_CL2	Y if BUCK2_REGFAIL_GO_REC=0	not maskable
TSD_CL3	Y if BUCK3_REGFAIL_GO_REC=0	not maskable
TSD_CL4	Y if LDO2_REGFAIL_GO_REC=0	not maskable
TW_CL0	Y	MASK_CL0_TW_IRQ
TW_CL1	Y	MASK_CL1_TW_IRQ
TW_CL2	Y	MASK_CL2_TW_IRQ
TW_CL3	Y	MASK_CL3_TW_IRQ
TW_CL4	Y	MASK_CL4_TW_IRQ
IGN_WAKE	Y	not IGN_ENA

DS14964 - Rev 1 page 48/239

SPI status bit name	IRQ generated	IRQ SPI mask name
TIMER_WAKE	Y	not TIMER_WAKE_ENA
WU_WAKE	Υ	not WU_ENA
SWDBG_VIO	Y	MASK_SWDBG_VIO_IRQ
WD_ENA_ECHO_ERROR	Y	MASK_WD_ENA_ECHO_ERROR_IRQ
FP_READY	Υ	not maskable
LBIST_STOPPED		not maskable
LP_READY	Υ	MASK_LP_READY_IRQ

Interrupt is an NOR of all information, except if some masks are set. A read & clear of all set flags is needed to allow the IRQ pin to be set high.

The interrupt output pin indicates:

- warnings and errors which must be reported to the MCU
- Confirms a requested action from the MCU

3.15 Reset output - NRST

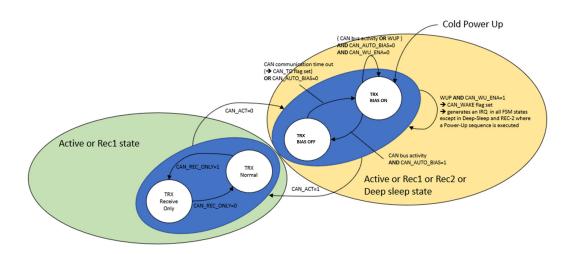
The NRST pin is an open-drain with an internal pull-up for echo generation. An external pull-up to V_{IO} level close to the MCU is strongly recommended.

The aim of the NRST output is to drive the MCU NRST input pin.

The NRST is released after a proper power-up sequence before reaching the RECOVERY-1 state, and is asserted low after t, in case of error as described in Section 3.6.3.

3.16 CAN FD bus transceiver (only for SPSB100G)

3.16.1 Features


- ISO 11898-2:2016 compliant
- CAN-FD cell has been designed according to IEC 62228-3
- Listen mode (transmitter disabled)
- Supported bitrates of at least 2 Mb/s for operation (5 Mb/s max bit rate)
- Function range from -27 V to +40 V DC at CAN pins
- GND disconnection fail-safe at module level
- GND shift operation at system level
- Microcontroller interface with CMOS compatible I/O pins
- ESD and transient immunity according to IEC 62215-3 and ISO 10605 per IEC 62228-3 standard
- Matched output slopes and propagation delay

DS14964 - Rev 1 page 49/239

3.16.2 CAN transceiver operating modes

Figure 34. Transceiver state diagram

TRX BIAS modes

After power-on reset ($V_S > V_{PORVS_R}$), the CAN transceiver is disabled and is by default in TRX BIAS OFF. The RxD C pin is kept at high level (recessive state) in REC-1 and ACTIVE states.

There is no automatic state transition into TRX Normal mode after a detection of a CAN wake-up signal (WUP). CAN TRX BIAS mode includes two possible submodes: BIAS ON and BIAS OFF depending on the

CAN_AUTO_BIAS bit (compliant with ISO 11898-2:2016). In BIAS ON, CAN_H is set at V_{CANHrec} level and CAN_L level is set at V_{CANLrec} level.

In TRX BIAS ON, if CAN_AUTO_BIAS is set at "1" and there has been no activity on the bus for a time longer than tsilence, then the bus lines are biased towards 0 V and the flag CAN_TO is set. An IRQ is generated except if MASK_CAN_IRQ is set to "1".

The live bit CAN_AUTO_BIAS_STATUS reflects the state of CAN auto biasing.

TRX normal mode

The transceiver can be enabled by setting CAN_ACT = 1.

The live bit CAN_ACT_STATUS reflect the state of the CAN transceiver.

Full functionality of the CAN-FD transceiver is available (transmitter and receiver) in ACTIVE and REC-1 states. The voltage biasing is automatically enabled.

TRX Receive Only mode

In TRX Normal mode it is possible to disable the CAN transmitter by setting the CAN_REC_ONLY bit. In this mode, it is possible to listen to the bus but not send to it. The receiver termination network is still activated in this mode.

3.16.3 CAN error handling

The device provides the following five error handling features.

The CAN transmitter is disabled automatically in case of the following errors:

- Dominant TxD C timeout
- CAN permanent recessive
- RxD_C permanent recessive
- Thermal shutdown on Th_CL0
- Undervoltage on LDO1

The CAN receiver is not disabled in case of any failure condition.

Dominant TxD_C time out

DS14964 - Rev 1 page 50/239

If TxD_C is in dominant state (low) for $t > t_{dom}(TxD_C)$, the transmitter will be disabled, the status bit will be latched and can be read and optionally cleared by SPI (CAN_TXD_DOM bit). An IRQ is generated except if MASK CAN IRQ is set at "1". The transmitter remains disabled until the status register is cleared.

CAN Bus Permanent Recessive

If TxD_C changes to dominant (low) state but CAN bus does not follow for four times, the transmitter will be disabled, the status bit will be latched and can be read and optionally cleared by SPI (CAN_PERM_REC bit). An IRQ is generated except if MASK_CAN_IRQ is set at "1". The transmitter remains disabled until the status register is cleared.

CAN Permanent Dominant

If the bus state is dominant (low) for $t > t_{CAN}$, a permanent dominant status will be detected. The status bit will be latched and can be read and optionally cleared by SPI (CAN_PERM_DOM bit). An IRQ is generated except if MASK CAN IRQ is set at "1". The transmitter will not be disabled.

RxD C Permanent Recessive

If RxD_C pin is clamped to recessive (high) state, the controller is not able to recognize a bus dominant state and could start messages at any time, which results in disturbing the overall bus communication.

Therefore, if RxD_C does not follow TxD_C for four times, the transmitter will be disabled. The status bit will be latched and can be read and optionally cleared by SPI (CAN_RXD_REC bit). An IRQ is generated except if MASK CAN IRQ is set at "1". The transmitter remains disabled until the status register is cleared.

Thermal shut-down detection on cluster TSD CL0

If the CLO temperature sensor exceeds the shut-down threshold, then the transmitter is disabled, the status bit is latched and can be read and optionally cleared by SPI (TSD_CL0 bit). The transmitter remains disabled until the status register is cleared.

LDO1 undervoltage

If LDO1 output voltage decreases below the LDO1_UV threshold, the transmitter is disabled. The status bit is latched and can be read and optionally cleared by SPI (LDO1_UV bit). The transmitter remains disabled until LDO1 is re-enabled.

CAN supply low

If LDO1 output voltage decreases below CAN_SUP_LOW threshold for t> $t_{VCANSUPlow}$, the status bit is latched and can be read and optionally cleared by SPI (CAN_SUP_LOW bit). An IRQ is generated except if MASK_CAN_IRQ is set at "1". The transmitter will not be disabled. CAN_SUP_LOW monitoring is enabled when CAN_ACT = 1.

3.16.4 Wake-up by CAN

If CAN_WU_ENA is set at "1", and the CAN transceiver is in one of TRX bias modes, then the CAN-Receiver is able to detect a wake-up pattern (WUP) and generate a CAN_WAKE flag.

If such a pattern is detected (see Figure 35) and:

- If the device is in DEEP-SLEEP or REC-2 states, then a wake-up event is generated and is set
- If the device is in ACTIVE or REC-1 states, then an IRQ is generated and CAN_WAKE flag is set

DS14964 - Rev 1 page 51/239

The CAN wake-up pattern (WUP) is defined (see Figure 35) by:

- a series of two consecutive dominant pulses, where each of them must be longer than t_{filter}.
- the distance between the two dominant pulses must be longer than t_{filter}.
- the two dominant pulses must occur within a time frame of twake-
- the wake-up event occurs when the duration of the second pulse becomes longer than t_{filter}.

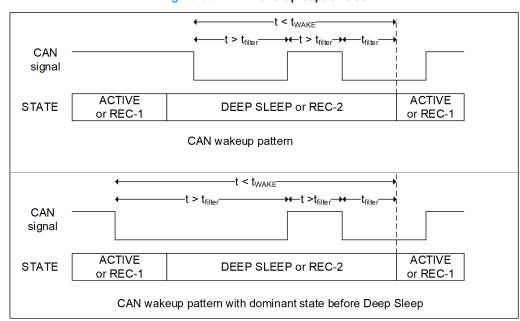


Figure 35. CAN wake-up capabilities

3.16.5 CAN looping mode

If the CAN_LOOP_ENA (configuration register) is set, the TxD_C input is mapped directly to the RxD_C pin. This mode can be used in combination with the TRX Receive-only mode, to run diagnosis for the CAN protocol handler of the microcontroller.

3.16.6 Complete disabling of CAN transceiver

For those applications in which it is not requested, it is possible to completely disable the CAN transceiver by SPI. In this case, CAN_WU_ENA, CAN_ACT and CAN_AUTO_BIAS must be cleared.

A further minimization of current consumption can be achieved by switching off LDO1, which internally supplies the transceiver. In this case, the protected bit LDO1_ENA can be set to 0 only after SPI_PROTECT_ACCESS has been set.

3.17 10-bit ADC

In ACTIVE – FULL-POWER mode and RECOVERY-1 state, the voltage signals VS, FBB, WU, IGN, TH_CL0, TH_CL1, TH_CL2, TH_CL3, and TH_CL4 are read out sequentially. Related bit names in the status register are VS[0..9], FBB[0..9], WU[0..9], IGN[0..9], TEMP_CL0[0..9], TEMP_CL1[0..9], TEMP_CL2[0..9], TEMP_CL3[0..9] and TEMP_CL4[0..9].

The voltage signals are multiplexed to an ADC. The ADC is realized as a 10-bit SAR. Each channel is converted with a conversion time tcon, therefore an update of the ADC value is available every tcon * 13.

The voltage measurement on VS, FBB, WU and IGN can be calculated from the binary coded register value using the following formula:

Decimal code = (Vin / LSB_V) - 1

The temperature measurement on TEMP_CL0-4 can be calculated from the binary coded register value using the following formula:

Decimal code = $[(355 - T_j) / LSB T] - 1$

In case WU, or IGN, is directly connected to battery line, the input must be protected by a series resistance of typical 1 $k\Omega$ to sustain reverse battery condition.

DS14964 - Rev 1 page 52/239

3.18 SW-Debug mode

The SW-Debug mode is intended for SW development. In SW-Debug mode, the watchdog is not started and consequently does not monitor proper watchdog trig.

To set the device in SW-DEBUG mode, the SWDBG pin must be shorted to VIO before a power-up sequence (cold-start or wake-up from DEEP-SLEEP). With such a setting, the device executes the power-up sequence and, instead of reaching RECOVERY-1 state, the device transits to SWDBG state.

In SWDBG state the timeout $t_{SWDBG\ TO}$ is launch.

The timeout is used to prevent the system to be stuck in SWDBG state:

If the timeout expires, then SW-Debug mode entry is canceled. The device transits to RECOVERY-1 state and starts the watchdog with a long open window. The status register bit SWDBG_VIO is set, an IRQ (maskable by MASK SWDBG VIO IRQ) is generated to indicate that the SWDBG pin is shorted to VIO.

If the short to VIO is removed before timeout expiration, then the device transitions to RECOVERY-1 state, and the watchdog is disabled. To transition to ACTIVE - FULL-POWER mode, the SW must clear error flags and set WD_TRIG. This is the only access to WD_TRIG that the SW must handle in SW-Debug mode.

Any further voltage attachment to the SWDBG pin at VIO is ignored, until the next SPSB100G power-up sequence. This helps to protect against unwanted SW-Debug mode entry and enables possible sharing of this pin with other functions.

Once the SW-Debug mode is established, it persists until terminated via SPI command SWDBG_EXIT or until the next power-on reset (battery unplug and replug). If terminated by SPI command, the watchdog starts immediately with a long open window.

The SW-Debug mode status can be monitored by the SPI status register WD_ENA_ECHO=0.

The state of the SWDBG pin can be monitored by the live bit SWDBG STATE.

In the final application, it is possible to detect the hardware fault "SWDBG shorted to VIO" using the following procedure.

After the MCU boot-up, the SW shall read the SPSB100G state. The expected state is REC-1. If the SWDBG pin is faultily shorted to VIO, then the device reaches SWDBG state.

In such a case it is possible to kill the timeout by setting the KILL_SWDBG_TIMEOUT control bit: the device transits to REC-1 state, the watchdog is enabled disregarding the SWDBG pin voltage.

This feature is useful to prevent an increase in the start-up time when the hardware fault "SWDBG shorted to VIO" is present.

Note: The purpose of SW-Debug mode is to develop software. This mode must not be used in the final application.

3.19 **VREG**

The VREG is dedicated to generating the bootstrap voltage for the Bucks in ACTIVE and REC-1 states. It is supplied by the FBB pin in ACTIVE - FULL-POWER and by FB1 in ACTIVE - LOW-POWER.

VREG has a 3.3 V output and 150 mA current capability.

VREG cannot be used to supply external blocks.

The voltage regulator is protected against undervoltage. If the VREG output voltage goes below V_{VREG_UV} for a delay longer than t_{VREG_UV}, flag INT_REG_UV is set and the device will execute a power-down sequence to enter DEEP-SLEEP state.

The voltage regulator is protected against overvoltage. If the VREG output voltage goes above V_{VREG_OV} for a delay longer than t_{VREG_OV} , flag INT_REG_OV is set and the device will execute a power-down sequence to enter DEEP-SLEEP state.

The voltage regulator is protected against a short to ground during INIT state. If the VREG output voltage is not able to reach V_{VREG_UV} after t_{VREG_stup} , flag INT_REG_UV is set and the device will make a transition to DEEP-SLEEP state.

Current limitation I_{VREG} CCmax of the regulator ensures fast charge of the external decoupling capacitor.

The output voltage is stable for ceramic load capacitors, see C_{VREG} in the Table 62.

Warning temperature detection is managed by a local thermal sensor (flag is TW CL0).

Warning temperature detection generates an IRQ except if MASK_CL0_TW_IRQ is set.

In case the device temperature exceeds the TSD_CL0 threshold, the device executes a power-down sequence before entering REC-2 state.

DS14964 - Rev 1 page 53/239

3.20 Long duration timer (LDT)

The SPSB100G has embedded a timer that allows to wake up the device after a set period (if configured as a wake-up source by SPI, bit LDT_MODE) or to ascertain the time since the last power-down.

The configuration as a wake-up source can be done if SPI LDT_CNT_ENA = '0'.

LDT_MODE, LDT_CNT_THR[4:0], LDT_CNT_THR_MSB_POS[4:0] thresholds can be set, otherwise the configuration is locked.

The threshold configuration is done by two 5-bit registers:

- LDT_CNT_THR[4:0]: configure LDT threshold (locked when LDT_CNT_ENA =1)
- LDT_CNT_THR_MSB_POS[4:0]: select LDT threshold MSB position from 23 to 4 (bigger or smaller values are clamped) (locked when LDT_CNT_ENA =1)

Starting from the theoretical requested threshold (THEO_LDT_CNT_THR):

- LDT_CNT_THR_MSB_POS = INT(LN(THEO_LDT_CNT_THR) / LN(2))
 - INT() = Integer part of
 - LN() = Natural logarithm of
 - LN(X) / LN(2) corresponds to the logarithm in base 2 of X. LN(2) = 0.693
- LDT_CNT_THR = INT((THEO_LDT_CNT_THR / (2^ (LDT_CNT_THR_MSB_POS 4)) + 0.5)
- If, in some use cases, LDT_CNT_THR is higher than 31, LDT_CNT_THR must be clamped at 31

Example for a duration of 15 days:

- THEO LDT CNT THR = 1,296,000 seconds= 15 x 24 x 3600 seconds
- LDT_CNT_THR_MSB_POS = INT(LN(THEO_LDT_CNT_THR) / LN(2)) = 20
- LDT_CNT_THR = INT((THEO_LDT_CNT_THR / (2^ (LDT_CNT_THR_MSB_POS 4)) + 0.5) = 20
- So,
 - LDT CNT THR MSB POS = 20
 - LDT CNT THR = 20
 - LDT counts for 1,310,720 seconds. So, an error of 4.1 hours over 15 days = an error of 1.1%

The LDT (long duration timer) is a 24-bit timer that can be enabled or disabled by SPI bits LDT_ENA and LDT_CNT_ENA. When the LDT is enabled, the live status bit LDT_RUNNING is set high until the timer expires.

In the DEEP-SLEEP state all analog and digital blocks of the SPSB100G are OFF except for the LDT counter when it is enabled.

To exit the DEEP-SLEEP state, two different cases can be considered:

- the LDT wake-up threshold value is reached
- another wake-up source is detected

In the first case, the MCU can read flag LDT_WAKE by SPI, SPSB100G leaves the DEEP-SLEEP state starting a power-on sequence.

In the second case, if the device is woken up by another wake-up source, the MCU can read wake-up flags by SPI and can read time elapsed since last LDT activation. To obtain a stable value, long duration timer elapsed time has to be latched by setting CR bit LDT_TIMER_READ_ENA high and the counted value is written in a read-only register LDT_TIMER_VALUE[23:0].

Elapsed time is counted as soon the LDT_ENA = 1 and LDT_CNT_ENA = 1. For example, if the MCU wants to measure the elapsed time value from the last DEEP-SLEEP, the MCU has to activate LDT by writing '1' in the LDT_ENA and LDT_CNT_ENA, and then initiate a power-down cycle.

In case the MCU needs to stop the counter, it must set LDT_CNT_ENA = 0. In any case, the status of the counter is held inside the status register (LDT_TIMER_VALUE[23:0]). The counter is reset as soon as LDT_CNT_ENA is set to '1'.

The LDT_DEBUG bit could be set to '1' to speed up the counter by a factor of 100x for debug purposes (10 ms steps, instead of 1 s).

DS14964 - Rev 1 page 54/239

4 Protection, diagnosis and monitoring signals

4.1 Supply monitoring

4.1.1 VS pin

The battery line is monitored through the VS pin.

The VS input voltage is monitored through analog comparators and the ADC:

- VS input voltage can be read back by SPI access, by VS[9..0].
- The ADC is used to detect early undervoltage warnings (flagged by VS UV EW bit).

The thresholds are programmable by SPI (VS_UV_EW_TH[4..0]) and an interrupt is issued when thresholds are crossed except if MASK_VS_EW_IRQ is set.

4.1.2 FBB pin

The FBB input voltage is monitored through analog comparators and the ADC:

- An analog comparator is used to detect over- and undervoltages. The reaction to a FBB voltage fault is described in Section 3.6.2.6.
- An analog comparator is used to detect overvoltage. Flag is FBB_OV and generates an IRQ except if MASK_FBB_OV_IRQ is set. State machine executes a power-down sequence to enter RECOVERY-2.
- An analog comparator is used to detect undervoltage. Flag is FBB_UV and generates an IRQ except if MASK FBB UV IRQ is set. State machine executes a power-down sequence to enter RECOVERY-2.
- The ADC is used to detect overvoltage early warnings (flagged by FBB OV EW bit).
- The ADC is used to detect undervoltage early warnings (flagged by FBB UV EW bit).
- The thresholds are programmable by SPI (FBB_OV_EW_TH[3..0]) and an interrupt is issued when thresholds are crossed except if MASK_FBB_OV_EW_IRQ is set.
- The thresholds are programmable by SPI (FBB_UV_EW_TH[3..0]) and an interrupt is issued when thresholds are crossed, except if MASK_FBB_UV_EW_IRQ is set.
- The result of ADC conversion is also readable back via SPI, by FBB[9..0]

4.1.3 VIO pin

The VIO voltage is monitored through an analog comparator and digital communication is blocked if VIO voltage is below $V_{VIO\ UV}$ threshold for a delay longer than $T_{F\ VIO\ UV}$ (flag is VIO UV bit).

4.2 Regulators output voltage protection

The Buck1, 2, 3 and LDO2 outputs are monitored through analog comparators to detect over- and undervoltages. (through BUCKx_UV, BUCKx_OV, LDO2_UV and LDO2_OV bits). The reaction to a fault is described in Section 3.6.2.5. In addition, LDO2 is also turned OFF when the tracked regulator is turned OFF in reaction to a fault.

When a regulator is turned ON, by SPI or power-up sequence, a short to ground is detected if the output voltage does not reach the power-good threshold in the timeout period (BUCKx_PG_TIMEOUT bit), in such a case the regulator is switched OFF.

In addition, when turned ON through the SPI, an interrupt is generated as soon as their output voltage reaches the power-good threshold (BUCKx_PG and LDO2_PG bits).

Latent fault detection of OV, UV, PG analog comparators is ensured by Analog-BIST.

Latent fault of regulator monitor handler is ensured by Digital-BIST.

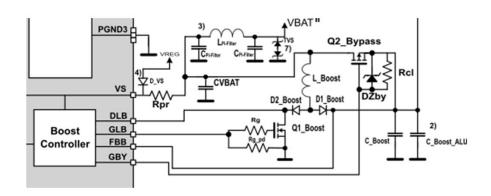
4.3 Boost and bypass V_{ds} monitoring

The BOOST driver includes a comparator to monitor the voltage drop across the boost external transistor. The voltage is monitored between the DLB and CANGND pins.

The monitor issues a fault (whose threshold is set by BOOST_DSMON_TH[2..0] bits) if the monitored voltage is above the programmed threshold for five consecutive periods of the BOOST PWM signal.

DS14964 - Rev 1 page 55/239

When a fault is detected (flag is BOOST_VDSMON_ERROR), an interrupt is sent on the IRQ pin (except if it is masked by MASK_BOOST_VDSMON_IRQ) and the boost external transistor is permanently turned OFF. MCU shall read and clear the status flag to turn the boost driver back ON.


The BYPASS driver includes a comparator to monitor the voltage across the bypass external transistor. this comparator is enabled as soon as BYPASS is switched ON with a digital blanking time, t_{B_BYPASS_VDSM}. The voltage is monitored between the VS and FBB pins.

The monitor issues a fault if the monitored voltage is above the programmed threshold (BYPASS_DSMON_TH[2..0] bits) for a delay longer than t_{F} BYPASS_VDSM .

When a fault is detected (flag is BYPASS_VDSMON_ERROR), an interrupt is sent on the IRQ pin (except if it is masked by MASK_BYPASS_VDSMON_IRQ), the BYPASS external transistor is switched off.

Latent fault detection of comparators is ensured by Analog-BIST.

Figure 36. Boost and bypass V_{ds} monitoring (extracted by application scheme)

4.4 Boost activity monitoring

In ACTIVE – FULL-POWER and in RECOVERY-1 states, the BOOST activity can be monitored through the live SPI status bit BOOST_ENA_STATUS.

In ACTIVE – LOW-POWER state, a flag BOOST_IN_LP is set and an interrupt is generated though the IRQ pin (except if it is masked by MASK_BOOST_IN_LP_IRQ) when the BOOST starts to switch.

In other states the BOOST is disabled.

4.5 WU and IGN monitoring

WU and IGN voltages can be measured through the ADC and values read back via SPI (WU[9..0] and IGN[9..0]).

4.6 Ground pin monitoring

Analog comparators are cross-monitoring the voltage on the three ground pads CAN-GND (bonded to CANGND pin), Analog-GND and Digital-GND (both bonded to SGND pin).

If at least one ground pad is electrically disconnected from the PCB ground plane with a level above $V_{Gnd_Loss_th}$, then a ground loss is detected (GNDLOSS) after $t_{Gnd_Loss_FILT}$ and the reaction is described in Section 4.8.

Latent fault detection of ground comparators is ensured by Analog-BIST.

4.7 Temperature monitoring

In order to provide advanced on-chip temperature control, the power outputs are grouped in clusters with dedicated thermal sensors. The sensors are suitably located on the device.

If the temperature of a cluster reaches the thermal warning threshold, then a dedicated status flag (TW_CLx bit) is set and an interrupt is issued.

If the temperature of a cluster reaches the thermal shutdown threshold, then a dedicated status flag is set, the outputs assigned to that cluster are shut down and depending on their configuration bit REGFAIL_GO_REC all outputs are shut down or not as described in Section 3.6.2.5.

DS14964 - Rev 1 page 56/239

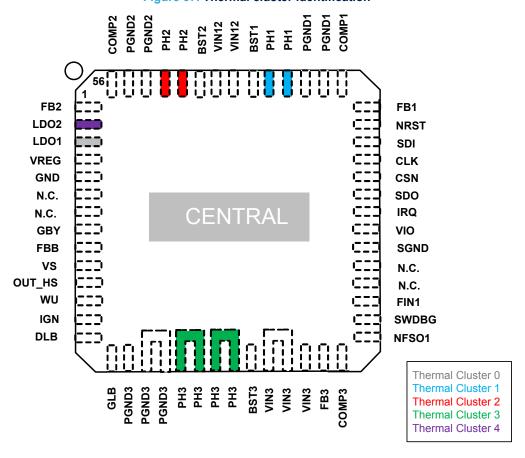


Figure 37. Thermal cluster identification

Table 10. Thermal cluster definition

Th_CL0	Th_CL1	Th_CL2	Th_CL3	Th_CL4
LDO1, central	BUCK1	BUCK2	BUCK3	LDO2
TW digitally managed	TW and TSD	TW and TSD	TW and TSD	TW and TSD
TSDC analog managed	Both digitally managed	Both digitally managed	Both digitally managed	Both digitally managed

Cluster temperatures are converted through the ADC and readable by SPI (through TEMP_CLx[9..0] bits), only in ACTIVE - FULL-POWER mode

Note: In DEEP-SLEEP state, all clusters are disabled.

Note: In ACTIVE - LOW-POWER state, all clusters are disabled, except Th_CL0 to detect TSDC.

Monitoring of central thermal clusters is ensured by an analog comparator, while other thermal clusters are monitored through the ADC.

Latent fault detection of TSDC thermal comparator is covered by an Analog-BIST.

Latent fault detection of digital thermal monitor and ADC handler is covered by a Digital-BIST.

4.8 HW low-level monitors

The SPSB100G integrates asynchronous monitors of low-level blocks in ACTIVE - FULL-POWER mode and REC-1 state:

- voltage differences between main and monitoring digital and analog power supplies (INT_REG_UV, INT_REG_OV bits).
- current differences between main and monitoring current sources (CURRENT_MISMATCH bit).

DS14964 - Rev 1 page 57/239

and synchronous monitors of

- frequency difference between main and redundant oscillators (OSC ERROR bit).
- state Machine's state by comparison of main and redundant state machine(FSM_COMP_ERROR bit).
- NVM data by
 - comparison of NVM data and redundant registers (NVM COMP ERROR bit).
 - CRC check at NVM download (NVM CRC ERROR bit).
- Safety critical SPI registers by comparison of main and redundant registers (SPI_REG_COMP_ERROR bit generates an IRQ except if MASK_SPI_ERROR_IRQ is set).
- Ground loss connection by cross-checking ground domains (GNDLOSS bit).

A fault detected by low-level monitors triggers a power-down sequence and the SPSB100G reaches the DEEP-SLEEP state. In such a situation, after a wake-up event (except for OSC_ERROR where the SPSB100G will restart automatically if oscillators recover their frequencies), all SPI registers are reset except HW low-level monitor flags and the SPSB100G transitions to START-SM state.

START-SM state Wake-up event AND no HW monitor error INIT Reset SPI registers except state Safety checks NOK HW mon. error flags, OR HW monitor error Mask HW monitoring DEEP-SLEEP state Wake-up event REC-2 AND HW monitor error state HW monitor error Execute HW monitor errors are: Power-Down 3V3 under or over voltage event sequence Bias current monitor error oscillator monitor error SM comparator error ACTIVE NVM monitor error or REC-1 CENTRAL_GNDLOST event HW monitor error states Safety critical SPI regs comparator error

Figure 38. SPSB100G HW low-level monitors

DS14964 - Rev 1 page 58/239

4.9 Communication interface

The SPI communication protocol embeds the following safety mechanisms:

- A 4-bit CRC SPI_CRC_ERR is set in case of error detected, and an IRQ is generated except if MASK SPI_ERROR_IRQ is set.
- Clock monitor: During communication (CSN low phase), a clock monitor counts the valid CLK edges. If the CLK edges do not correlate with the SPI data length then SPI_CLK_CNT is set, an IRQ is generated except if MASK_SPI_ERROR_IRQ is set, the actual communication is rejected.
- CLK phase check: To verify that the CLK phase of the SPI master is set correctly, a special device
 information register is implemented. When reading this register, the data must be 55H. In case AAH is
 read, the CPHA setting of the SPI master is wrong and proper communication cannot be guaranteed.
- CSN timeout: If CSN is set low for t > t_{CSNfail}, then the frame is rejected and SDO is released to tri-state (SPI CSN TIMEOUT is set). An IRQ is generated except if MASK SPI ERROR IRQ is set.
- SDI stuck at high detection: An SPI frame consisting of all bits '1' is detected as failure and will be rejected,
 SPI SDI STUCK HIGH is set and an IRQ is generated except if MASK SPI ERROR IRQ is set.
- SDI stuck at low detection: An SPI frame consisting of all bits '0' is detected as failure and will be rejected, SPI_SDI_STUCK_LOW is set and an IRQ is generated except if MASK_SPI_ERROR_IRQ is set.
- SDO stuck: The Global Status Byte (GSB) is transmitted within every SPI frame; the definition of the GSB guarantees that a content of all '1' or all '0' is not possible; therefore, the microcontroller can identify if the SDO signal is stuck at a high or low level.
- Functional safety-relevant configuration registers are locked by a dedicated bit SPI_PROTECT_ACCESS.
 A first SPI command must be sent to un-protect the functional safety-relevant registers, then a further SPI command is sent to modify those configuration registers.
- SPI undefined address access is detected by a dedicated bit SPI_UNDEF_ADD. An IRQ is generated except if MASK_SPI_ERROR_IRQ is set.
- SPI unwanted write access on a status register is detected by a dedicated bit SPI_STATUS_WRT. An IRQ
 is generated except if MASK_SPI_ERROR_IRQ is set.
- SPI unwanted access during LBIST test is detected and SPI_LBISTED is set. An IRQ is generated except
 if MASK_SPI_ERROR_IRQ is set. In this case, the SPI frame is rejected.
- Functional safety-relevant configuration registers are duplicated and a runtime comparison mechanism checks the coherency of their data. In case of error, the reaction is described in chapter Section 4.8.

Latent fault detection of SPI digital handler, functional safety redundant configuration register, and comparison mechanism are covered by a Digital-BIST.

4.10 IRQ pin monitoring

To check that the IRQ line is properly connected to the MCU, an IRQ can be sent to the MCU through an SPI request.

When the MCU sets the SPI bit IRQ_REQUEST, an interrupt is generated on the IRQ pin.

The MCU can verify that the IRQ has been sent correctly by checking the IRQ_SENT status bit. The IRQ pin shall be set high after read & clear of the IRQ_SENT flag.

To detect IRQ stuck high fault, the device embeds

- an echo signal of the IRQ pin: IRQ_ECHO live bit in the status register.
- an echo error detection mechanism: IRQ_ECHO_ERROR status bit is set if the device detects an IRQ_ECHO high signal when the IRQ pin is asserted low after a filter time T_{IRQ_ECHO_FILT}.

4.11 NRST pin monitoring

To detect an NRST stuck high fault, the device embeds

- an echo signal of the NRST pin: NRST ECHO live bit in status register.
- an echo error detection mechanism: NRST_ECHO_ERROR status bit is set if the device detects an NRST_ECHO high signal when the NRST pin is asserted low after a filter time T_{NRST_ECHO_FILT}.

4.12 NFSO1 pin monitoring

To detect an NFSO1 stuck high fault, the device embeds:

an echo signal of the NFSO1 pin: NFSO1 ECHO live bit in status register.

DS14964 - Rev 1 page 59/239

 an echo error detection mechanism: NFSO1_ECHO_ERROR status bit is set if the device detects an NFSO1_ECHO high signal when the NFSO1 pin is asserted low, after a filter time T_{NFSO_ECHO_FILT} and an interrupt is sent to the IRQ pin, except if MASK_NFSO1_ECHO_ERROR_IRQ is set.

4.13 Watchdog block monitoring

To detect an improper turn-OFF of the watchdog feature, the device embeds:

- An echo signal of the watchdog block enable signal: WD ENA ECHO live bit in the status register.
- An echo error detection mechanism: WD_ENA_ECHO_ERROR status bit is set if the device detects that
 the watchdog block is turned OFF while the device is not in SW-Debug mode, and an interrupt is sent to
 the IRQ pin, except if MASK_WD_ENA_ECHO_ERROR_IRQ is set.

4.14 FCCU block monitoring

To detect an improper turn OFF of the FCCU monitor feature, the device embeds

- an echo signal of the FCCU monitor block enable signal: FCCU_ENA_ECHO live bit in status register.
- an echo error detection mechanism: FCCU_ENA_ECHO_ERROR status bit is set if the device detects that the FCCU monitor block is turn OFF in ACTIVE state, when FCCU_ENA has been set and an interrupt is sent to the IRQ pin, except if MASK_FCCU_ENA_ECHO_ERROR_IRQ is set.

4.15 Analog BIST

ABIST is performed on SPI request.

ABIST is not run on blocks that are turned OFF. The MCU shall ensure the proper turn-on of a block when its ABIST is expected to be run.

ABIST covers latent fault detection of:

- OV, UV, PG analog comparators.
- Internal voltage and current supplies monitor.
- Central thermal monitor.
- BOOST and BYPASS VDS monitors.

ABIST must be run only in ACTIVE - FULL-POWER mode by the MCU through the SPI. The MCU shall write the ABIST bit to request its execution (only after SPI_PROTECT_ACCESS has been set).

After T_{ABIST}, ABIST is finished, the status bit ABIST_COMPLETE is set and an interrupt is sent to IRQ pin.

ABIST_ERROR is set in case an error is detected.

For boost VDSM monitoring, to avoid a false ABIST error, a status bit ABIST_BOOST_IGNORED will be set at 1 if the ABIST request is made during boost PWM activity.

4.16 Logic BIST

The SPSB100G integrates two logic BIST:

- LBIST1 is performed in INIT state only
- LBIST2 is performed in INIT state and on SPI request

DS14964 - Rev 1 page 60/239

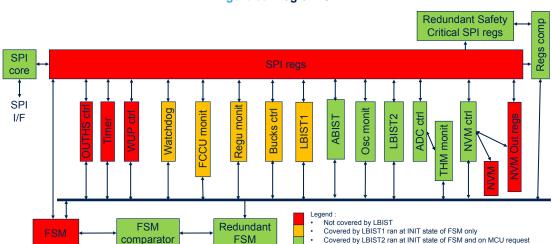


Figure 39. Logic BIST

LBIST2 must be run only in ACTIVE - FULL-POWER mode by the MCU through the SPI. The MCU shall write the LBIST bit to request its execution (only after SPI_PROTECT_ACCESS has been set). The LBIST2 execution is delayed until the NVM controller terminates it self-test.

After T_{LBIST}, the LBIST2 is finished, the status bit LBIST_COMPLETE is set and an interrupt is sent to the IRQ pin.

LBIST_ERROR_1 is set in case an LBIST2 error is detected.

SPSB100G does not take any action in case an LBIST2 error is detected. It is the duty of the MCU to properly react to a signaled error.

An LBIST error detected in INIT state is considered as a safety check error, see Chapter Section 4.17. Fault management while LBIST is executed:

- When LBIST2 is executed on demand in ACTIVE FULL-POWER, the faults (UV, OV, TSD...) processed
 by the blocks under LBIST2 are not masked. If a fault occurs, the LBIST2 is stopped, the status bit
 LBIST_STOPPED is set, an IRQ is generated, and the fault is processed by the SPSB100G with
 appropriate reaction.
- As a consequence, the watchdog window must be properly set before requesting an LBIST2 execution to allow the LBIST2 to complete before the next watchdog trig through the SPI.

4.17 Safety checks

Safety checks are executed in INIT state. They consist of:

- digital LBIST
- · ground pin monitor.
- NVM checks: CRC and U-PROG value.

In case of error, the state machine transitions to DEEP-SLEEP, where the device can be woken up to INIT state, where safety checks are run again.

4.18 **NVM** integrity monitor

To detect an improper turn OFF of the NVM monitor feature, the device embeds an echo signal of the NVM monitor block enable signal: NVM_COMPARE_ENA_STATUS live bit in status register. This status bit is valid only in ACTIVE - FULL-POWER mode. The reaction of the NVM monitor feature in case of error is described in Chapter Section 4.8.

DS14964 - Rev 1 page 61/239

5 Serial peripheral interface (SPI)

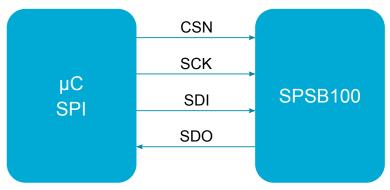
A 32-bit SPI is used for bidirectional communication with the microcontroller.

The microcontroller SPI peripheral shall be configured with CPOL = 0 and CPHA = 0. SDI input data is sampled by the rising CLK edge, and SDO output data is updated on the falling CLK edge.

This device is not limited to a microcontroller with a built-in SPI peripheral, but three CMOS-compatible output pins and one input pin may be used to communicate with the device. A fault condition can be detected by setting CSN to low. In such a condition, the SDO pin reflects the global error flag GSBN of the device.

- Chip select not (CSN)
 - The CSN input pin is used to select the serial interface of this device. When CSN is high, the output pin SDO is in a high impedance state. CSN low activates the output driver and a serial communication can be started. The state during CSN = 0 is called a communication frame. If CSN is low for t > t_{CSNfail}, the SDO output will be switched back to high impedance to not block the signal line for other SPI nodes.
- Serial data in (SDI)
 - The SDI input pin is used to transfer data into the device. The data applied to SDI are sampled at the rising edge of the CLK signal and shifted into an internal 32-bit shift register. At the rising edge of the CSN signal, the content of the shift register is transferred to the data input register. The writing to the selected data input register is enabled if exactly 32 bits are transmitted within one communication frame (that is, CSN low). If more or fewer clock pulses are counted within one frame, the complete frame is ignored and an SPI error is signaled. This safety function is implemented to avoid an activation of the output stages by a wrong communication frame. Due to this safety functionality, daisy-chaining of the SPI is not possible. Instead, a parallel operation of the SPI bus by controlling the CSN signal of the connected ICs is recommended.
- Serial data out (SDO)
 - The data output driver is activated by a logical low level at the CSN input and will go from high impedance to a low or high level depending on the global error flag GSBN. The first rising edge of the CLK input after a high-to-low transition of the CSN pin transfers the content of the selected status register into the data out shift register. Each subsequent falling edge of the CLK will shift the next bit out. As SDO is in high impedance when CSN is high, it is possible to link several SPI target devices that respect this rule with a dedicated CSN line for each SPI target.
- Serial clock (CLK)
 - The CLK input is used to synchronize the input and output bit streams. The data input (SDI) is sampled at the rising edge of the CLK and the data output SDO is updated on the falling edge of the CLK signal.

5.1 ST SPI


The ST-SPI is a standard used in ST Automotive ASSP devices.

This chapter describes the SPI protocol. It defines a common structure of the communication frames and defines specific addresses for product and status information.

The ST-SPI allows usage of generic software to operate the devices while maintaining the required flexibility to adapt them to the individual functionality of a particular product. In addition, safety mechanisms are implemented to protect the communication from external influences and incorrect or unwanted usage.

5.1.1 Physical Layer

Figure 40. SPI pin description

DS14964 - Rev 1 page 62/239

5.2 Signal description

Chip select not (CSN)

The communication interface is deselected when this input signal is logically high. A falling edge on CSN enables and starts the communication while a rising edge finishes the communication and the sent command is executed when a valid frame has been sent. At CSN falling and rising edges, the serial clock (CLK) has to be logically low. The serial data out (SDO) is in high impedance when CSN is high or a communication timeout is detected.

Serial clock (CLK)

CLK provides the clock of the SPI. Data present at serial data input (SDI) are latched on the rising edge of the serial clock (CLK) into the internal shift registers, while on the falling edge data from the internal shift registers are shifted out to serial data out (SDO).

Serial data input (SDI)

This input is used to serially transfer data into the device. Data is latched on the rising edge of the serial clock (CLK).

Serial data output (SDO)

This output signal is used to serially transfer data out of the device. Data is shifted out on the falling edge of the serial clock (CLK).

5.2.1 Clock and data characteristics

The ST-SPI can be driven by a microcontroller with its SPI peripheral running in the following modes:

- CPOL = 0
- CPHA = 0

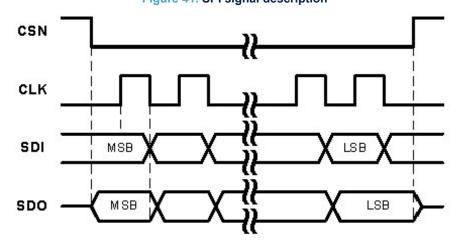


Figure 41. SPI signal description

The communication frame starts with the falling edge of the CSN (communication start). CLK has to be low. The SDI data is then latched at all following rising CLK edges into the internal shift registers.

After communication start, the SDO leaves the high impedance state and presents the MSB of the data shifted out to the SDO. At all following falling CLK edges, data is shifted out through the internal shift registers to SDO.

The communication frame is finished with the rising edge of CSN. If a valid communication took place, the requested operation according to the operating code is performed.

5.2.2 Communication protocol

SDI frame

The device data-in frame consists of 32 bits (OpCode (2 bits) + address (6 bits) + data (20 bits) + CRC (4 bits)). The first two received bits (MSB, MSB-1) contain the operation code which indicates the instruction to be performed. The following 6 bits (MSB-2 to MSB-7) represent the address on which the operation is performed. The subsequent bytes contain the payload.

DS14964 - Rev 1 page 63/239

time

OPCODE ADDRESS DATA Byte 3 OC1 OC0 Α5 A4 АЗ A2 A0 21 20 18 23 22 19 17 16 MSB time time **DATA Byte 2** 12 11 10 9 15 14 13 8 time **DATA Byte 1** CRC 0 5 6 LSB

Figure 42. SDI frame

Operation code

The operating code is used to distinguish among different access modes to the registers of the target device.

 OC1
 OC0
 Description

 0
 0
 Write operation

 0
 1
 Read operation

 1
 0
 Read and clear operation

 1
 1
 Read device information

Table 11. Operation codes

A *Write operation* leads to a modification of the addressed data by the payload if a write access is allowed (for example, control register, valid data). Besides this, a shift out of the content (data present at *communication start*) of the same register is performed.

A **Read operation** shifts out the data present in the addressed register at *communication start*. The SDI payload data is ignored and internal data will not be modified. Burst read cannot be performed. Even if the first 8 bits of SDO are sent during read device information, the chip must receive a full frame with CRC on SDI, otherwise a SPI_CLK_CNT and a SPI_CRC_ERR will be set generating a SPIE.

A **Read and clear operation** will lead to clearing of addressed status bits. The bits to be cleared are defined first by address, second by payload data bits set to '1'. Besides this, a shift out of the content (data present at *communication start*) of the same register is performed.

communication (selective

Note:

Status registers which change status during communication could be cleared by the actual Read and clear operation and are neither reported in actual communication nor in the following communications. To avoid a loss of any reported status, it is recommended to clear status registers which have been read in the previous communication (selective bitwise clear).

Advanced Operation Code

A 'clear all status registers' command is performed when an OpCode '10' at address b'111111 is performed.

Data-In payload

The payload (data bits) is the data transferred to the device within every SPI communication. The payload always follows the OpCode and the address bits.

For write access, the *payload* represents the new data written to the addressed register. For *Read and clear* operations, the *payload* defines which bits of the addressed status register will be cleared. In case of a '1' at the corresponding bit position, the bit will be cleared.

For a Read operation, the SDI payload is not used. For functional safety reasons, it is recommended to set the unused payload to '0'.

SDO frame

The data-out frame consists of 32 bits (GSB + data bits + CRC).

DS14964 - Rev 1 page 64/239

The first eight transmitted bits contain device related status information (GSB) and are latched into the shift register at the time of the *communication start*. These 8 bits are transmitted at every SPI transaction.

The subsequent bytes contain the payload data together with the four LSB bits containing CRC and are latched into the shift register with the eighth positive CLK edge.

This could lead to an inconsistency in data between the GSB and *payload* due to different shift register load times. However, no unwanted status register clear should appear, as status information should just be cleared with a dedicated bit clear after.

Global Status Byte (GSB) DATA Byte 3 GSBN RSTB SPIE FE2 DE FS 23 22 21 18 20 19 17 16 MSB time time DATA Byte 2 15 13 12 10 14 11 9 8 time DATA Byte 1 6 5 LSB time

Figure 43. SDO frame

Global Status Byte (GSB)

Bits 0 to 5 represent a logical OR combination of bits located in the status registers. Therefore, no direct Read and clear can be performed on these bits inside the GSB.

Table 12. Global status byte

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
GSBN	RSTB	SPIE	RES	FE1	DE	GW	FS

- Global status bit not (GSBN)
 - The GSBN is a logical NOR combination of bit 0 to bit 6. This bit can also be used as a *global status flag* without starting a complete communication frame as it is present directly after pulling CSN low. OUTHS open load can be masked in GSBN by setting bit MASK_OL_GSB. Global warning can be masked in GSBN by setting bit MASK_GW_GSB.
- Reset bit (RSTB)
 - The RSTB indicates an SPSB100G reset. In case this bit is set, all internal control and status registers are set to default
 - The RSTB bit is cleared after a *Read and clear* of the VPOR bit in the *status registers* which caused the reset event.
- SPI error (SPIE)
- Functional error 1 (FE1)

The FE1 is a logical OR combination of errors coming from functional blocks.

- Device error (DE)
 - The DE is a logical OR combination of errors related to device-specific blocks.
- Global warning (GW)
 - The GW is a logical OR combination of warning flags (for example, thermal warning).
 - Thermal warning can be masked in GW by setting bit MASK TW GW.
- Fail-safe (FS)
 - The FS bit indicates that the device was forced into a safe state due to mistreatment or critical internal errors (for example, watchdog failure, voltage regulator failure).

Data-Out payload

DS14964 - Rev 1 page 65/239

The data-out *payload* (20 data bits + 4 CRC bits) is the data transferred from the target device within every SPI communication to the controller device.

5.2.3 Address definition

Table 13. RAM and ROM address range

	Operation code							
OC1 OC0 Description								
0	0	Write operation, allowed for RAM control registers						
0	1	Read operation, allowed for RAM status or control registers						
1	0	Read and clear operation, allowed for RAM status registers						
1	1	Read device information in ROM registers						

Table 14. RAM address

RAM address	Description	Access
3FH	Special OpCode	R/W
	-	-
32H	Status register 18	R/C
		-
22H	Status register 2	R/C
21H	Status register 1	R/C
		-
1CH	Control register 28	R/W
		-
02H	Control register 2	R/W
01H	Control register 1	R/W
00H	Reserved	-

Table 15. ROM address

RAM address	Description	Access
	-	-
3EH	<gsb options=""></gsb>	R
	-	-
20H	<spi cpha="" test=""></spi>	R
	-	-
15H	<wd 3="" bit="" pos.=""></wd>	R
14H	<wd 2="" bit="" pos.=""></wd>	R
13H	<wd 1="" bit="" pos.=""></wd>	R
12H	<wd 2="" type=""></wd>	R
11H	<wd 1="" type=""></wd>	R
10H	<spi mode=""></spi>	R
	-	-
0AH	<silicon ver.=""></silicon>	R

DS14964 - Rev 1 page 66/239

RAM address	Description	Access
	-	-
05H	<device no.4=""></device>	R
04H	<device no.3=""></device>	R
03H	<device no.2=""></device>	R
02H	<device no.1=""></device>	R
01H	<device family=""></device>	R
00H	<company code=""></company>	R

Device information registers

The *device information registers* can be read by using the OpCode '11'. After shifting out the GSB, the 8-bit wide payload will be transmitted. By reading *device information registers*, a communication width which is minimum of 16 bits can be used. After shifting out the GSB followed by the 8-bit wide payload, a series of '0' is shifted out at the SDO.

Table 16. Information registers map

ROM address	Description	Access	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
3EH	<gsb options=""></gsb>	R	0	0	0	0	0	0	0	0
20H	<spi cpha="" test=""></spi>	R	0	1	0	1	0	1	0	1
15H	<wd 3="" bit="" pos.=""></wd>	R				00	DΗ			
14H	<wd 2="" bit="" pos.=""></wd>	R				C	ЭН			
13H	<wd 1="" bit="" pos.=""></wd>	R				44	4H			
12H	<wd 2="" type=""></wd>	R				9	1H			
11H	<wd 1="" type=""></wd>	R	Watchdog long open window (refers to watchdog definition)							
10H	<spi mode=""></spi>	R				32	2H			
0AH	<silicon ver.=""></silicon>	R		Major r	evision			Minor ı	evision	
06H	<device no.5=""></device>	R				00H: SP	SB100G	i		
0011	ADOVICE NO.55	1			()1H: SP \$	SB100GE	3		
05H	<device no.4=""></device>	R				47	7H			
04H	<device no.3=""></device>	R	39H							
03H	<device no.2=""></device>	R	52H							
02H	<device no.1=""></device>	R	55H							
01H	<device family=""></device>	R				0	1H			
00H	<company code=""></company>	R				00	OH			

Device identification registers

These registers represent a unique signature to identify the device and silicon version.

<Company Code>: 00H (STMicroelectronics)

DS14964 - Rev 1 page 67/239

<Device Family>: 01H (BCD power management)

<Device No. 1>: 55H (ASCII code for U)

<Device No. 2>: 52H (ASCII code for R)

<Device No. 3>: 39H (ASCII code for 9)

<Device No. 4>: 47H (ASCII code for G)

<Device No. 5>: 00H: SPSB100G 01H SPSB100GB

SPI modes

By reading out the <SPI mode> register, general information on SPI usage of the *device application registers* can be obtained.

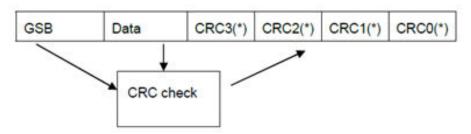
Table 17. SPI mode register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BR	FL2	FL1	FL0	SPI8	0	S1	S0
0	0	1	1	0	0	1	0

<SPI Mode>: 32H (no burst mode available, 32 bits, CRC used)

CRC

SDI:


The CRC check is performed on the complete communication frame using the polynomial (X4 + X + 1).

The frame is valid only if the result of the CRC check is equal to '0'. If not, the frame is rejected and a SPIE bit is set.

SDO:

CRC is calculated on GSB + data - 4 bits and the 4 bit result is saved in Data LSB_3 to Data LSB_0.

Figure 44. CRC check

Exceptions:

The CRC field is not inserted when device information is read in ROM registers.

Watchdog definition

(see also Chapter Section 3.10)

Watchdog default settings can be read out via the device information registers.

Table 18. WD type/timing

	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
<wd 1="" type=""></wd>	0	1	х	x	х	х	х	х
			Watchdog Long Open Window WT[5:0]					
<wd 2="" type=""></wd>	1	0	0	1	0	0	0	1
			Open Window OW[2:0]			Clos	sed Window CW	[2:0]

<WD Type 1>: Long Open Window: reflects the value of LOW_SET(1:0) bits of the USER-NVM

DS14964 - Rev 1 page 68/239

<WD Type 2>:91H; (Open Window: 10 ms, Closed Window: 5 ms)

<WD Type 1> indicates the Long Open Window duration. On this byte, bits 5 and 4 are zero and bits 3 to 0 come from LOW_SET(3-0) USER-NVM bits. Refer to Section 7.11 describing the Long Open Window durations according to LOW_SET(3-0) from USER-NVM.

<WD Type 2> describes the default timing of the window watchdog.

The binary value of CW[2:0] times 5 ms defines the typical Closed Window time (t_{CW}) and OW[2:0] times 5 ms defines the typical Open Window time (t_{OW}). See the figure below with t_{CW} = t_{EFW} and t_{OW} = t_{LFW} - t_{EFW}

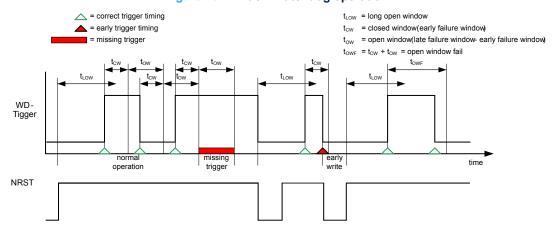


Figure 45. Window watchdog operation

The watchdog trigger bit location is defined by the <WD bit pos. X> registers.

Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 0 Bit 2 Bit 1 <WD bit pos. 1> 0 0 0 1 0 0 0 1 Defines the register addresses of the WD trigger bit(s) <WD bit pos. 2> 1 0 1 0 Defines the binary bit position

Table 19. WD bit position

<WD bit pos 1>: 44H; watchdog trigger bit located at address 04H (DCR4)

<WD bit pos 2>: C0H; watchdog trigger bit location is bit 0

<WD bit pos 3>: 00H

Device Application Registers (RAM)

The device application registers are all registers accessible using the OpCode '00', '01' and '10'.

DS14964 - Rev 1 page 69/239

6 Functional safety concept

The device is designed to offer a set of features to support applications that need to fulfill functional safety requirements as defined by ASIL classification in ISO26262-2018. The IC is developed for different applications, hence can be considered an SEooC (safety element out of context) as defined in the normative. Analysis of the IC's capability to reach the required safety level should be made at system level under the user's responsibility.

6.1 Safety requirements

SPSB100G must fulfill safety requirements for temperature, output current, output voltage, and system operation as in the following tables based on MCU modes.

MCU	SPSB100G	FSR	ASIL
RUN	Active FULL-POWER	FSR-FP-x	D
Smart-Power	Active FULL-POWER	FSR-LP-x	В
	Active LOW-POWER	FSR-LP-x	В
Stand-By	Active LOW-POWER	FSR-LP-1/5/6	В

Table 20. Relation between MCU and SPSB100G modes

6.1.1 SPSB100G in active high-power mode

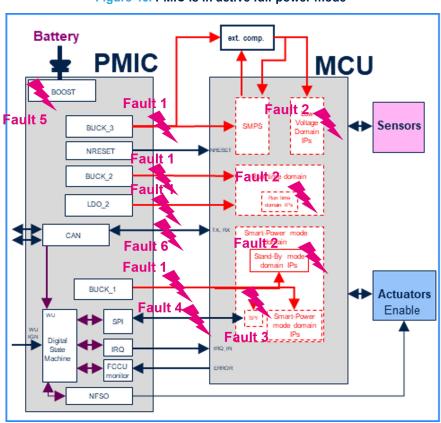


Figure 46. PMIC is in active full-power mode

DS14964 - Rev 1 page 70/239

Note:

Table 21. Safety requirement list while SPSB100G in active high-power mode

ID	Description	Safety state
TSR-1	Regulator, defined as non-critical supply rail, shall provide configured output voltage, above defined UV threshold and below defined OV threshold.	The PMIC shall power down failing rail(s) and shall send an interrupt to the MCU.
TSR-22	Regulator, defined as critical supply rail, shall provide configured output voltage, above defined UV threshold and below defined OV threshold.	The PMIC shall power down all rails and shall latch NFSO1 output low.
TSR-3	PMIC shall monitor the error pin used by the MCU to indicate a hardware error and assert NRST/NFSO1 as per specification.	NA (safety mechanism).
TSR-4	PMIC shall monitor if the MCU misses or wrongly triggers window watchdog and assert NRST/NFSO1 as per specification.	NA (safety mechanism).
TSR-5	PMIC shall monitor BOOST/ BYPASS external transistors power dissipation and, if max. temperature is exceeded, shall turn off BOOST/BYPASS transistors and report the failure to the MCU (IRQ).	NA (safety mechanism).

More details about functional safety can be found in the device safety manual, provided only upon customer request.

6.1.2 SPSB100G in active low-power mode

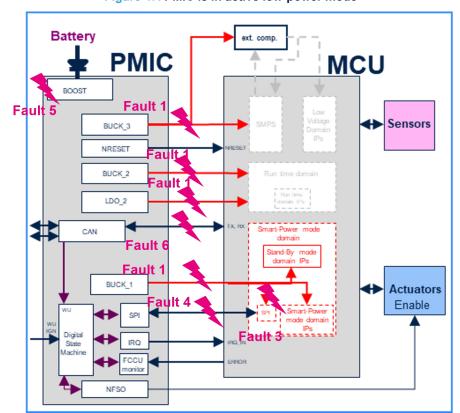
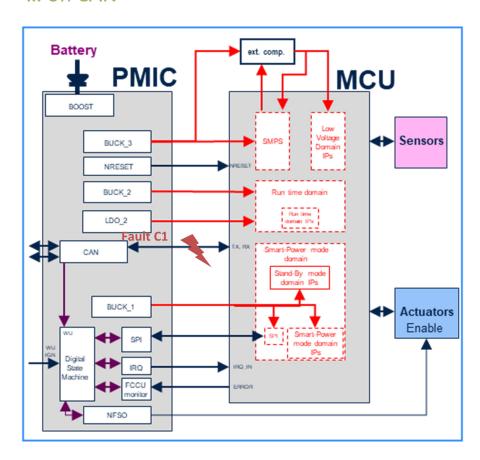


Figure 47. PMIC is in active low-power mode

DS14964 - Rev 1 page 71/239

Table 22. Safety requirement list while SPSB100G in active low-power mode

ID	Description	Safe state
TSR-LP1	Regulator, defined as non-critical supply rail, shall provide configured output voltage, above defined UV threshold and below defined OV threshold.	The PMIC shall power down failing rail(s) and shall send an interrupt to MCU.
TSR-LP2	Regulator, defined as critical supply rail, shall provide configured output voltage, above defined UV threshold and below defined OV threshold.	The PMIC shall power down all rails and shall latch NFSO1 output low.
TSR-LP4	PMIC shall monitor if the MCU misses or wrongly triggers window watchdog and assert NRST/NFSO1 as per specification.	NA (safety mechanism).
TSR-LP5	PMIC shall monitor BOOST/ BYPASS external transistors power dissipation and, if max. temperature is exceeded, shall turn off BOOST/BYPASS transistors and report the failure to the MCU (IRQ).	NA (safety mechanism).
TSR-LP6	PMIC shall latch NFSO1 low when the PMIC is in Low-Power mode, REC-1,-2 or DEEP-SLEEP state.	NA (safety mechanism).


Note: More details about functional safety can be found in the device safety manual, provided only upon customer request.

6.1.3 MCU independent mode, CAN behavior

The following figure shows the CAN behavior, regardless of the MCU mode.

Figure 48. PMIC + MCU independent of MCU mode, behavior on CAN

... on CAN

DS14964 - Rev 1 page 72/239

Table 23. Safety requirement list independent of MCU mode

ID	Description	
TSR-7	Device shall guarantee CAN interface functionality.	Overtemperature condition: Device transitions to RECOVERY-2 state, then INIT state and powers up the rails.
		Other conditions: device state unchanged.

Note: More details about functional safety can be found in the device safety manual, provided only upon customer request.

6.2 Safety mechanisms

Safety mechanisms implemented in the SPSB100G are described in Section 5. More details about functional safety can be found in the device safety manual, provided only upon customer request.

DS14964 - Rev 1 page 73/239

7 Electrical characteristics

7.1 Supply monitoring

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3 \text{ V} < \text{V}_S < 29 \text{ V}$, $6 \text{ V} \leq \text{V}_{FBB} \leq 29 \text{ V}$, $T_j = -40 \text{ °C}$ to 150 °C, unless otherwise specified.

Table 24. Supply and supply monitoring

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{FBB_OK_R1}	VFBB OK rising threshold	FBB_OK_SEL<1:0>=00	5.2	5.5	5.8	V
V _{FBB_OK_F1}	VFBB OK falling threshold	FBB_OK_SEL<1:0>=00	4.7	5.0	5.3	V
V _{FBB_OK_R2}	VFBB OK rising threshold	FBB_OK_SEL<1:0>=01	6.2	6.5	6.8	V
V _{FBB_OK_F2}	VFBB OK falling threshold	FBB_OK_SEL<1:0>=01	5.7	6.0	6.3	V
V _{FBB_OK_R3}	VFBB OK rising threshold	FBB_OK_SEL<1:0>=10	7.1	7.5	7.9	V
V _{FBB_OK_F3}	VFBB OK falling threshold	FBB_OK_SEL<1:0>=10	6.6	7.0	7.4	V
$V_{FBB_OK_R4}$	VFBB OK rising threshold	FBB_OK_SEL<1:0>=11	8.1	8.5	8.9	V
V _{FBB_OK_F4}	VFBB OK falling threshold	FBB_OK_SEL<1:0>=11	7.6	8.0	8.4	V
V _{FBB_OK_HYS}	VFBB OK hysteresis		0.44	0.55	0.65	V
T _{F_FBB_OK}	Digital filter time on FBB OK	Covered by SCAN	12	15	22	μs
V_{FBB_OV}	VFBB overvoltage threshold	V _{FBB} increasing / decreasing	29	31	33	V
V _{FBB_OV_HYS}	VFBB overvoltage hysteresis		0.1	0.15	0.25	V
T _{F_FBB_OV}	Digital filter time on FBB overvoltage	Covered by SCAN	12	15	22	μs
V _{FBB_OV_EW}	VFBB overvoltage early warning threshold	FBB_OV_EW_TH=[03] step = 1 V. Covered by SCAN	24		38	V
V _{FBB_UV_EW_TH}	VFBB undervoltage early warning range	FBB_UV_EW_TH=[03] step = 0.24 V. Covered by SCAN	5		8.36	V
V _{VS_UV_EW_TH}	VS undervoltage early warning range	VS_UV_EW_TH=[04] step = 0.24 V. Covered by SCAN	2.6		9.8	V
V _{VIO_UV_R}	VIO undervoltage rising VIO voltage		2.75	2.9	3.10	V
V _{VIO_UV_F}	On a falling VIO voltage		2.7	2.85	3.05	V
V _{VIO_UV_HYS}	Hysteresis VIO monitoring		0.005	0.035	0.065	V
T _{F_VIO_UV}	Digital filter time on comparator output	Covered by SCAN	12	15	22	μs
I _{V(act)} ⁽¹⁾	Current consumption in ACTIVE – FULL-POWER mode	Vs = 13.5 V; Buck1,2,3 ON; LDO1, LDO2 ON; no load on regulator; Buck _{1,2_freq} = 400 kHz		25	40	mA

DS14964 - Rev 1 page 74/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{VS_LP1} (1)	Current consumption in ACTIVE - LOW-POWER mode	$V_{S} = 13.5 \text{ V; Buck1 ON in LP} \\ \text{BUCK1_REFRESH_FREQ} = 1; \text{Buck2,3 OFF;} \\ \text{LDO1,2 OFF; Buck1 load} = 5 \text{ mA; } V_{\text{OUT_BUCK1}} = \\ 3.3 \text{ V; Buck1_freq} = 400 \text{ kHz, IRQ and NFSO} \\ \text{high} \\ \end{array}$		2	3.2	mA
I _{VS_LP2} (1)	Current consumption in ACTIVE - LOW-POWER mode	$V_{S} = 13.5 \text{ V; Buck1 ON in LP} \\ \text{BUCK1_REFRESH_FREQ} = 1; \text{Buck2,3 OFF;} \\ \text{LDO1,2 OFF; Buck1 load} = 50 \ \mu\text{A; V}_{\text{OUT_BUCK1}} \\ = 3.3 \text{ V; WDC, OUT_HS, cyclic sense, cyclic} \\ \text{wake-up, no SPI communication; Buck}_{2_\text{freq}} = \\ 400 \ \text{kHz, IRQ} \ \text{and NFSO high} \\ \end{cases}$		300	600	μΑ
I _{VS_DP}	Current consumption in DEEP-SLEEP mode (2) (3)	V _S = 13.5 V; Buck1,2,3 OFF; LDO1,2 OFF; OUT_HS, cyclic sense, cyclic wake-up, NFSO high, T _a = 0 °C to 85 °C		20	40	μА
lvs_dp_t	Current consumption in DEEP-SLEEP mode (2)	V _S = 13.5 V; Buck1,2,3 OFF; LDO1,2 OFF; OUT_HS, cyclic sense, cyclic wake-up, NFSO high, full temperature range			55	μА
I _{QCW}	Current consumption adder for cyclic wake-up	V _S = 13.5 V; in ACTIVE-LOW-POWER mode or DEEP-SLEEP state		60	90	μΑ
I _{QCS}	Current consumption adder for cyclic sense	V _S = 13.5 V; in ACTIVE-LOW-POWER mode or DEEP-SLEEP state. Tperiod = 50 ms, Ton =100 us		60	90	μΑ
I _{QCAN} (3)	Quiescent current adder for CAN wake up or CAN autobiasing activated	V _S =13.5 V; in ACTIVE-LOW-POWER mode or DEEP-SLEEP state		7	13	μΑ
IQ _{OUT_HS} (3)	Additional bias quiescent current for switched ON OUT_HS	$V_{\rm S}$ = 13.5 V; in ACTIVE-LOW-POWER mode or DEEP-SLEEP state No Load		140	220	μΑ
VS_BUCK2_LP (3)	Additional bias quiescent current for Buck2 in LOW-POWER mode	V _S = 13.5 V; Buck2 ON in LP BUCK2_REFRESH_FREQ = 1; VOUT = 5 V No Load		90	400	μА
IVS_DP_LDT	Additional current consumption for VLDT	V _S = 13.5 V			55	μΑ

- 1. Verified by bench measurements. Performances verified in applicative conditions.
- 2. Current consumption in DEEP-SLEEP mode is calculated as IVS_DP + wake-up current consumption contributions.
- 3. Guaranteed by design.

7.2 Power ground loss monitoring

Table 25. Power ground loss monitoring

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
$V_{Gnd_Loss_th}$	Ground loss threshold		150	300	470	mV
t _{Gnd_Loss_FILT} (1)	Ground loss filter time		12	15	22	μs

^{1.} Digital implementation guaranteed by SCAN test.

The ground loss protection parameter depends mainly on the implementation. This monitor measures a ground shift between the CANGND and SGND pins.

7.3 Oscillator

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin.

DS14964 - Rev 1 page 75/239

6 V \leq V_{FBB} \leq 29 V, T_i = -40 °C to 150 °C, unless otherwise specified.

Table 26. Oscillator

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
F _{CLK800K}	Oscillation frequency		640	800	960	kHz
F _{CLK33M6_MAIN}	Oscillation frequency		26.88	33.6	40.32	MHz
F _{CLK33M6_MON}	Oscillation frequency		26.88	33.6	40.32	MHz

7.4 Power-on reset

All outputs open; T_i = -40 °C to 150 °C, unless otherwise specified.

Table 27. Power-on reset

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{PORVS_R}	V _S POR rising threshold		4.5	4.85	5.2	V
V _{PORVS_F} (1)	V _S POR falling threshold		1.9	2.1	2.3	V
V _{PORVS_HYS}	V _S POR hysteresis		2.5	2.75	3	V

^{1.} This threshold is valid if V_S had already reached $V_{PORVS\ R(max)}$ previously.

7.5 LDO1 voltage regulator

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6 \text{ V} \le V_{FBB} \le 29 \text{ V}$, $T_j = -40 \text{ °C}$ to 150 °C, unless otherwise specified.

Table 28. LDO1

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{LDO1}	Output voltage tolerance. Including line and load	$I_{LOAD} = 100 \ \mu A \text{ to } 120 \ \text{mA}$ 6.0 V ≤ V _{FBB} ≤ 29 V	4.9	5.0	5.15	V
V _{LDO1_PG} (1)	regulation Power-good rising threshold	V _{LDO1} increasing	4.6	4.8	4.9	V
V _{LDO1_UV}	Undervoltage falling threshold	V _{LDO1} decreasing	3.8	4.0	4.2	V
t _{LDO1_PG_TO} (2)	LDO1 timeout for power- good		4.8	6	7.5	ms
t _{LDO1_UV} (2)	Undervoltage filter time		12	15	22	μs
V _{LDO1_DP}	Drop-out voltage	I _{LOAD} = 120 mA	-	-	0.8	V
I _{LDO1_Cmax}	Short circuit output current (to GND)	Current limitation	130	175	250	mA
C _{LDO1} (3)	Load capacitor 1	Ceramic (± 20%)	1	-	10	μF

^{1.} No overlap with V_{LDO1} regulation level by production test.

DS14964 - Rev 1 page 76/239

^{2.} Digital implementation guaranteed by SCAN test.

^{3.} Nominal capacitor value required for stability of the regulator. Tested with 1 μF ceramic (± 20%). Capacitor must be located close to the regulator output pin. A 2.2 μF capacitor value is recommended to minimize the DPI (Direct Power Injection) stress in the application.

7.6 LDO2 voltage regulator

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6 \text{ V} \le \text{V}_{\text{FBB}} \le 29 \text{ V}$, $\text{T}_{\text{i}} = -40 \,^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$, unless otherwise specified.

The same parameter values apply in both 5 V and 3.3 V conditions unless otherwise specified.

Table 29. LDO2

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{LDO2_5}	Output voltage	V _{FBB} ≥ 6.0 V	4.9	5.0	5.15	V
V _{LDO2_33}	Output voltage	V _{FBB} ≥ 6.0 V	3.23	3.3	3.399	V
V _{LDO2_ACC_25} ⁽¹⁾	Output voltage tracking accuracy	I_{LOAD} = 100 μ A to 5 mA V_{FBB} = 8 V to 18 V T_j = 25 °C	-10	-	10	mV
V _{LDO2_ACC_130}	Output voltage tracking accuracy	I_{LOAD} = 100 μ A to 5 mA V_{FBB} = 8 V to 18 V T_{j} = 130 °C	-20	-	20	mV
V _{LDO2_OV}	Overvoltage threshold for LDO2		105	108.5	112	%
t _{LDO2_OV} (2)	LDO2 overvoltage filter time		12	15	22	μs
V _{LDO2_PG}	Power-good voltage threshold for LDO2		91.5	95	98.5	%
V _{LDO2_UV}	Undervoltage threshold for LDO2		88	91.5	95	%
t _{LDO2_UV} (2)	LDO2 undervoltage filter time		12	15	22	μs
t _{LDO2_PG_TO} (2)	LDO2 timeout for power- good		4.8	6	7.5	ms
V _{LDO2_DP}	Drop-out voltage	I _{LOAD} = 10 mA	-	0.5	1.0	V
R _{PD_OFF_ldo2}	Pull down resistor in Off	Vout = 3.3 V	110	150	180	Ω
I _{LDO2_CCmax}	Short-circuit output current (to GND)	Current limitation	15	30	45	mA
C _{LDO2}	Load capacitor 1	Ceramic (± 20%)	1 (3)	-	10 (1)	μF

^{1.} Guaranteed by design.

7.7 Boost controller

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3 \text{ V} \le \text{V}_S \le 29 \text{ V}$, T_i = -40 °C to 150 °C, unless otherwise specified.

Table 30. Boost controller

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{FBB_UV_R1}	BOOST rising enable threshold	FBB_UV_LEVEL_SEL = 0 Input voltage required on initial start-up to enable the boost	5.0	5.25	5.5	V

DS14964 - Rev 1 page 77/239

^{2.} Digital implementation guaranteed by SCAN test.

^{3.} Nominal capacitor value required for stability of the regulator. Tested with 1 μF ceramic (± 20%). Capacitor must be located close to the regulator output pin. A 2.2 μF capacitor value is recommended to minimize the DPI (Direct power Injection) stress in the application.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{FBB_UV_F1}	BOOST falling disable threshold	FBB_UV_LEVEL_SEL = 0 Power-down threshold	4.6	4.85	5.1	V
V _{FBB_UV_R2}	BOOST rising enable threshold	FBB_UV_LEVEL_SEL = 1 Input voltage required on initial start-up to enable the boost	5.55	5.8	6.05	V
V _{FBB_UV_F2}	BOOST falling disable threshold	FBB_UV_LEVEL_SEL = 1 Power-down threshold	5.05	5.3	5.55	V
V _{FBB_UV_HYS}	Boost enable hysteresis		0.35	0.45	0.55	V
T _{F_FBB_UV} (1)	Digital filter time on FBB POR		12	15	22	μs
V _{FBB_REG1}	V _{FBB} regulation threshold	FBB_REG_LEVEL_SEL<1:0> = 00	5.8	6.0	6.2	V
V _{FBB_REG2}	V _{FBB} regulation threshold	FBB_REG_LEVEL_SEL<1:0> = 01	6.8	7.0	7.2	V
V _{FBB_REG3}	V _{FBB} regulation threshold	FBB_REG_LEVEL_SEL<1:0> = 10	7.75	8.0	8.25	V
V _{FBB_REG4}	V _{FBB} regulation threshold	FBB_REG_LEVEL_SEL<1:0> = 11	8.75	9.0	9.25	V
V _{S_SENSE1}	V _{S_SENSE} threshold	VS_SENSE_LEVEL_SEL<1:0> = 00	5.25	5.4	5.55	V
V _{S_SENSE2}	V _{S_SENSE} threshold	VS_SENSE_LEVEL_SEL<1:0> = 01	5.4	5.55	5.7	V
V _{S_SENSE3}	V _{S_SENSE} threshold	VS_SENSE_LEVEL_SEL<1:0> = 10	5.55	5.7	5.85	V
V _{S_SENSE4}	V _{S_SENSE} threshold	VS_SENSE_LEVEL_SEL<1:0> = 11	5.7	5.85	6.0	V
V _{S_SENSE_HYS}	V _{S_SENSE} hysteresis		10	50	100	mV
Fsw_BOOST	Switching frequency	Guaranteed by SCAN	320	400	480	kHz
Boost_DC_Max (1)	Boost duty cycle Max	0V < VS < VS_LOW TON=63 cycles of 33.6 MHz main clk	34	75	83	%
Boost_DC_High (1)	Boost duty cycle high	VS_LOW < VS < VS_MID TON=55 cycles of 33.6 MHz main clk	30	65.5	73	%
Boost_DC_Low (1)	Boost duty cycle Low	VS_MID < VS < VS_HIGH TON=46 cycles of 33.6MHz main clk	25	54.8	61	%
Boost_DC_Min (1)	Boost duty cycle min	VS_HIGH < VS TON=38 cycles of 33.6MHz main clk	21	45.2	50	%
Boost_DC_LP (1)	Boost duty cycle in LOW- POWER mode	VS_HIGH < VS TON= 2 cycles of 800kHz	27	50.0	66	%
VS_Low_R	VS comparator threshold VS_Low		4.25	4.5	4.75	V
	Rising VS comparator threshold				5.1 6.05 5.55 0.55 22 6.2 7.2 8.25 9.25 5.55 5.7 5.85 6.0 100 480 83 73 61 50 66	
VS_Low_F	VS_Low		3.75	4.0		V
	Falling					
VS_Low_HYS	VS comparator threshold VS_Low Hysteresis		0.4	0.5	0.6	V
VS_Mid_R	VS comparator threshold VS_Mid Rising		5.7	6.0	6.3	V
VS_Mid_F	VS comparator threshold VS_Mid		5.2	5.5	5.8	V
	Falling				6.05 5.55 0.55 22 6.2 7.2 8.25 9.25 5.55 5.7 5.85 6.0 100 480 83 73 61 50 66 4.75 4.25 0.6 6.3	

DS14964 - Rev 1 page 78/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
VS_Mid_HYS	VS comparator threshold VS_Mid		0.4	0.5	0.6	V
	Hysteresis					
VS_High_R	VS comparator threshold VS_High		7.1	7.5	7.9	V
	Rising				0.6	
VS_High_F	VS comparator threshold VS_High		6.6	7	7.4	V
	Falling					
VS_High_HYS	VS comparator threshold VS_High hysteresis		0.4	0.5	0.6	V
		Ripple @ 20 kHz				
$V_{Boost_rip}^{(2)}$	Boost Voltage_ripple	All characteristics of all blocks supplied by FBB guaranteed with external components defined in Table 65			2.5	Vpp
I _{Boost} (2)	Boost current capability in full power mode	guaranteed with external components defined in Table 65			3.5	А
I _{Boost_LP} (2)	Boost current capability in LOW-POWER mode	guaranteed with external components defined in Table 65			0.2	Α
I _{Boost_LS_sink1}	LS driver sink current	VFBB= VGLB = 8.5V	70	100	130	mA
I _{Boost_HS_source1}	HS driver source current	VFBB=8.5V VGLB = 0V	70	100	130	mA
I _{Boost_LS_sink2}	LS driver sink current	VFBB=8.5V VGLB = 0.5V	20	35	55	mA
I _{Boost_HS_source2}	HS driver source current	VFBB=8.5V VGLB = 8V	10	25	45	mA
RBoost_gate_pulld own	Resistive gate pull-down	BOOST_DIS=1	3	5	8	kΩ
I _{VS_stdby}	Current leakage on VS pin in stdby				2	μА
I _{VS_Sense}	Sink current in VS active mode		120	180	250	μA
V _{BOOST_VDSM1}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH=000	220	250	280	mV
V _{BOOST_VDSM2}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH=001	400	450	500	mV
V _{BOOST_VDSM3}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =010	580	650	710	mV
V _{BOOST_VDSM4}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =011	770	850	930	mV
V _{BOOST_VDSM5}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =100	1.0	1.1	1.2	V
V _{BOOST_VDSM6}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =101	1.15	1.3	1.45	V
V _{BOOST_VDSM7}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =110	1.35	1.5	1.65	V
V _{BOOST_VDSM8}	Boost drain-source rising threshold voltage	BOOST_DSMON_TH =111	1.53	1.7	1.87	V
V _{BOOST_VDSM_HYS_}	Boost drain-source threshold voltage hysteresis for high VDSM codes	BOOST_DSMON_TH =1xx	75	100	125	mV
V _{BOOST_VDSM_HYS_}	Boost drain-source threshold voltage hysteresis for Low VDSM codes	BOOST_DSMON_TH =0xx	25	50	75	mV

DS14964 - Rev 1 page 79/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{TH_BYPASS_R1}	Bypass external MOSFET enable comparator rising threshold, rising VVS	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 00	6.3	6.5	6.7	V
V _{TH_BYPASS_F1}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 00	5.8	6.0	6.2	V
V _{TH_BYPASS_R2}	Bypass external MOSFET enable comparator rising threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 00	6.8	7.0	7.2	V
V _{TH_BYPASS_F2}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 00	6.3	6.5	6.7	V
V _{TH_BYPASS_R3}	Bypass external MOSFET enable comparator rising threshold, rising VVS	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 01	7.3	7.5	7.7	V
V _{TH_BYPASS_F3}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 01	6.8	7.0	7.2	V
V _{TH_BYPASS_R4}	Bypass external MOSFET enable comparator rising threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 01	7.75	8.0	8.25	V
V _{TH_BYPASS_F4}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 01	7.3	7.5	7.7	V
V _{TH_BYPASS_R5}	Bypass external MOSFET enable comparator rising threshold, rising VVS	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 10	8.25	8.5	8.75	V
V _{TH_BYPASS_F5}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 10	7.75	8.0	8.25	V
V _{TH_BYPASS_R6}	Bypass external MOSFET enable comparator rising threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 10	8.75	9.0	9.25	V
V _{TH_BYPASS_F6}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 10	8.25	8.5	8.75	V
V _{TH_BYPASS_R7}	Bypass external MOSFET enable comparator rising threshold, rising VVS	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 11	9.25	9.5	9.75	V
V _{TH_BYPASS_F7}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 0 and FBB_REG_LEVEL_SEL<1:0> = 11	8.75	9.0	9.25	V
V _{TH_BYPASS_R8}	Bypass external MOSFET enable comparator rising threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 11	9.75	10.0	10.25	V
V _{TH_BYPASS_F8}	Bypass external MOSFET disable comparator falling threshold, rising V _{VS}	BYPASS_OFFSET_SEL = 1 and FBB_REG_LEVEL_SEL<1:0> = 11	9.25	9.5	9.75	V
T _{F_BYPASS_EN} (1)	Digital filter time on bypass external MOSFET enable comparator output		12	15	22	μs
T _{F_BYPASS_DIS} (1)	Digital filter time on bypass external MOSFET disable comparator output		0	0.24	0.4	μs

DS14964 - Rev 1 page 80/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{BYPASS_VDSM1}	Bypass drain-source rising threshold voltage	BYPASS_DSMON_TH =000	75	125	175	mV
V _{BYPASS_VDSM2}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =001	125	165	225	mV
V _{BYPASS_VDSM3}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =010	175	225	275	mV
V _{BYPASS_VDSM4}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =011	225	275	325	mV
V _{BYPASS_VDSM5}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =100	275	325	375	mV
V _{BYPASS_VDSM6}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =101	325	375	425	mV
V _{BYPASS_VDSM7}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH =110	375	425	475	mV
V _{BYPASS_VDSM8}	Bypass drain-source rising threshold voltage	BYPASS _DSMON_TH=111	425	475	525	mV
V _{BYPASS_VDSM_HYS}	Bypass drain-source threshold voltage hysteresis	BYPASS_DSMON_TH =xxx	25	50	75	mV
T _{F_BYPASS_VDSM} ⁽¹⁾	Digital filter time on bypass drain-source threshold		12	15	22	μs
T _{B_BYPASS_VDSM} ⁽¹⁾	Blanking time on bypass drain- source comparator		90	110	142	μs
R _{bypass_gate_discharg} e	Bypass gate discharge resistor	FBB-GBY = 2 V FBB=7 and GBY=5 turn OFF	100	220	600	Ω
I _{bypass_gate_charge}	Bypass gate charge current	GBY=5V FBB=13.5V	0.4	1.2	2	mA
t _{boost_crk_to1} (1)	Boost timeout 1	BOOST_CRK_TO = 001	0.4	0.5	0.6	s
t _{boost_crk_to2} (1)	Boost timeout 2	BOOST_CRK_TO = 010	0.8	1	1.2	s
t _{boost_crk_to3} (1)	Boost timeout 3	BOOST_CRK_TO = 011	1.6	2	2.4	s
t _{boost_crk_to4} (1)	Boost timeout 4	BOOST_CRK_TO = 100	3.2	4	4.8	S
t _{boost_crk_to5} (1)	Boost timeout 5	BOOST_CRK_TO = 101	4.8	6	7.2	s
t _{boost_crk_to6} (1)	Boost timeout 6	BOOST_CRK_TO = 110	6.4	8	9.6	s
t _{boost_crk_to7} (1)	Boost timeout 7	BOOST_CRK_TO = 111	8	10	12	s

^{1.} Digital implementation guaranteed by SCAN test.

DS14964 - Rev 1 page 81/239

^{2.} Guaranteed by design.

7.8 BUCK1 converter

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $8.5 \text{ V} \le V_{\text{IN}12} \le 29 \text{ V}$, $T_j = -40 \,^{\circ}\text{C}$ to $150 \,^{\circ}\text{C}$, unless otherwise specified.

Table 31. Buck 1 converter

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Variation	Input voltage range	Vout_buck1 = 6.5 V	8.7	14	29	V
V _{IN12_H}	Input voltage range	(see Figure 59)	0.7	14	29	V
V _{IN12 M}	Input voltage range	Vout_buck1 = 5 V	7	14	29	V
	mper renage range	(see Figure 58)	•			-
V _{IN12_L}	Input voltage range	Vout_buck1 = 3.3 V	5.2	14	29	V
	-	(see Figure 57)				
		BUCK1_PU_VALUE=00				
V _{out_buck1_33} (1)	Output voltage	Transients and ripple not included, V _{IN12} = 8.5 V to 16 V, I _{LOAD} = 50 mA to 1.5 A	3.23	3.3	3.399	V
		Freq. = 400 kHz				
		BUCK1_PU_VALUE=01				
V _{out_buck1_5} (1)	Output voltage	Transients and ripple not included, V _{IN12} = 8.5 V to 16 V, I _{LOAD} = 50 mA to 1.5 A	4.9	5	5.15	V
		Freq. = 400 kHz				
		BUCK1_PU_VALUE=1x				
V _{out_buck1_65} ⁽¹⁾	Output voltage	Transients and ripple not included, V _{IN12} = 9.2 V to 16 V, I _{LOAD} = 50 mA to 1.5 A	6.37	6.5	6.695	V
		Freq. = 400 kHz				
V _{out_UV_buck1_err}	Output undervoltage threshold monitor range		86	90	94	%
V _{out_PG_buck1}	Output power-good threshold monitor range		88	92	96	%
V _{out_OV_buck1_err}	Output overvoltage threshold monitor range		103	107	111	%
t _{buck1_PG_TO} (2)	Output power-good timeout		4.8	6	7.5	ms
t _{buck1_UV_TO} (2)	V _{OUT} undervoltage time-out filter		25	30	41	μs
t _{buck1_OV_TO} (2)	V _{OUT} overvoltage time-out filter		25	30	41	μs
R _{DSON_HS_buck1_25}	HS Switch ON resistance @ 1.5 A	V _{IN12} = 14 V, T _J = 25 °C		0.095	0.12	Ω
R _{DSON_HS_buck1_13}	HS switch ON resistance @ 1.5 A	V _{IN12} = 14 V, T _J = 130 °C			0.165	Ω
RDSON_LS_buck1_25	LS switch ON resistance @ 1.5	V _{IN12} = 14 V, T _J = 25 °C		0.095	0.12	Ω
R _{DSON_LS_buck1_13}	LS switch ON resistance @ 1.5	V _{IN12} = 14 V, T _J = 130 °C			0.165	Ω
llimit_buck1_000	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=000	1.7	2	2.3	Α
I _{limit_buck1_001}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=001	2.125	2.5	2.875	Α

DS14964 - Rev 1 page 82/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{limit_buck1_010}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=010	2.55	3	3.45	А
I _{limit_buck1_011}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=011	2.975	3.5	4.025	А
I _{limit_buck1_100}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=100	3.2	4	4.6	А
I _{limit_buck1_101}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=101	3.5	4.5	5.175	А
I _{limit_buck1_11X}	Peak switching current limit @ VIN12 = 14 V	BUCK1_IPEAK=11X	3.75	5	5.75	А
t _{buck1_OC_TO} ⁽²⁾	Overcurrent filter time		125	150	200	μs
T _{softstart_buck1_00} (3)	Soft-start time slope when start-up	BUCK1_SS_VALUE=00	9.9	16.5	23.1	V/ms
T _{softstart_buck1_01} (3)	Soft start time slope when start- up	BUCK1_SS_VALUE=01	4.95	8.25	11.9	V/ms
T _{softstart_buck1_10} ⁽¹⁾	Soft start time slope when start- up	BUCK1_SS_VALUE=10	1.98	3.3	4.62	V/ms
T _{softstart_buck1_11} (3)	Soft start time slope when start- up	BUCK1_SS_VALUE=11	0.99	1.65	2.31	V/ms
F _{sw_buck1_0}	Switching frequency	BUCK1_FREQ=0	2.0	2.4	2.8	MHz
F _{sw_buck1_1}	Switching frequency	BUCK1_FREQ=1	333	400	470	kHz
F _{spread_buck1_24} (3)	Spread-spectrum range (enable/disable by BUCK1_SPREAD_ENA)	F _{sw_buck1} = 2.4 MHz	-30		+30	%
F _{spread_buck1_04} (3)	Spread spectrum range (Enable/disable by BUCK1_SPREAD_ENA)	Fsw_buck1= 400 kHz	-30		+30	%
RPD_OFF_buck1	Pull-down resistor in Off	V _{OUT} = 3.3 V	55	70	90	Ω
I _{buck1_LP}	Output current in LOW-POWER mode	V _{IN12} = 14 V			100	mA
		BUCK1_PU_VALUE= 00				
	Output voltage in LOW-	Line/Load transients not included				
V _{buck1_LP_00}	POWER mode	Ripple included	3.15	3.3	3.45	V
		V_{IN12} = 8.5 V to 16 V, I_{LOAD} = 50 μA to I_{Buck1_LP}				
		BUCK1_PU_VALUE = 01				
	Output voltage in LOW-	Line/Load transients not included				
V _{buck1_LP_01}	POWER mode	Ripple included	4.75	5	5.25	V
		V_{IN12} = 8.5 V to 16 V, I_{LOAD} = 50 μA to I_{Buck1_LP}				
		BUCK1_PU_VALUE = 1x				
	Output valters in LOW	Line/Load transients not included				
$V_{buck1_LP_1X}$	Output voltage in LOW-POWER mode	Ripple included	6.22	6.5	6.78	V
	OVVERTIBUE	V_{IN12} = 8.5 V to 16 V, I_{LOAD} = 50 μA to I_{Buck1_LP}				
I _{sw_limit_buck1_LP}	Peak current limit in LP mode		900	1250	1500	mA
V _{out_UV} _ buck1_LP_33	Output undervoltage threshold monitor in LP mode	V _{OUT} = 3.3 V	2.75	2.9	3.05	V

DS14964 - Rev 1 page 83/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Vout_UV_ buck1_LP_5	Output undervoltage threshold monitor in LP mode	V _{OUT} = 5 V	4.15	4.35	4.65	V
V _{out_UV} _ buck1_LP_65	Output undervoltage threshold monitor in LP mode	V _{OUT} = 6.5 V	5.45	5.65	5.85	V
V _{out_OV} _ buck1_LP_33	Output overvoltage threshold monitor in LP mode	Vout = 3.3 V	3.55	3.7	3.89	V
Vout_OV_ buck1_LP_5	Output overvoltage threshold monitor in LP mode	Vout = 5 V	5.4	5.65	5.85	V
V _{out_OV} _ buck1_LP_65	Output overvoltage threshold monitor in LP mode	Vout = 6.5 V	6.9	7.2	7.5	V
R _{DSON_HS_buck1_LP} _25	HS switch ON resistance @ 0.1 A	V _{IN12} = 14 V, T _J = 25 °C		0.72	0.9	Ω
R _{DSON_HS_buck1_LP} _130	HS switch ON resistance @ 0.1	V _{IN12} = 14 V, T _J = 130 °C			1.3	Ω
R _{DSON_LS_buck1_LP} _25	LS switch ON resistance @ 0.1	V _{IN12} = 14 V, T _J = 25 °C		0.2	0.3	Ω
R _{DSON_LS_buck1_LP} _130	LS switch ON resistance @ 0.1A	V _{IN12} = 14 V, T _J = 130 °C			0.4	Ω

Verified by bench measurements. Performances verified in applicative conditions. Tested in static load conditions (I_{LOAD}= 150 mA) at 400 kHz and 2.4 MHz.

DS14964 - Rev 1 page 84/239

^{2.} Digital implementation guaranteed by SCAN test.

^{3.} Guaranteed by design.

7.9 BUCK2 converter

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 8.5 V \leq V_{IN12} \leq 29 V, T_j = -40 °C to 150 °C, unless otherwise specified. Buck2 shares the same input as Buck1.

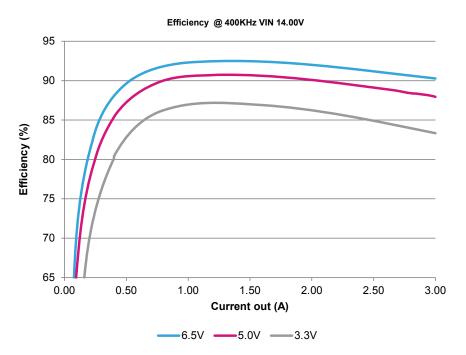
Table 32. Buck2 converter

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V	Input voltage rence	Vout_buck1 = 6.5 V	8.7	14	20	V
V _{IN12_H}	Input voltage range	(see Figure 59)	8.7	14	29	V
V _{IN12 M}	Input voltage range	Vout_buck1 = 5 V	7	14	29	V
* IIV 12_IVI	input voltage range	(see Figure 58)	,	17	20	•
V _{IN12_L}	Input voltage range	Vout_buck1 = 3.3 V	5.2	14	29	V
···· - -		(see Figure 57)				
		BUCK2_PU_VALUE=00				
V _{out_buck2_33} (1)	Output voltage	Transients and ripple not included, V _{IN12} = 8.5 V to 16 V, I _{LOAD} = 50 mA to 1.5 A	3.23	3.3	3.399	V
		Freq. = 400 kHz				
		BUCK2_PU_VALUE=01				
V _{out_buck2_5} ⁽¹⁾	Output voltage	Transients and ripple not included, V _{IN12} = 8.5 V to 16 V, I _{LOAD} = 50 mA to 1.5 A	4.9	5	5.15	V
		Freq. = 400 kHz				
		BUCK2_PU_VALUE=1x	6.37			
V _{out_buck2_65} (1)	Output voltage	Transients and ripple not included, V _{IN12} = 9.2 V to 16 V, I _{LOAD} = 50 mA to 1.5 A		6.5	6.695	V
		Freq. = 400 kHz				
V _{out_UV_} buck2_err	Output undervoltage threshold monitor range		86	90	94	%
V _{out_PG_} buck2	Output power-good threshold monitor range		88	92	96	%
Vout_OV_ buck2_err	Output overvoltage threshold monitor range		103	107	111	%
t _{buck2_PG_TO} (2)	Output power-good timeout		4.8	6	7.5	ms
t _{buck2_UV_TO} (2)	V _{OUT} undervoltage time-out filter		25	30	41	μs
t _{buck2_OV_TO} (2)	V _{OUT} overvoltage time-out filter		25	30	41	μs
R _{DSON_HS_buck2_25}	HS switch ON resistance @ 1.5 A	V _{IN12} = 14 V, T _J = 25 °C		0.095	0.12	Ω
R _{DSON_HS_buck2_130}	HS switch ON resistance @ 1.5 A	VIN12 = 14 V, TJ = 130 °C			0.165	Ω
R _{DSON_LS_buck2_25}	LS switch ON resistance @ 1.5 A	VIN12 = 14 V, TJ = 25 °C		0.095	0.12	Ω
R _{DSON_LS_buck2_130}	LS switch ON resistance @ 1.5 A	VIN12 = 14 V, TJ = 130 °C			0.165	Ω
I _{limit_buck2_000}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=000	1.7	2	2.3	Α
limit_buck2_001	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=001	2.125	2.5	2.875	Α

DS14964 - Rev 1 page 85/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{limit_buck2_010}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=010	2.55	3	3.45	А
I _{limit_buck2_011}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=011	2.975	3.5	4.025	А
I _{limit_buck2_100}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=100	3.2	4	4.6	А
I _{limit_buck2_101}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=101	3.5	4.5	5.175	А
I _{limit_buck2_11x}	Peak switching current limit @ VIN12 = 14 V	BUCK2_IPEAK=11X	3.75	5	5.75	А
t _{buck2_OC_TO} (2)	Overcurrent filter time		125	150	200	μs
T _{softstart_buck2_00} (3)	Soft start time slope when start-up	BUCK2_SS_VALUE=00	9.9	16.5	23.1	V/ms
T _{softstart_buck2_01} (3)	Soft-start time slope when start-up	BUCK2_SS_VALUE=01	4.95	8.25	11.9	V/ms
T _{softstart_buck2_10} (3)	Soft-start time slope when start-up	BUCK2_SS_VALUE=10	1.98	3.3	4.62	V/ms
T _{softstart_buck2_11} (3)	Soft start time slope when start-up	BUCK2_SS_VALUE=11	0.99	1.65	2.31	V/ms
F _{sw_buck2_0}	Switching frequency	BUCK2_FREQ=0	2.0	2.4	2.8	MHz
F _{sw_buck2_1}	Switching frequency	BUCK2_FREQ=1	333	400	470	kHz
F _{spread_buck2_24} (3)	Spread spectrum range (Enable/disable by BUCK2_SPREAD_ENA)	Fsw_buck2 = 2.4 MHz	-30		+30	%
F _{spread_buck2_04(1)}	Spread spectrum range (Enable/disable by BUCK2_SPREAD_ENA)	Fsw_buck2 = 400 kHz	-30		+30	%
PHI_buck2 (3)(2)	Phase shift to BUCK1			225		deg
RPD_OFF_buck2	Pull down resistor in Off	Vout = 3.3 V	55	70	90	Ω
I _{buck2_LP}	Output current in LOW-POWER mode	V _{IN12} = 14 V			100	mA
		BUCK2_PU_VALUE= 00				
	Output voltage in LOW-	Line/Load transients not included				
$V_{buck2_LP_00}$	POWER mode	Ripple included	3.15	3.3	3.45	V
		V_{IN12} = 8.5 V to 16 V, Iload = 50 μ A to I_{Buck2_LP}				
		BUCK2_PU_VALUE = 01				
		Line/Load transients not included				
V _{buck2_LP_01}	Output voltage in LOW-POWER mode	Ripple included	4.75	5	5.25	V
	. OWLIN HOUSE	V_{IN12} = 8.5 V to 16 V, Iload = 50 μ A to $I_{\text{Buck2_LP}}$				
		BUCK2_PU_VALUE = 1x				
		Line/Load transients not included				
$V_{buck2_LP_1X}$	Output voltage in LOW-POWER mode	Ripple included	6.22	6.5	6.78	V
	1 OWEN HOUSE	V_{IN12} = 8.5 V to 16 V, I_{LOAD} = 50 μA to I_{Buck2_LP}				
I _{sw limit buck2_LP}	Peak current limit in LP mode		900	1250	1500	mA

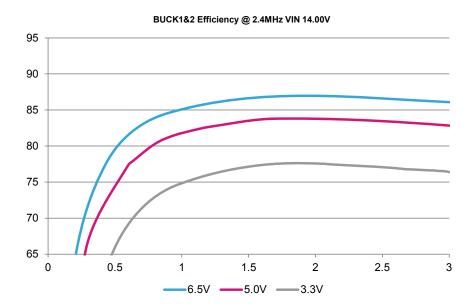
DS14964 - Rev 1 page 86/239


Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
Vout_UV_ buck2_LP_33	Output undervoltage threshold monitor in LP mode	V _{OUT} = 3.3 V	2.75	2.9	3.05	V
Vout_UV_ buck2_LP_5	Output undervoltage threshold monitor in LP mode	V _{OUT} = 5 V	4.15	4.35	4.65	V
Vout_UV_ buck2_LP_65	Output undervoltage threshold monitor in LP mode	V _{OUT} = 6.5 V	5.45	5.65	5.85	V
Vout_OV_ buck2_LP_33	Output overvoltage threshold monitor in LP mode	V _{OUT} = 3.3 V	3.55	3.7	3.89	V
Vout_OV_ buck2_LP_5	Output overvoltage threshold monitor in LP mode	V _{OUT} = 5 V	5.4	5.65	5.85	V
Vout_OV_ buck2_LP_65	Output overvoltage threshold monitor in LP mode	V _{OUT} = 6.5 V	6.9	7.2	7.5	V
R _{DSON_HS_buck2_LP_2} 5	HS switch ON resistance @ 0.1 A	V _{IN12} = 14 V, T _J = 25 °C		0.72	0.9	Ω
R _{DSON_HS_buck2_LP_1}	HS switch ON resistance @ 0.1 A	V _{IN12} = 14 V, T _J = 130 °C			1.3	Ω
R _{DSON_LS_buck2_LP_2} 5	LS switch ON resistance @ 0.1 A	V _{IN12} = 14 V, T _J = 25 °C		0.25	0.3	Ω
R _{DSON_LS_buck2_LP_1}	LS switch ON resistance @ 0.1 A	V _{IN12} = 14 V, T _J = 130 °C			0.4	Ω

Verified by bench measurements. Performances verified in applicative conditions. Tested in static load conditions (I_{LOAD}= 150 mA) at 400 kHz and 2.4 MHz.

- 2. Digital implementation guaranteed by SCAN test.
- 3. Guaranteed by design.

Below are the efficiency curves for BUCK1 and BUCK2:


Figure 49. Efficiency @ 400 kHz VIN 14.00 V

DS14964 - Rev 1 page 87/239

Figure 50. BUCK1&2 Efficiency @ 2.4 MHz VIN 14.00 V

DS14964 - Rev 1 page 88/239

See below the load and line transient curves for Buck1, 2:

Figure 51. I_{LOAD} transient 0.05 A to 1.5 A in 50 μs

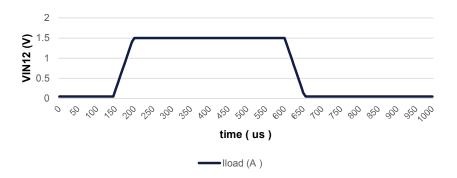


Figure 52. Buck1&2 @ 400 kHz

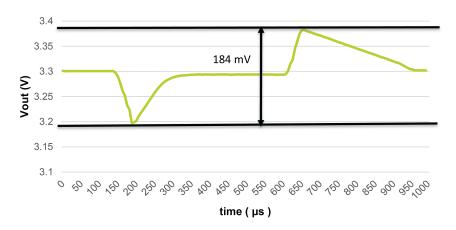
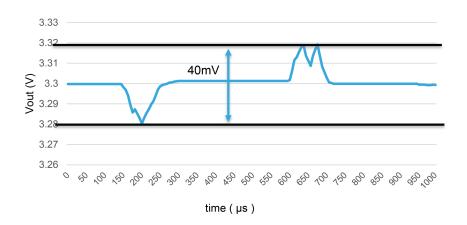



Figure 53. Buck1&2 @ 2.4 MHz

DS14964 - Rev 1 page 89/239

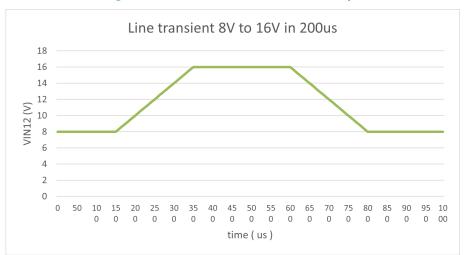


Figure 54. Line transient 8 V to 16 V in 200 µs

Figure 55. Buck1&2 @ 400 kHz

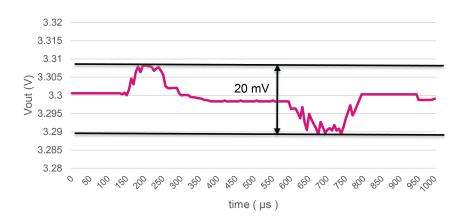
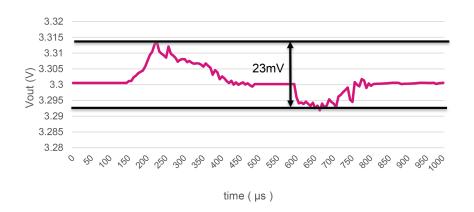



Figure 56. Buck1&2 @ 2.4 MHz

DS14964 - Rev 1 page 90/239

See below the current limitation curves for Buck1, 2 based on different input voltages:

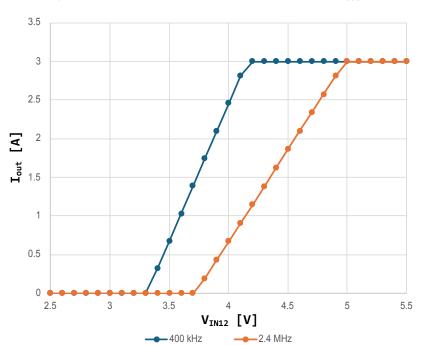
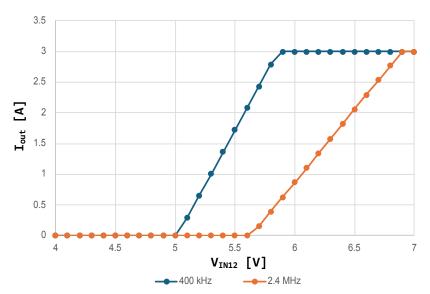



Figure 57. Current limitation curves of Buck1, 2 for V_{out} 3.3 V

DS14964 - Rev 1 page 91/239

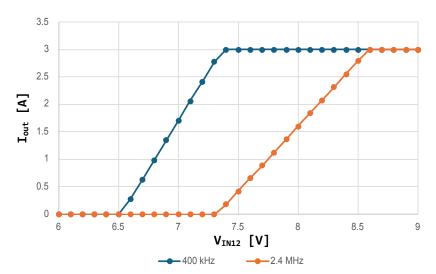


Figure 59. Current limitation curves of Buck1, 2 for V_{out} 6.5 V

DS14964 - Rev 1 page 92/239

7.10 BUCK3 converter

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3 \text{ V} \le V_{\text{IN}3} \le 7 \text{ V}$, $T_j = -40 \text{ °C}$ to 150 °C, unless otherwise specified.

Table 33. BUCK3 converter

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{in3_L} (1) (2)	Input voltage range	V _{out_buck3} = 1.25 V or below	3	-	5.25	V
V _{in3_H} (1) (2)	Input voltage range	V _{out_buck3} = 3.3 V	4.85	-	7	V
		BUCK3_PU_VALUE = 001				
(1) (2)	Output voltage	BUCK3_FTUNE = 11X	0.0045	0.95	0.0705	.,
Vout_buck3_11X (1) (2)		V _{IN3} = 3 V to 5.25 V	0.9215		0.9785	V
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 001				
V (1) (2)	Outrout valtage	BUCK3_FTUNE = 101	0.0040	0.00	0.0000	.,
Vout_buck3_101 (1) (2)	Output voltage	V _{IN3} = 3 V to 5.25 V	0.9312	0.96	0.9888	V
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 001			0.9991	
V _{out_buck3_100} (1) (2)	Output voltage	BUCK3_FTUNE = 100	0.9409	0.97		V
- out_buck3_100	Output voltage	V _{IN3} = 3 V to 5.25 V	0.9409		0.9991	V
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 001	0.9506 0.98			
V _{out_buck3_000} (1) (2)	Output voltage	BUCK3_FTUNE = 000		0.98	1.0094	V
vout_buck3_000		V _{IN3} = 3 V to 5.25 V	0.9300	0.90	1.0094	v
		I_{LOAD} = 50 mA to 3 A				
	Output voltage	BUCK3_PU_VALUE = 001				
V _{out_buck3_001} (1) (2)		BUCK3_FTUNE = 001	0.9603	0.99	1.0197	V
vout_buck3_001		V _{IN3} = 3 V to 5.25 V				, v
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 001				
V _{out_buck3_010} (1) (2)	Output voltage	BUCK3_FTUNE = 010	0.97	1.0	1.03	V
Vout_buck3_010	Output voltage	V _{IN3} = 3 V to 5.25 V	0.07	1.0	1.00	,
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 001				
V _{out_buck3_011} (1) (2)	Output voltage	BUCK3_FTUNE = 011	0.98	1.01	1.0403	V
VOUT_DUCK3_UTT	Output voltage	V _{IN3} = 3 V to 5.25 V	0.00	1.01	1.0400	•
		I_{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 010				
V _{out_buck3_1V1} (1) (2)	Output voltage	V _{IN3} = 3 V to 5.25 V	1.056	1.1	1.144	V
		I _{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 011				
V _{out_buck3_1V2} (1) (2)	Output voltage	V _{IN3} = 3 V to 5.25 V	1.152	1.2	1.248	V
_ _		I_{LOAD} = 50 mA to 3 A				
V _{out_buck3_1V25} (1) (2)	Output voltage	BUCK3_PU_VALUE = 100	1.2	1.25	1.3	V

DS14964 - Rev 1 page 93/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		V _{IN3} = 3 V to 5.25 V				
		I _{LOAD} = 50 mA to 3 A				
		BUCK3_PU_VALUE = 101 or 11x				
V _{out_buck3_3V3} (1) (2)	Output voltage	V _{IN3} = 4.85 V to 7.0 V	3.168	3.3	3.432	V
		I _{LOAD} = 50 mA to 3 A				
V _{out_UV_buck3}	Output undervoltage threshold monitor range	For all BUCK3_PU_VALUE except 001	85	90	95	%
V _{out_PG_buck3}	Output power-good threshold monitor range		87	92	96	%
V _{out_OV_buck3}	Output overvoltage threshold monitor range	For all BUCK3_PU_VALUE except 001	104	107.5	111	%
$V_{out_UV_buck3}$	Output undervoltage threshold monitor range for fine-tune	BUCK3_PU_VALUE = 001	0.8	-	0.9	V
$V_{out_PG_buck3_FT}$	Output power-good threshold monitor range for fine-tune	BUCK3_PU_VALUE = 001	0.82	-	0.92	V
V _{out_OV_buck3_FT}	Output overvoltage threshold monitor range for fine-tuning	BUCK3_PU_VALUE = 001	1.04	-	1.125	V
t _{buck3_PG_TO} (3)	Output power-good timeout		4.8	6	7.5	ms
t _{buck3_UV_TO} (3)	V _{OUT} undervoltage timeout filter		25	30	41	μs
t _{buck3_OV_TO} (3)	V _{OUT} overvoltage timeout filter		25	30	41	μs
R _{DSON_HS_buck3_25} (2)	HS switch ON resistance at 3	V _{IN3} = 5 V T _J = 25 °C	-	0.04	0.08	Ω
		V _{IN3} = 5 V				
R _{DSON_HS_buck3_130}	HS switch ON resistance at 3 A	T _J = 130 °C	-	-	0.1	Ω
		V _{IN3} = 5 V				
R _{DSON_LS_buck3_25}		T _J = 25 °C	-	0.04	0.08	Ω
	LS switch ON resistance at 3 A V _{IN}	V _{IN3} = 5 V				
R _{DSON_LS_buck3_130}		T _J = 130 °C	-	-	0.1	Ω
llimit buck3 00	Peak switching current limit	BUCK3_IPEAK = 00	3.4	4	4.6	Α
I _{limit_buck3_01}	Peak switching current limit	BUCK3_IPEAK = 01	4.25	5	5.75	Α
I _{limit_buck3_10}	Peak switching current limit	BUCK3_IPEAK = 10	5.1	6	6.9	Α
I _{limit_buck3_11}	Peak switching current limit	BUCK3_IPEAK = 11	5.95	7	8.05	Α
t _{buck3} OC TO ⁽³⁾	Overcurrent filter time	_	125	150	200	μs
T _{softstart_buck_00} (1)	Soft-start time slope when start-up	BUCK3_SS_VALUE = 00	5.28	8.7	12.32	V/ms
T _{softstart_buck_01} (1)	Soft-start time slope when start-up	BUCK3_SS_VALUE = 01	2.64	4.35	6.16	V/ms
T _{softstart_buck_10} (1)	Soft-start time slope when start-up	BUCK3_SS_VALUE = 10	1.08	1.75	2.52	V/ms
T _{softstart_buck_11} (1)	Soft-start time slope when start-up	BUCK3_SS_VALUE = 11	0.552	0.87	1.288	V/ms
F _{sw_buck3}	Switching frequency		2.0	2.4	2.8	MHz
F _{spread_buck3} (1)	Spread-spectrum range		-30	-	+30	%

DS14964 - Rev 1 page 94/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
PHI_buck3 (1)(3)	Phase shift to Buck1		200	250	300	deg
RPD_OFF_Buck3	Pull-down resistor Off	V _{out} = 3.3 V	105	130	180	Ω

- Guaranteed by design. 1.
- 2. Verified by bench measurements. Performances verified in applicative conditions. Tested in static LOAD conditions (I_{LOAD} = 150 mA).
- Digital implementation guaranteed by SCAN test.

Below are the efficiency curves for Buck3:

Figure 60. Buck3 efficiency VIN 5.00 V

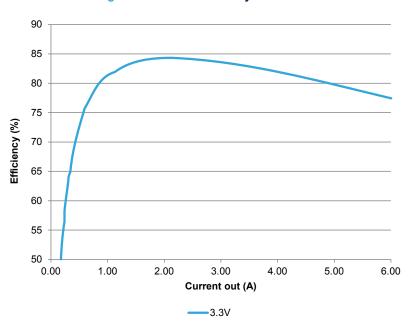
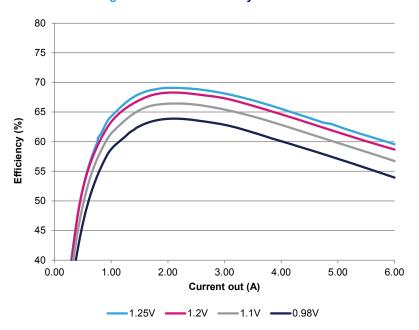



Figure 61. Buck3 efficiency VIN 3.30 V

DS14964 - Rev 1 page 95/239

See below the load and line transient curves for Buck3:

Figure 62. I_{LOAD} transient 0.05 A to 3.0 A in 50 μs

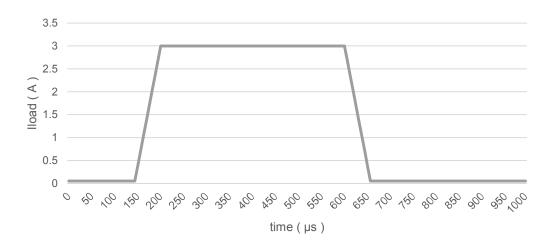
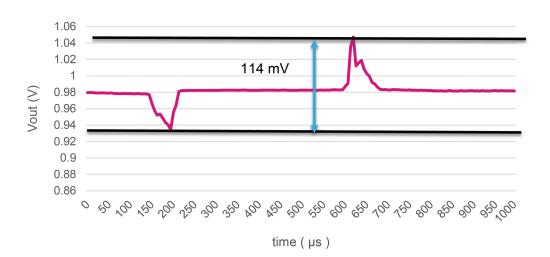



Figure 63. Buck3

DS14964 - Rev 1 page 96/239

Figure 64. Line transient 8 V to 16 V in 200 μs

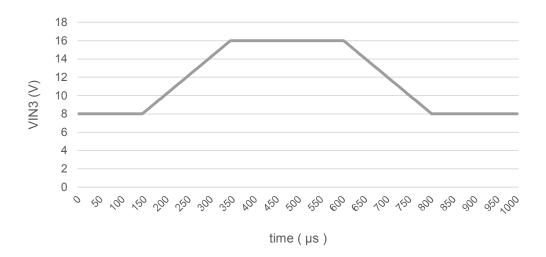
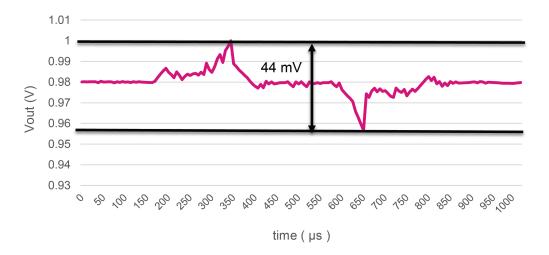



Figure 65. Buck3

DS14964 - Rev 1 page 97/239

7.11 Watchdog

6.0 V \leq V_{FBB} \leq 29 V, T_j = -40 °C to 150 °C, unless otherwise specified. All watchdog timings are covered by SCAN test.

Table 34. Watchdog

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{LW1} (1)	Long open window 1	LOW_SET <3:0>: 0000	-	-	319	ms
t _{LW2} (1)	Long open window 2	LOW_SET <3:0>: 0001	-	-	479	ms
t _{LW3} (1)	Long open window 3	LOW_SET <3:0>: 0010	-	-	638	ms
t _{LW4} (1)	Long open window 4	LOW_SET <3:0>: 0011	-	-	1025	ms
t _{LW5} (1)	Long open window 5	LOW_SET <3:0>: 0100	-	-	115	ms
t _{LW6} (1)	Long open window 6	LOW_SET <3:0>: 0101	-	-	159	ms
t _{LW7} (1)	Long open window 7	LOW_SET <3:0>: 0110	-	-	230	ms
t _{LW8} (1)	Long open window 8	LOW_SET <3:0> : 0111	-	-	460	ms
t _{LW12} (1)	Long open window 12	LOW_SET <3:0> : 1000-1011	-	-	2300	ms
t _{LW13} ⁽¹⁾	Long open window 13	LOW_SET <3:0> : 1100	_	-	4600	ms
tLW14 ⁽¹⁾	Long open window 14	LOW SET <3:0> : 1101	_	_	6900	ms
t _{LW15} ⁽¹⁾	Long open window 15	LOW SET <3:0> : 1110	_	_	9200	ms
t _{LW16}	Long open window 16	LOW_SET <3:0> : 1111	_	Infinite	_	_
T _{EFW1}	Early failure window 1	WD_TIME = 0000	-	_	2.8	ms
T _{LFW1}	Late failure window 1	WD_TIME = 0000	10	-	-	ms
T _{SW1}	Safe window 1	WD_TIME = 0000	4.5	-	5.4	ms
T _{EFW2}	Early failure window 2	WD_TIME = 0001 (default value)	-	-	5.3	ms
T _{LFW2}	Late failure window 2	WD_TIME = 0001 (default value)	20	-	-	ms
T _{SW2}	Safe window 2	WD_TIME = 0001 (default value)	8.4	-	11.5	ms
T _{EFW3}	Early failure window 3	WD_TIME = 0010	-	-	17.3	ms
T _{LFW3}	Late failure window 3	WD_TIME = 0010	50	-	-	ms
T _{SW3}	Safe window 3	WD_TIME = 0010	27.1	-	31.5	ms
T _{EFW4}	Early failure window 4	WD_TIME = 0011	-	-	31.5	ms
T _{LFW4}	Late failure window 4	WD_TIME = 0011	90	-	-	ms
T _{SW4}	Safe window 4	WD_TIME = 0011	50.4	-	56.8	ms
T _{EFW5}	Early failure window 5	WD_TIME = 0100	-	-	96.2	ms
T _{LFW5}	Late failure window 5	WD_TIME = 0100	250	-	-	ms
T _{SW5}	Safe window 5	WD_TIME = 0100	151.1	-	159.3	ms
T _{EFW6}	Early failure window 6	WD_TIME = 0101	-	-	197.1	ms
T _{LFW6}	Late failure window 6	WD_TIME = 0101	500	-	-	ms
T _{SW6}	Safe window 6	WD_TIME = 0101	308.4	-	319.3	ms
T _{EFW7}	Early failure window 7	WD_TIME = 0110	-	-	299.6	ms
T _{LFW7}	Late failure window 7	WD_TIME = 0110	750	-	-	ms

DS14964 - Rev 1 page 98/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
T _{SW7}	Safe window 7	WD_TIME = 0110	468.1	-	479.4	ms
T _{EFW8}	Early failure window 8	WD_TIME = 0111	-	-	402.1	ms
T _{LFW8}	Late failure window 8	WD_TIME = 0111	1000	-	-	ms
T _{SW8}	Safe window 8	WD_TIME = 0111	627.8	-	638.7	ms
T _{EFW9}	Early failure window 9	WD_TIME = 1000	-	-	630.8	ms
T _{LFW9}	Late failure window 9	WD_TIME = 1000	1600	-	-	ms
T _{SW9}	Safe window 9	WD_TIME = 1000	984	-	1025.1	ms
T _{EFW10}	Early failure window 10	WD_TIME = 1001-1111	-	-	3.2	ms
T _{LFW10}	Late failure window 10	WD_TIME = 1001-1111	78	-	-	ms
T _{SW10}	Safe window 10	WD_TIME = 1001-1111	5	-	50	ms

^{1.} t_{LWn} defines the maximum timing to guarantee that a NRESET pulse will not be generated.

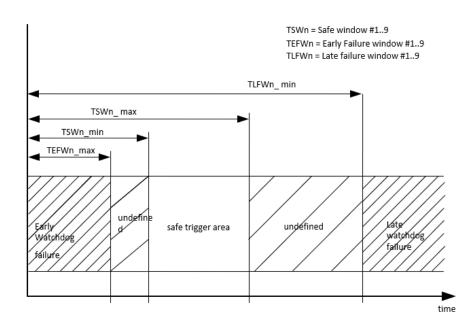


Figure 66. Watchdog early, late and safe windows

DS14964 - Rev 1 page 99/239

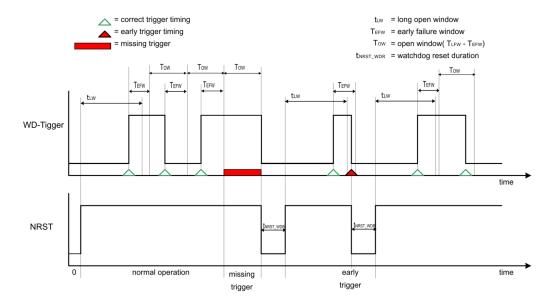


Figure 67. Watchdog timing

7.12 High-side output OUT_HS

The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V \leq V_{FBB} \leq 29 V; T_i = -40 °C to 150 °C, unless otherwise specified.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
r _{ON_OUT_HS_25}	Static drain source On- resistance	V _{FBB} = 13.5 V, I _{LOAD} = -15 mA, T _{amb} = +25 °C		55	80	Ω
ron_out_hs_130	Static drain source On- resistance	V _{FBB} = 13.5 V, I _{LOAD} = -15 mA, T _{amb} = +130 °C			130	Ω
I _{OC_OUT_HS}	Overcurrent threshold	V _{FBB} = 13.5 V	25	33	40	mA
toc_out_Hs (1)	Overcurrent filter time		16	28	40	μs
t _{BLK_OC_OUT_HS} (1)	Blanking time of over- current	In case of short at enable (to be added to filter time for the minimum ton)	32	46	60	μs
I _{OLD_OUT_HS}	Open-load detection current	V _{FBB} = 13.5 V	0.25	0.7	1.3	mA
t _{OLD_OUT_HS} (1)	Open-load detection time		45	70	95	μs
dV _{OUT_HS} /dt	Slew rate	V_{FBB} = 13.5 V, Rload = 620 Ω , Cload = 47 nF, from 20% to 80 %	0.05	0.8	2	V/µs
t _{DON_OUT_HS}	Switch ON delay time	V_{FBB} = 13.5 V, (from CSN rising 50% to OUT 80 %) Rload = 620 Ω, Cload = 47 nF	5	20	40	μs
tDOFF_OUT_HS	Switch OFF delay time	V_{FBB} = 13.5 V; (from CSN rising 50% to OUT 20 %) Rload = 620 Ω ; Cload = 47 nF	10	60	100	μs
IQLH_OUT_HS_LP	Switched-off output Current in LOW-POWER	V _{OUT_HS} = 0 V; ACTIVE - LOW- POWER or DEEP-SLEEP modes	-5			μА
IQLH_OUT_HS_FP	Switched-off output	VOUT_HS = 0 V;	-10			μA

Table 35. High side Output OUT_HS

DS14964 - Rev 1 page 100/239

	Symbol	Parameter	Condition	Min	Тур	Max	Unit
Γ		Current in FULL-POWER	ACTIVE - FULL-POWER mode				

^{1.} Digital implementation guaranteed by SCAN test.

7.13 NFSO1 fail-safe output

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6.0 \text{ V} \le V_{FBB} \le 40 \text{ V}$, $T_j = -40 \text{ °C}$ to 150 °C, unless otherwise specified.

Table 36. Low side outputs

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{NFSO1_L}	Output low level	I _{NFSO1} = 4 mA	-	-	0.5	V
I _{NFSO1_LK}	Tristate leakage current	V _{NFSO1} = 40 V	-	-	10	μΑ
t _{NFSO1_rt}	Detection reaction time		-	-	200	μs
R _{NFSO1_PU}	External pull-up resistor		-	30	-	kΩ
t _{NFSO_ECHO_FILT}	Echo error filter time	On falling edge	91	100	150	μs

DS14964 - Rev 1 page 101/239

7.14 Wake-up inputs (WU, IGN)

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6.0 \text{ V} \le V_{FBB} \le 29 \text{ V}$, $T_j = -40 \,^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$, unless otherwise specified.

Table 37. Wake-up Inputs

Symbol	Parameter	Condition	Min.	Тур.	Max.	Uni		
		V _{thp min} = V _{FBB} * 0.4						
V	Wake-up negative edge threshold	$V_{thp typ} = V_{FBB} * 0.45$	5.0	0.0	_	.,		
V_{WUthp}	voltage	$V_{thp max} = V_{FBB} * 0.5$	5.6	6.3	7	V		
		Value for V _{FBB} = 14 V						
		V _{thp min} = V _{FBB} * 0.4						
V	Wake-up negative edge threshold	$V_{thp typ} = V_{FBB} * 0.45$	5.6	6.3	7	V		
V_{IGNthp}	voltage	$V_{thp max} = V_{FBB} * 0.5$	5.0	0.5	7	V		
		Value for V _{FBB} = 14 V						
		V _{thp min} = V _{FBB} * 0.5						
V	Wake-up positive edge threshold	$V_{thp typ} = V_{FBB} * 0.55$	7	7 7.7 8.4	0.4	\		
V_{WUthn}	voltage	$V_{thp max} = V_{FBB} * 0.6$	/		0.4	V		
		Value for V _{FBB} = 14 V						
		V _{thp min} = V _{FBB} * 0.5						
	Wake-up positive edge threshold	$V_{thp typ} = V_{FBB} * 0.55$	_	7 7.7	8.4			
V_{IGNthn}	voltage	$V_{thp max} = V_{FBB} * 0.6$	7			V		
		Value for V _{FBB} = 14 V						
		V _{thp min} = V _{FBB} * 0.05						
		$V_{thp typ} = V_{FBB} * 0.1$						
V _{HYST_WU}	Hysteresis	$V_{\text{thp max}} = V_{\text{FBB}} * 0.15$	0.7	1.4	2.1	V		
		Value for V _{FBB} = 14 V						
		V _{thp min} = V _{FBB} * 0.05						
.,		$V_{thp typ} = V_{FBB} * 0.1$		1.4	2.1			
V _{HYST_IGN}	Hysteresis	$V_{thp max} = V_{FBB} * 0.15$	0.7			V		
		Value for V _{FBB} = 14 V						
t _{WU_stat} (1)	Static wake filter time		50	64	85	μs		
t _{IGN_stat} (1)	Static wake filter time		50	64	85	μs		
		V _{WU} < 1 V						
I _{WU_stdby}	Input current in DEEP-SLEEP or ACTIVE LOW-POWER mode	or V _{WU} > (V _{FBB} - 1.5 V)	-	-	3	μA		
	NOTIVE EOW FOWER Mode	WU_ENA = 0						
		V _{IGN} < 1 V						
I _{IGN_stdby}	Input current in DEEP-SLEEP or ACTIVE LOW-POWER mode	or V _{IGN} > (V _{FBB} - 1.5 V)	-	_	3	μA		
		IGN_ENA = 0						
		V _{WU} < 1 V						
I _{WU_stdby_PD}	Pull-down current in DEEP-SLEEP or ACTIVE LOW-POWER modes	or V _{WU} > (V _S - 1.5 V)	5	20	60	μA		
	TO THE ESTATION OF THE MINISTER OF THE PARTY	WU_ENA = 1						

DS14964 - Rev 1 ______ page 102/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I _{WU_stdby_} PU	Pull-up current in DEEP-SLEEP or ACTIVE LOW-POWER modes	$V_{WU} < 1 V$ or $V_{WU} > (V_S - 1.5 V)$ $WU_ENA = 1$	-60	-20	-5	μА
I _{IGN_stdby_PD}	Pull-down current in DEEP-SLEEP or ACTIVE LOW-POWER modes	$V_{IGN} < 1 V$ or $V_{IGN} > (V_S - 1.5 V)$ $IGN_ENA = 1$	5	20	60	μА
I _{IGN_stdby_} PU	Pull-up current in DEEP-SLEEP or ACTIVE LOW-POWER modes	V _{WU} < 1 V or V _{WU} > (V _S - 1.5 V) WU_ENA = 1	-60	-20	-5	μА
R _{WU_act}	Input resistor to GND in ACTIVE mode and in DEEP-SLEEP or ACTIVE LOW-POWER mode during wake-up input sensing		80	180	300	kΩ
R _{IGN_act}	Input resistor to GND in ACTIVE mode and in DEEP-SLEEP or ACTIVE LOW-POWER mode during wake-up input sensing		80	180	300	kΩ
t _{WU_cyc} (1)	Cyclic wake filter time		12	16	29	μs
t _{IGN_cyc} (1)	Cyclic wake filter time		12	16	29	μs

^{1.} Digital implementation guaranteed by SCAN test.

7.15 CAN FD transceiver (only for SPSB100G)

ISO 11898-2:2016 compliant

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V < V_{FBB} < 29 V; 4.8 V < V_{LDO1} . < 5.2 V; 3 V < V_{IO} < 5.5 V; $T_{junction}$ = -40 °C to 150°C, unless otherwise specified. -12 V \leq (CANH + CANL) / 2 \leq 12 V

Table 38. CAN communication operating range

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
V _{FBB_Transmitter}	Supply voltage operating range for CAN transmitter (1)		6		29	V
V _{FBB_Receiver}	Supply voltage operating range for CAN receiver		6		29	V
V _{CANSUPlow}	CAN supply low voltage flag	V _{LDO1} decreasing	4.1	4.3	4.5	V
V _{CANHL,CM}	Common-mode bus voltage (V _{CANH} + V _{CANL}) / 2	Measured with respect to the ground of each CAN transceiver	-12		12	V
I _{TRCV}	Transceiver current consumption during normal mode	ACTIVE mode: R_L = 50 Ω 65 Ω ; 70% V_{RXD_C} (rising) - 30% V_{RXD_C} (falling); $CRxD_C$ = 15 pF; TxD_C rise and fall time = 10 ns (10% - 90%, 90% - 10%); Test signal to be applied on the TXD input of the implementation is a square wave signal with a positive duty cycle of 1/6, and a period of six times the nominal recessive bit width. Rectangular pulse signal $TTxD_C$ = 6 * $TBIT$ (2), high pulse 1 * $TBIT$, low pulse 5 * $TBIT$			120	mA
I _{TRCV_short}	Transceiver current consumption during output short	R_L = 50 Ω to 65 Ω; V_{CANH} = -3 V or V_{CANL} = 40 V			120	mA

DS14964 - Rev 1 page 103/239

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
I		$R_L = 50 \Omega \text{ to } 65 \Omega;$		400	000	
ITRCVLPbias		$V_{TxD_C} = V_{TXDCHIGH};$		400	600	μA
I	Transceiver current	R_L = 50 Ω to 65 Ω;			F0	
ITRCVLP	consumption during LOW-POWER mode; biasing inactive	$V_{TxD_C} = V_{TXDCHIGH};$		50	μA	
BR	Supported bitrates	Supported bitrates at which all requirements are fulfilled			5	Mb/s

- 1. At $V_{FBB} < V_{FBB_Transmitter(min)}$ the transceiver shall enter high impedance state.
- 2. The bit time T_{BIT} is the nominal bit time at a given bit rate ($T_{BIT} = 1/BR$). E.g.: At $BR = 2Mb/s \Rightarrow T_{BIT} = 500$ ns.

Table 39. CAN transmit data input: TxD_C pin

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{TXDCLOW}	Input voltage dominant level	ACTIVE mode	1.0	1.45	2.0	V
V _{TXDCHIGH}	Input voltage recessive level	ACTIVE mode	1.2	1.85	2.3	V
V _{TXDCHYS}	V _{TXDCHIGH} - V _{TXDCLOW}	ACTIVE mode	0.2	0.4	0.7	V
R _{TXDCPU}	TxD_C pull-up resistor	ACTIVE mode	20	50	110	kΩ
t _{dom(TXDC)}	TxD_C dominant timeout	Covered by SCAN	0.8	2	5	ms

Table 40. CAN Receive Data Output: Pin RxD_C

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{RXDCLOW}	Output voltage dominant level	ACTIVE mode, I _{RxD_C} = 2 mA	0	0.2	0.5	V
V _{RXDCHIGH}	Output voltage recessive level	ACTIVE mode, $I_{RxD_C} = -2 \text{ mA}$ $V_{IO} = 5 \text{ V}$	4.5	4.8	5.0	V
t _{r,RXDC}	RxD_C rise time	C _L = 15 pF; 30% - 70% V _{RxD_C} (1)	0		25	ns
t _{f,RXDC}	RxD_C fall time	C _L = 15 pF; 70% - 30% V _{RxD_C} (1)	0		25	ns

1. Guaranteed by design.

Table 41. CAN transmitter dominant output characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CANHdom}	Single-ended CANH voltage level in dominant state	$V_{TXD_C} = V_{TXDCLOW}$; $R_L = 50 \Omega$ to 65 Ω	2.75	3.5	4.5	V
V _{CANLdom}	Single-ended CANL voltage level in dominant state	$V_{TxD_C} = V_{TXDCLOW};$ $R_L = 50 \Omega \text{ to } 65 \Omega$	0.5	1.5	2.25	V
$V_{DIFF,dom}$	Differential output voltage in dominant state: V _{CANHdom} -	$V_{TXD_C} = V_{TXDCLOW};$ $R_L = 50 \Omega \text{ to } 65 \Omega$	1.5	2.0	3	V
V _{DIFF_Arb}	Differential output voltage in dominant state during arbitration: V _{CANHdom} -V _{CANLdom}	$V_{TxD_C} = V_{TXDCLOW}$; $R_L = 2240 \Omega$	1.5		5	V

DS14964 - Rev 1 page 104/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{DIFF,dom_ext}	Differential output voltage in dominant state in extended bus load range: V _{CANHdom} -V _{CANLdom}	$V_{TxD_C}=V_{TXDCLOW}$; R_L = 45 Ω to 70 Ω	1.4		3.3	V
V _{DIFF,domVsLow}	Differential output voltage in dominant state: V _{CANHdom} -V _{CANLdom} at low V _S	V_{TxD_C} = $V_{TXDCLOW}$; R_L = 50 Ω to 65 Ω ; 3 V < V_S and 6 V < V_{FBB} (1)	1.35		3	V
V _{DIFF,dom_ext_VsLow}	Differential output voltage in dominant state: $V_{CANHdom}$ - $V_{CANLdom}$ with 45 Ω to 70 Ω load at low V_{S}	VTxD_C = V _{TXDCLOW} ; R _L = 45 to 70 Ω ; 3 V < V _S and 6 V < V _{FBB} ⁽¹⁾	1.25		3.3	V
V _{SYM}	Driver symmetry $V_{SYM} = (V_{CANH} + V_{CANL}) / V_{LDO1}$ $V_{LDO1} = 5 V^{(2)}$	R _L = $60 \Omega \pm 1\%$; f _{TXDC} = 1 MHz ⁽³⁾ ; C _{SPLIT} = 4.7 nF (+-5\%)	0.9	1	1.1	
I _{OCANH,dom} (-3V)	CANH output current in dominant state	$V_{TXD_C} = V_{TXDCLOW};$ $V_{CANH} = -3 V \text{ to } 18 V$	-115		115	mA
I _{OCANL,dom} (18V)	CANL output current in dominant state	V _{TxD_C} = V _{TXDCLOW} ; V _{CANL} = -3 V to 18 V	-115		115	mA
I _{OCANH,dom} (40V)	CANH output current in dominant state	$V_{TXD_C} = V_{TXDCLOW}$; $V_{CANH} = 40 \text{ V}$; $V_{S} = 40 \text{ V}$	0		15	mA
I _{OCANL,dom} (40V)	CANL output current in dominant state	$V_{TXD_C} = V_{TXDCLOW}$; $V_{CANL} = 40 \text{ V}$; $V_{S} = 40 \text{ V}$	0		115	mA

^{1.} V_S at device pin after reverse battery protection, while application is supplied with 6 V. Operating condition has to be adapted if a higher voltage drop occurs in the application.

Table 42. CAN transmitter recessive output characteristics, normal and LP mode bias active

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CANHrec}	CANH voltage level in recessive state	$V_{TxD_C} = V_{TXDCHIGH}$; No load	2	2.5	3	V
V _{CANLrec}	CANL voltage level in recessive state	$V_{TxD_C} = V_{TXDCHIGH}$; No load	2	2.5	3	V
V _{DIFF,recOUT}	Differential output voltage in recessive state V _{CANHrec} -V _{CANLrec}	$V_{TxD_C} = V_{TXDCHIGH}$; No load	-50		50	mV

Note: CAN normal mode: tested in TRX normal state while the device is in ACTIVE mode.

DS14964 - Rev 1 page 105/239

^{2.} Put into the datasheet, if it is an internal voltage. If it is an external pin, it should be supplied externally.

^{3.} Measurement equipment input load < 20 pF, > 1 MΩ, guaranteed by E.025, E.026, E.029, E.030, E.053, E.054 measurements.

Table 43. CAN transmitter recessive output characteristics, LP mode bias inactive

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CANHrecLP}	CANH voltage level in recessive state	$V_{TxD_C} = V_{TXDCHIGH}$; No load	-0.1	0	0.1	V
V _{CANLrecLP}	CANL voltage level in recessive state	$V_{TxD_C} = V_{TXDCHIGH}$; No load	-0.1	0	0.1	V
V _{DIFF,recOUTLP}	Differential output voltage in recessive state	V _{TxD_C} = V _{TxDCHIGH} ; No load	-200		200	mV
	V _{CANHrec} -V _{CANLrec}	TAB_G TABGINGTP				

Table 44. CAN receiver input characteristics during CAN normal and LP mode bias active

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{THdom}	Differential receiver threshold voltage recessive to dominant state	-12 V ≤ V _{CANH} ≤ 12 V; 12 V ≤ V _{CANL} ≤ 12 V	0.5		0.9	V
V _{dom_range}	Differential dominant input level voltage range	-12 V ≤ V _{CANH} ≤ 12 V; -12 V ≤ V _{CANL} ≤ 12 V	0.9		10	V
V_{THrec}	Differential receiver threshold voltage dominant to recessive state	12 V ≤ V _{CANH} ≤ 12 V; -12 V ≤ V _{CANL} ≤ 12 V	0.5		0.9	V
V _{rec_range}	Differential recessive input level voltage range	-12 V ≤ V _{CANH} ≤ 12 V; -12 V ≤ V _{CANL} ≤ 12 V	-5		0.5	V

Note: CAN normal mode: tested in TRX normal state while the device is in ACTIVE mode.

Table 45. CAN receiver input characteristics during CAN LOW-POWER mode, biasing inactive

Symbol	Parameter	Condition	Min	Тур	Max	Unit	
V	Differential receiver threshold voltage recessive to dominant state	12 V ≤ V _{CANH} ≤ 12 V;	0.4		1.15	V	
V _{THdomLP}		-12 V ≤ V _{CANL} ≤ 12 V	0.4			V	
V	Differential dominant input level	-12 V ≤ V _{CANH} ≤ 12 V;	1.15		10	V	
V _{dom_range_LP}	voltage range	-12 V ≤ V _{CANL} ≤ 12 V	1.15		10	V	
V _{THrecLP}	Differential receiver threshold voltage dominant to recessive	12 V ≤ V _{CANH} ≤ 12 V;	0.4		1.15	1 15	V
VIHrecLP	state	-12 V ≤ V _{CANL} ≤ 12 V	0.4			V	
V _{rec_range_LP}	Differential recessive input level	V ≤ V _{CANH} ≤ 12 V;	-5		0.4	V	
	voltage range	-12 V ≤ V _{CANL} ≤ 12 V	-5		0.4	V	

Note: CAN LOW-POWER mode, biasing inactive: tested in CAN TRX STDBY (bias off) state while the device is in ACTIVE-FULL-POWER mode, in ACTIVE-LOW-POWER mode or in DEEP-SLEEP mode.

DS14964 - Rev 1 page 106/239

Table 46. CAN receiver input resistance and capacitance

Symbol	Parameter	Condition	Min	Тур	Max	Unit
R _{diff}	Differential internal resistance	$V_{TxD_C} = V_{TXDCHIGH}$; No Load	12		100	
		R _{diff} = R _{CANH} + R _{CANL}				kΩ
		-2,0 V ≤ V _{CANH} ≤ +7,0 V;				K12
		-2,0 V ≤ V _{CANL} ≤ +7,0 V ⁽¹⁾				
	Single-ended internal resistance	V _{TxD_C} = V _{TXDCHIGH} ; No load	6		50	
R _{CANH} , CANL		-2,0 V ≤ V _{CANH} ≤ +7,0 V;				kΩ
		$-2.0 \text{ V} \le \text{V}_{\text{CANL}} \le +7.0 \text{ V}^{(1)}$				
m _R	Internal resistance matching RCANH,CANL	Biasing active; $V_{TXD_C} = V_{TXDCHIGH}$; no load; $m_R = 2 \times (R_{CAN_H} - R_{CAN_L}) / (R_{CAN_H} + R_{CAN_L})$	-0.03		0.03	

^{1.} Voltage range is taken from ISO CD 16845-2 (high-speed medium access unit - Conformance test plan).

Note:

CAN normal and LOW-POWER mode, biasing active: tested in TRX normal and CAN TRX STDBY (bias on) state while the device is in ACTIVE and LOW-POWER mode.

Table 47. CAN Transceiver delay

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{LOOP,h} I	Loop delay TxD_C to RxD_C (High to Low)	$5.5 \text{ V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \text{ R}_{\text{L}} = 60 \Omega \pm 1\%; \text{ C}_{\text{L}} = 100 \text{ pF}; 30\% \text{ V}_{\text{TxD_C}} - 30\% \text{ V}_{\text{RxD_C}}; \text{TxD_C fall time} = 10 \text{ ns } (90\% - 10\%); \text{ C}_{\text{RxD_C}} = 15 \text{ pF}$			255	ns
t _{LOOP,} Ih	Loop delay TxD_C to RxD_C (Low to High)	$5.5 \text{ V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \text{ R}_{\text{L}} = 60 \Omega \pm 1\%;$ $\text{C}_{\text{L}} = 100 \text{ pF}; 70\% \text{ V}_{\text{TXD}} - 70\% \text{ V}_{\text{RxD_C}};$ $\text{TxD_C rise time} = 10 \text{ ns } (10\% - 90\%);$ $\text{C}_{\text{RxD_C}} = 15 \text{ pF}$			255	ns
^t LOOP150,hI	Loop delay TxD_C to RxD_C (High to Low) with 150 Ω bus load	$5.5 \text{ V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \text{ R}_{\text{L}} = 150 \Omega; \text{ C}_{\text{L}} = 100 \text{ pF}; 30\%; \text{V}_{\text{TxD_C}} 30\% \text{ V}_{\text{RxD_C}}; \text{TxD_C fall time} = 10 \text{ ns } (90\% \text{ - } 10\%); \text{C}_{\text{RxD_C}} = 15 \text{ pF}$			255	ns
^t LOOP150,lh	Loop delay TxD_C to RxD_C (Low to High) with 150 Ω bus load	$5.5 \text{ V V}_{\text{FBB}} < 18 \text{ V}; \text{ R}_{\text{L}} = 150 \ \Omega; \text{ C}_{\text{L}} = 100 \text{ pF}; 70\% \text{ V}_{\text{TXD}} - 70\% \text{ V}_{\text{RxD_C}};$ TxD_C rise time = 10 ns (10% - 90%); $\text{C}_{\text{RxD_C}} = 15 \text{ pF}$			255	ns
$T_{Bit(RXD)} \le 1Mb/s$ (1)	Recessive bit symmetry at RxD_C	$5.5 \text{ V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \text{ R}_{\text{L}} = 60 \Omega \pm 1\%;$ $70\% \text{ V}_{\text{RxD_C}}$ (rising) - $30\% \text{ V}_{\text{TxD_C}}$ (falling); $\text{C}_{\text{L}} = 100 \text{ pF}; \text{C}_{\text{RxD_C}} = 15 \text{ pF};$ TXD rise and fall time = 10 ns ($10\% - 90\%$, $90\% - 10\%$); Test signal to be applied on the TXD input of the implementation is a square wave signal with a positive duty cycle of $1/6$, and a period of six times the nominal recessive bit width. Rectangular pulse signal $T_{\text{TXD_C}} = 6000 \text{ ns}, \text{ high pulse } 1000 \text{ ns}, \text{ low pulse } 5000 \text{ ns}$	900	1000	1050	ns
T _{Bit(RXD)_150Ohm} ≤ 1Mb/s	Recessive bit symmetry at RxD_C	R_L = 150 Ω; other conditions as $T_{Bit(RXD)}$ ≤ 1Mb/s; value may be obtained by characterization only.	800		1050	ns

DS14964 - Rev 1 page 107/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
$T_{Bit(RXD)} \le 2Mb/s$	Recessive bit symmetry at RxD_C	Conditions as $T_{Bit(RXD)} \le 1 Mb/s$. Rectangular pulse signal $T_{TxD_C} = 3000$ ns, high pulse 500 ns, low pulse 2500 ns	400	500	550	ns
T _{Bit(RXD)_150Ohm} ≤ 2Mb/s	Recessive bit symmetry at RxD_C	R_L = 150 Ω; other conditions as $T_{Bit(RXD)}$ ≤ 1Mb/s; value may be obtained by characterization only.	300		550	ns
$T_{Bit}(RXD) \le 5Mb/s$	Recessive bit symmetry at RxD_C	Conditions as $T_{Bit(RXD)} \le 1 Mb/s$. Rectangular pulse signal $T_{TxD_C} = 1200$ ns, high pulse 200 ns, low pulse 1000 ns	120	200	220	ns
T _{Bit(BUS)} ≤ 1Mb/s	Recessive bit symmetry at CAN-Bus	$5.5~V < V_{FBB} < 18~V; R_L = 60~\Omega \pm 1\%;$ V_{DIFF} : $0.5~V(falling)$ - $0.9~V(rising); C_L = 100~pF; C_{RxD_C} = 15~pF; TXD~rise~and~fall~time = 10~ns~(10% - 90%, 90% - 10%); Test signal to be applied on the TXD input of the implementation is a square wave signal with a positive duty cycle of 1/6 and a period of six times the nominal recessive bit width. Rectangular pulse signal T_{TxD_C} = 6000~ns, high pulse 1000 ns, low pulse 5000 ns$	935	1000	1030	ns
$T_{Bit(BUS)} \le 2Mb/s$	Recessive bit symmetry at CAN-Bus	Conditions as $T_{Bit(BUS)} \le 1 \text{Mb/s}$. Rectangular pulse signal $T_{TxD_C} = 3000$ ns, high pulse 500 ns, low pulse 2500 ns	435	500	530	ns
T _{Bit(BUS)} ≤ 5Mb/s	Recessive bit symmetry at CAN-Bus	Conditions as $T_{Bit(BUS)} \le 1$ Mb/s. Rectangular pulse signal T_{TxD_C} = 1200 ns, high pulse 200 ns, low pulse 1000 ns	155	200	210	ns
∆t _{REC} ≤ 2Mb/s	Receiver Timing Symmetry (T _{Bit(RXD)} - T _{Bit(BUS)})	$5.5 \text{ V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \text{R}_{\text{L}} = 60 \Omega \pm 1\%; \text{C}_{\text{L}}$ = 100 pF; $\text{C}_{\text{RxD_C}}$ = 15 pF; Rectangular pulse signal $\text{T}_{\text{TxD_C}}$ = 3000 ns, high pulse 500 ns, low pulse 2500 ns	-65		40	ns
∆t _{REC} ≤ 5Mb/s	Receiver timing symmetry (T _{Bit(RXD)} - T _{Bit(BUS)})	$5.5 \text{V} < \text{V}_{\text{FBB}} < 18 \text{ V}; \; \text{R}_{\text{L}} = 60 \; \Omega \pm 1\%; \\ \text{C}_{\text{L}} = 100 \; \text{pF}; \; \text{C}_{\text{RxD_C}} = 15 \; \text{pF}; \\ \text{Rectangular pulse signal T}_{\text{TxD_C}} = 1200 \\ \text{ns, high pulse 200 ns, low pulse 1000 ns}$	-45		15	ns
t _{CAN} (2)	CAN permanent dominant timeout	Covered by SCAN	580	700	1000	μs
t _{VCANSUPlow}	CAN_SUP_LOW filter time	Covered by SCAN	12	15	22	μs
twup_deep_sleep	Time between WUP ⁽³⁾ in DEEP-SLEEP mode, on the CAN bus until start of power-up sequence.	Wake-up pattern up to first regulator ON in power-up sequence config1	15	20	30	ms

- 1. Tbit(RxD_C) for the highest supported data rate has to be specified (1 Mb/s, 2Mb/s or 5 Mb/s).
- 2. At the expiration of this filter time a flag is set.
- 3. Time starts with the end of last dominant phase of the WUP.

Table 48. Maximum leakage currents on CANH and CANL, unpowered

Symbol	Parameter	Condition	Min	Тур	Max	Unit
I _{Leakage} , CANH,105		Unpowered device; V _{CANH} = 5 V; V _{CANL} = 5 V; V _{FBB} < V _{FBB_Transmitter} (min);	-10		10	
		$V_{FBB},V_{LDO1}^{(1)}$ connected via 0 Ω to GND				μA
		V_{FBB},V_{LDO1} connected via 47 $k\Omega$ to GND				

DS14964 - Rev 1 page 108/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		T _j - = -40 to 105 °C				
		Unpowered device; V _{CANH} = 5 V; V _{CANL} = 5 V; V _{FBB} < V _{FBB_Transmitter} (min);				
I CANH 130	Input leakage current CANH	V_{FBB} , $V_{LDO1}^{(1)}$ connected via 0 Ω to GND	-10		10	
TLeakage, CANH, 130		V_{FBB},V_{LDO1} connected via 47 $k\Omega$ to GND	-10			μΑ
		T _j - = 130 °C				
		Unpowered device;			10	
L CANIL 105	Input leakage current CANL	V _{CANH} =5 V; V _{CANL} = 5 V; V _{FBB} < V _{FBB_Transmitter} (min);	40			۵
ILeakage, CANL, 105		$V_{FBB},V_{LDO1}^{(2)}$ connected via 0 Ω to GND	-10			μΑ
		T _j - = -40 to 105 °C				
		Unpowered device;				
]I _{Leakage} ,	Innut look on a surrent CANI	V _{CANH} = 5 V; V _{CANL} = 5 V; V _{FBB} < V _{FBB_Transmitter} (min);	40		10	
CANL,130	Input leakage current CANL	$V_{FBB},V_{LDO1}^{(2)}$ connected via 0 Ω to GND	-10			μΑ
		T _j - = 130 °C				

^{1.} Related to the external supply pin of the CAN-transceiver. If the transceiver supply is generated entirely inside of the device, the parameter is measured with respect to the supply of the device.

Table 49. Biasing control timings

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{filter}	CAN activity filter time		0.5		1.8	μs
t _{wake} (1)	Wake-up timeout		0.8	1	5	ms
t _{Silence} (1)	CAN timeout		600	700	1200	ms
T _{Bias}	CAN bias reaction time				250	μs

^{1.} Digital implementation guaranteed by SCAN test.

7.16 SPI

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3 \text{ V} \le \text{V}_{IO} \le 5.5 \text{ V}$, T_{j} = -40 °C to 150 °C, unless otherwise specified.

Table 50. Input: CSN

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CSN_L}	Input voltage low threshold		1.0	-	-	V
V _{CSN_H}	Input voltage high threshold		-	-	2.3	V
V _{CSN_HYS}	Vcsn_H - Vcsn_L		0.2	0.4	-	V
R _{CSN_PU}	CSN pull-up resistor	V = 1.0 V	13	29	55	kΩ
C _{CSN}		0 V < V < 5.3 V	-	10	15	pF

DS14964 - Rev 1 page 109/239

^{2.} Related to the external supply pin of the CAN transceiver. If the transceiver supply is generated entirely inside of the device, the parameter is measured with respect to the supply of the device; if the transceiver is supplied by its own supply pin, this pin has to fulfill this specification as well as the supply that is used to generate the transceiver voltage in case it is on the same device.

Table 51. Inputs: CLK, SDI

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{CLK_L}	CLK input low threshold		1.0	-	-	V
V _{SDI_L}	SDI input low threshold		1.0	-	-	V
V _{CLK_H}	CLK input high threshold		-	-	2.3	V
V _{SDI_H}	SDI input high threshold		-	-	2.3	V
V _{CLK_HYS}	CLK input hysteresis		0.2	-	-	V
V _{SDI_HYS}	SDI input hysteresis		0.2	-	-	V
I _{CLK}	CLK pull-down current at input	V _{CLK} = 1.0 V	5	20	60	μA
I _{SDI}	SDI pull-down current at input	V _{SDI} = 1.0 V	5	20	60	μA
C _{in} (1)	Input capacitance at input CLK, and SDI	0 V < V _{CLK,SDI} < 5.3 V	-	10	15	pF
f _{CLK}	SPI input frequency at CLK		-	-	6	MHz

^{1.} Value of input capacity is not measured in production test. Parameter guaranteed by design.

Table 52. SDI, CLK and CSN timing

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{CLK}	Clock period		166	-	-	ns
t _{CLK_H}	Clock high time		58	-	-	ns
t _{CLK_L}	Clock low time		58	-	-	ns
t _{set_CSN}	CSN setup time, CSN low before rising edge of CLK in ACTIVE FULL-POWER mode		150	-	-	ns
t _{set_CSN_LP}	CSN setup time, CSN low before rising edge of CLK in ACTIVE LOW-POWER mode		10000	-	-	ns
t _{set_CLK}	CLK setup time, CLK high before rising edge of CSN		150	-	-	ns
t _{set_SDI}	SDI setup time		25	-	-	ns
t _{hold_SDI}	SDI hold time		25	-	-	ns
t _{r_in} (1)	Rise time of input signal SDI, CLK, CSN			-	25	ns
t _{f_in} (1)	Fall time of input signal SDI, CLK, CSN			-	25	ns

^{1.} Guaranteed by design.

Table 53. Output: SDO

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{SDO_L} C	Output low level	V _{IO} = 5.0 V			0.5	.,
		I _{SDO} = +4 mA	-	_	0.5	V
V	Output high level	V _{IO} = 5.0 V	4.5	-	-	
V _{SDO_H}		I _{SDO} = -4 mA	4.5			V
	Tristate leakage current	V _{IO} = 5.0 V	40		40	
ISDO_LK		0 V < V _{SDO} < V _{IO}	-10	-	10	μA

DS14964 - Rev 1 page 110/239

Table 54. SDO timing (see Figure 69 SPI input timing)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
		C _L = 50 pF				
t _{r_SDO} (1)	SDO rise time	I _{load} = -4 mA		-	25	ns
		20% to 80%				
	SDO fall time	C _L = 50 pF				
t _{f_SDO} (1)		I _{load} = 4 mA		-	25	ns
		20% to 80%				
	SDO enable time from high impedance to low level	C _L = 50 pF				
t _{en_SDO_tri_L} (1)		I _{load} = 4 mA		50	100	ns
		Pull-up load to V _{IO}				
	SDO disable time from low level to high impedance	C _L = 50 pF				
t _{dis_SDO_tri_L} (1)		I _{load} = 4 mA		50	100	ns
		Pull-up load to V _{IO}				
		C _L = 50 pF				
t _{en_SDO_tri_H} (1)	_	I _{load} = -4 mA		50	100	ns
	p = ==============================	Pull-down load to GND				
(1)	SDO disable time from high	C _L = 50 pF		50	100	
^t dis_SDO_H_tri (1)	level to high impedance	I _{load} = -4 mA		50	100	ns
		V _{SDO} < 0.2 *V _{IO}				
t _{d_SDO} (1)	SDO delay time	or V _{SDO} > 0.8 *V _{IO}		30	60	ns
		C _L = 50 pF				
tdis_SDO_tri_L (1) ten_SDO_tri_H (1) tdis_SDO_H_tri (1)	impedance to low level SDO disable time from low level to high impedance SDO enable time from high impedance to high level SDO disable time from high level to high impedance	Pull-up load to V_{IO} $C_L = 50 \text{ pF}$ $I_{load} = 4 \text{ mA}$ Pull-up load to V_{IO} $C_L = 50 \text{ pF}$ $I_{load} = -4 \text{ mA}$ Pull-down load to GND $C_L = 50 \text{ pF}$ $I_{load} = -4 \text{ mA}$ $V_{SDO} < 0.2 *V_{IO}$ or $V_{SDO} > 0.8 *V_{IO}$		50 50 50	100	

^{1.} Guaranteed by design.

Table 55. CSN timing (see Figure 71 SPI CSN - Output Timing)

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{CSN_HI,min_act} (1)	Minimum CSN high time, ACTIVE mode	Transfer of SPI-command to input register	0.5	-	-	μs
t _{CSN_HI,min_lp} (1)	Minimum CSN high time, LOW-POWER modes	Transfer of SPI-command to input register	5	-	-	μs
t _{CSNfail} (1)	CSN low timeout		20	35	50	ms

1. Covered by scan.

DS14964 - Rev 1 page 111/239

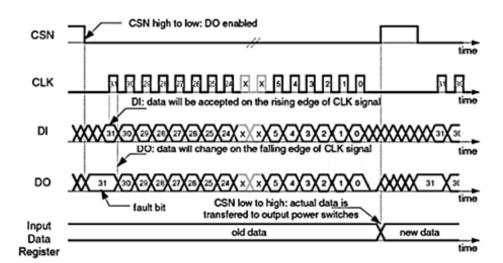


Figure 68. SPI - Transfer timing diagram

The SPI can be driven by a microcontroller with its SPI peripheral running in the following modes:

- CPOL = 0
- CPHA = 0

For this mode input data is sampled by the low-to-high transition of the clock CLK, and output data is changed from the high-to-low transition of CLK.

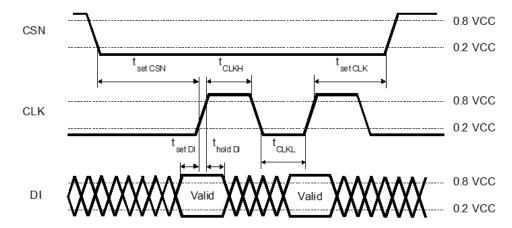
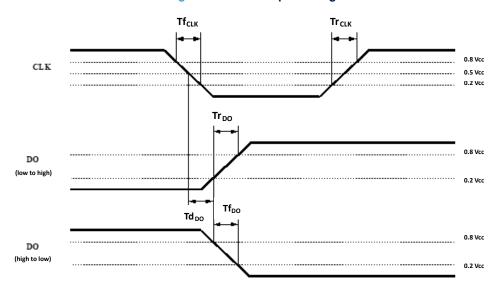
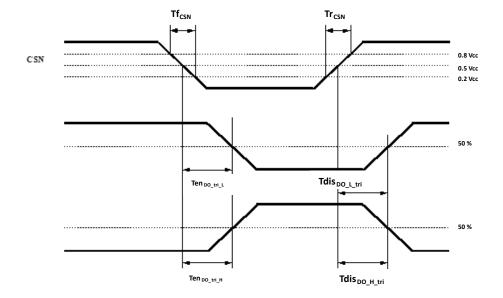




Figure 69. SPI - Input timing

DS14964 - Rev 1 page 112/239

Figure 70. SPI - Output timing

DS14964 - Rev 1 page 113/239

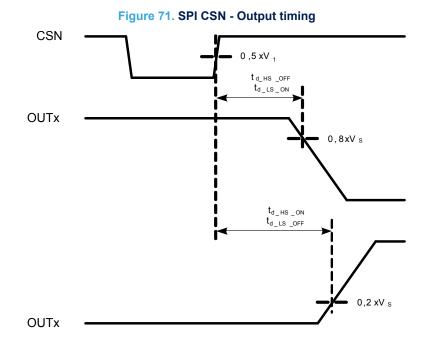
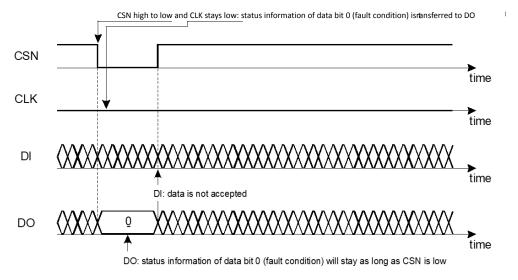



Figure 72. SPI - CSN low-to-high transition and global status bit access

7.17 SWDBG input

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3 \text{ V} \le V_{FBB} \le 20 \text{ V}$, $T_i = -40 ^{\circ}\text{C}$ to $150 ^{\circ}\text{C}$.

Table 56. SWDBG input

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{SWDBG_L}	Input voltage low threshold		1.0	-	-	V
V _{SWDBG_H}	Input voltage high threshold for WDC disable		-	-	2.3	V
V _{SWDBG_HYS}	Input hysteresis		0.2	-	-	V
tswdbg_to (1)	Software-debug timeout		8.3	10	12.6	S
R _{SWDBG_PD}	Pull-down resistor	V _{SWDBG} = 6 to 20 V	13	29	55	kΩ
V _{NVM_EMU_L}	Input low threshold for NVM emulation exit		6.1	-	-	V

DS14964 - Rev 1 page 114/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{NVM_EMU_H}	Input voltage high threshold for transition to NVM emulation		-	-	9.4	V
V _{NVM_EMU_HYS}	Input hysteresis for NVM emulation		0.3	-	-	V
C _{SWDBG} (2)	SWDBG input capacitance		-	-	15	pF

^{1.} Digital implementation guaranteed by SCAN test.

7.18 ADC characteristics

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6.0 V \leq V_{FBB} \leq 29 V, T_j = -40 °C to 150 °C.

Table 57. ADC characteristics

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{con}	Conversion time for 1 channel	Tested by scan	2.49	3	3.51	μs
t _{con_2ADC}	Conversion time between 2 ADC measurements	Tested by scan	32.3	39	45.6	μs
f _{ADC}	Clock frequency	Tested by scan	6.72	8.4	10.08	MHz
Acc (1)	Accuracy	Voltage divider+reference	-2	-	2	%
Acc22	Accuracy	Overall accuracy for WU input: V _{WU} = 22 V	-3	-	3	%
Acc18	Accuracy	Overall accuracy for WU input: V _{WU} = 18 V	-3.5	-	3.5	%
Acc6	Accuracy	Overall accuracy for WU input: V _{WU} = 6 V	-8	-	8	%
Acc4	Accuracy	Overall accuracy for WU input: V _{WU} = 4.5 V	-10	-	10	%
IE _I I	Integral linearity error		-	4	6	LSB
IE _D I	Differential linearity error		-	2	4	LSB
V _{AINVS}	Conversion voltage range (WU and IGN)		1	-	40	V
LSB_T	Thermal LSB		0.471	0.496	0.521	°C
LSB_V	Voltage LSB (WU, IGN, VS and FBB)		38	40	42	mV

^{1.} Guaranteed by design.

7.19 IRQ interrupt

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3.0 \text{ V} \le V_{IO} \le 5.5 \text{ V}$, $T_i = -40 \text{ °C}$ to 150 °C.

Table 58. Interrupt output

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{IRQ_L}	Output low level	I _{IRQ} = +4 mA	-	-	0.5	V
l.=	Leakage current	V _{IRQ} = 20 V	_	_	100	μA
lirq_lk		V _{IO} = 3.3 V	_	_	100	μΑ
I _{IRQ LK 5V}	Leakage current when IRQ is disabled	V _{IRQ} = 5.0 V	_	_	1	μA
IRQ_LK_5V		V _{IO} = 5.0 V	_	_	'	μΛ
R _{IRQ_PU}	IRQ internal pull-up resistor for echo	V _{IRQ} = 1 V	13	29	55	kΩ
t _{IRQ_react} (1)	Interrupt reaction time		-	-	40	μs

DS14964 - Rev 1 page 115/239

^{2.} Guaranteed by design.

Symbol Parameter		Condition	Min	Тур	Max	Unit
t _{IRQ_ECHO_FILT}	IRQ echo error filter time		91	100	150	μs

^{1.} Guaranteed by SCAN.

7.20 FIN1 input

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $3.0 \text{ V} \le V_{IO} \le 5.5 \text{ V}$, $T_i = -40 \text{ °C}$ to 150 °C, unless otherwise specified.

Symbol Parameter Condition Min Тур Max Unit V_{FIN1_L} Input voltage low threshold 1.0 V V_{FIN1_H} Input voltage high threshold 2.3 0.2 V V_{FIN1_HYS} Input voltage hysteresis $V_{10} = 5.0 V$ V_{FIN1} = 1.0 V FIN1 pull-up resistor to V_{IO} kΩ R_{FIN1 PU} 13 29 55 Defined by CR FCCU_STATIC_ERROR bit $V_{1O} = 5.0 V$ $V_{FIN1} = 1.0 V$ R_{FIN1 PD} FIN1 pull-down resistor to GND 13 55 kΩ Defined by CR FCCU_STATIC_ERROR bit C_{FIN1} (1) FIN1 input capacitance 15 pF

Table 59. FIN1 input

7.21 Timer

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6.0~\text{V} \le \text{V}_{\text{FBB}} \le 29~\text{V},~\text{T}_{j} = -40~\text{°C}$ to 150 °C, unless otherwise specified.

All timer timings are covered by SCAN.

Table 60. Timer values

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{ON1}	Timer on-time	T1_ENA = 000 (default value)	0.08	0.1	0.14	ms
t _{ON2}	Timer on-time	T1_ENA = 001	0.25	0.3	0.39	ms
t _{ON3}	Timer on-time	T1_ENA = 010	0.83	1	1.27	ms
t _{ON4}	Timer on-time	T1_ENA = 011	8.3	10	12.5	ms
t _{ON5}	Timer on-time	T1_ENA = 1xx	16.6	20	25	ms
T1	Timer period	T1_PER = 000 (default value)	8.3	10	12.5	ms
T2	Timer period	T1_PER = 001	16.6	20	25	ms
Т3	Timer period	T1_PER = 010	41.6	50	62.5	ms
T4	Timer period	T1_PER = 011	83	100	125	ms
T5	Timer period	T1_PER = 100	166	200	250	ms

DS14964 - Rev 1 page 116/239

^{1.} Guaranteed by design.

Symbol	Parameter	Condition	Min	Тур	Max	Unit
Т6	Timer period	T1_PER = 101	416	500	625	ms
Т7	Timer period	T1_PER = 110	830	1000	1250	ms
Т8	Timer period	T1_PER = 110	1660	2000	2500	ms

7.22 Reset output (NRST)

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 3.0 V \leq V_{IO} \leq 5.5 V, T_j = -40 °C to 150 °C, unless otherwise specified.

Table 61. Reset output

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V _{NRST_L}	Output low level	I _{NRST} = +4 mA	-	-	0.5	V
l	Lookage current	V _{NRST} = 20.0 V			100	
INRST_LK	Leakage current	V _{IO} = 3.3 V	-	-	100	μA
hipot i i e si	Leakage current when NRST is disabled	V _{NRST} = 5.0 V	_	-	1	μA
NRST_LK_5V	Leakage current when two i is disabled	V _{IO} = 5.0 V	_		'	μΛ
R _{NRST_PU}	NRST internal pull-up resistor for echo	V _{NRST} = 1.0 V	13	29	55	kΩ
t _{NRST_WDR} (1)	Low pulse duration time	In case of WD error	3.2	-	-	ms
t _{NRST_FCCU} (1)	Low pulse duration time	In case of FCCU error	4.8	-	-	ms
t _{NRST_ECHO_FILT} (1)	NRST echo error filter time		91	100	150	μs

^{1.} Guaranteed by SCAN.

7.23 VREG voltage regulator

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. 6 V \leq V_{FBB} \leq 29 V, T_j = -40 °C to 150 °C, unless otherwise specified.

Table 62. VREG

Symbol	Parameter	Condition	Min	Тур	Max	Unit
V_{VREG}	Output voltage	In active-Full power I _{load} = 120 mA	3.2	3.4	3.6	V
V _{VREG_LP}	Output voltage	In active-Low power I _{load} = 15 mA	3.2	3.4	3.6	V
V_{VREG_OV}	Overvoltage threshold for $V_{\mbox{\scriptsize REG}}$		3.45	3.6	3.8	V
V _{VREG_OV_LP}	Overvoltage threshold for $V_{\mbox{\scriptsize REG}}$ in LP		3.45	3.6	3.8	V
t _{VREG_OV}	V _{REG} overvoltage filter time		12	15	22	μs
V _{VREG_UV}	Undervoltage threshold for V_{REG}		2.7	2.9	3.1	V
V _{VREG_UV_LP}	Undervoltage threshold for V _{REG} in LP		2.7	2.9	3.1	V
t _{VREG_UV} (1)	V _{REG} undervoltage filter time		12	15	22	μs

DS14964 - Rev 1 page 117/239

Symbol	Parameter	Condition	Min	Тур	Max	Unit
t _{VREG_stup} (1)	V _{REG} max start-up delay time for power-good		1.6	2	2.51	ms
I _{VREG_CCmax}	Short-circuit output current (to GND)	Current limitation in active-full power	125	260	380	mA
C _{VREG} (2)	Load capacitor	Ceramic	3	4.7	10	μF

^{1.} Digital implementation guaranteed by SCAN test.

7.24 BIST timing

The voltages are referred to GND and currents are assumed positive, when the current flows into the pin. $6 \text{ V} \leq \text{V}_{\text{FBB}} \leq 29 \text{ V}$, $\text{T}_{\text{i}} = -40 \,^{\circ}\text{C}$ to 150 $^{\circ}\text{C}$, unless otherwise specified.

Table 63. BIST timing

Symbol	Parameter	Condition	Min	Тур	Max	Unit
T _{LBIST}	Logical BIST execution timing	Covered by SCAN	12.1	14.6	18.3	ms
T _{ABIST}	Analog BIST execution timing	Covered by SCAN	83	100	188	μs

7.25 Long duration timer

The voltages are referred to ground and currents are assumed positive, when the current flows into the pin. 6 V < V_{FBB} < 29 V; T_i = -40 °C to 150 °C, unless otherwise specified.

Table 64. Timer values

Symbol	Parameter	Condition	Min	Тур	Max	Unit
VLD _{RES} (1)	Very long duration timer resolution		0.85	1	1.15	s
LDT_CNT (1)	Long duration timer - counter		153	180	213	days

1. Covered by SCAN.

DS14964 - Rev 1 page 118/239

^{2.} Nominal capacitor value required for stability of the regulator. Tested with 4.7 μF ceramic (± 20%). Capacitor must be located close to the regulator output pin.

8 Application circuit

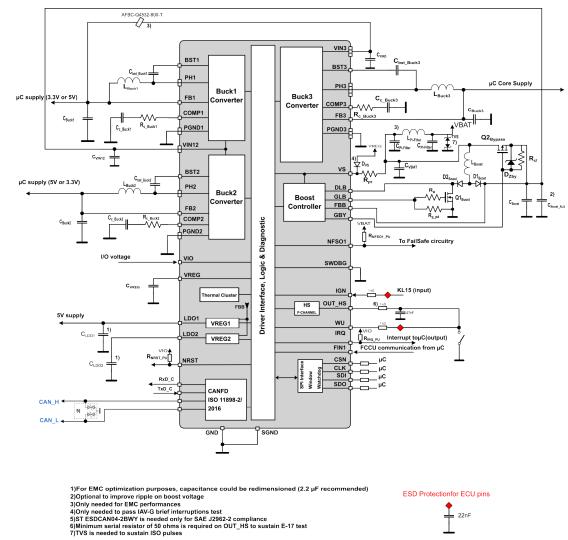


Figure 73. Typical application circuit for SPSB100G

8.1 External recommended components

Table 65. External components (referred to pictures in the related sections)

Component	Block/Usage	Min	Тур	Max	Unit	Note
C _{VBAT} ⁽¹⁾	Capacitance at V _{bat}	40	50	-	μF	ESR: < 15 m Ω Capacitance change or temperature coefficient: < 22% Rated voltage: > 40 VDC X7R SMD
C _{Boost} (1)	Capacitance at FBB	70	100	130	μF	ESR: < 15 mΩ Capacitance change or temperature coefficient: < 22% Rated voltage: > 40 VDC

DS14964 - Rev 1 page 119/239

Component	Block/Usage	Min	Тур	Max	Unit	Note
						X7R
						SMD
						ESR: < 30 mΩ
C _{Boost_ALU} (1)	Option ALU capacitance at	450	000		_	Capacitance change or temperature coefficient: < 32%
(2)	FBB	150	220	330	μF	Rated voltage: > 40 VDC
						AL ELEC CAP
						SMD
						$R_{DS(ON)}$: < 10 m Ω
						V _{(BR)DSS} : > 40 V
Q1 _{Boost}	Low-side boost converter	_	_	_	_	V _{GS} : ±20 V
G 1B00St	external MOSFET					I _{D (continuous)} : > 20 A
						I _{D (pulse)} : > 40 A
						V _{GS_TH} : < 3 V
						Schottky diodes
D1 _{Boost}	Fortage of Oak affiliated as					I _{F(AV)} : > 25 A
D2_Boost	External Schottky diodes	ty diodes	V _{RRM} : > 40 V			
						V _{F(max)} : < 0.7 V
						DCR: < 10 mΩ
L _{Boost}	BOOST inductance	0.8	1	1.2	μH	I _{sat} : > 20 A
						Derating < 40%
R _{pr}	Resistor for VS pin protection	0.95	1	1.05	kΩ	-
R _g	Serial gate resistor of Q1 _{Boost}	2.09	2.2	2.31	Ω	-
R _{g_pd}	Pull-down resistor of Q1 _{Boost} gate	95	100	105	kΩ	-
						$R_{DS(ON)}$: < 10 m Ω
						V _{(BR)DSS} : > 40 V
00						V _{GS} : ±20 V
Q2 _{Bypass}	Bypass external MOSFET	-	-	-	-	I _{D (continuous)} : > 20 A
						I _{D (pulse)} : > 40 A
						V _{GS_TH} : < 3 V
D _{Zby}	Zener diode to clamp V _{GS} of Q2 bypass	-	-	-	-	Voltage clamp = 18 V
R _{cl}	Discharge resistor to short V _{GS} of Q2 bypass in OFF STATE	20.9	22	23.1	kΩ	-
C - (1)						ESR: < 15 mΩ
C _{Buck1_24} (1)	Output capacitor at 2.4 MHz	4-			_	Rated voltage: > 10 VDC
C _{Buck2_24} (1)	T = 27 °C	17	22	27	μF	X7R
C _{Buck3} (1)						SMD
						Rdc: < 25 mΩ
L _{Buck1_24}	Output inductor at 2.4 MHz	2.2	3.3	4	μH	Isat > 6.2 A
L _{Buck2_24}	Output inductor at 2.4 MITZ	۷.۷	3.3	4	μп	SRF > 15 MHz
						SMD

DS14964 - Rev 1 page 120/239

Component	Block/Usage	Min	Тур	Max	Unit	Note
C_{bst_Buck1} C_{bst_Buck2}	Bootstrap capacitor	37.6	47	56.4	nF	-
C _{bst_Buck3}	Bootstrap capacitor	80	100	120	nF	-
L _{Buck} 3	Output inductor I _{out} = 4.3 A	2.2	3.3	4	μН	Rdc: < 15 mΩ Isat > 10 A SRF > 15 MHz SMD Choice: XAL6030-332ME
C _{c_Buck1_24} C _{c_Buck2_24}	Compensation network capacitor at F = 2.4 MHz	1.2	1.5	1.8	nF	-
C _{c_Buck3}	Compensation network capacitor	3.76	4.7	5.64	nF	-
R _{c_Buck1_24}	Compensation network resistor at F = 2.4 MHz	14.25	15	15.75	kΩ	-
R _{c_Buck3}	Compensation network resistor	0.95	1	1.05	kΩ	-
C _{Buck1_04} (1) C _{Buck2_04} (1)	Output capacitor at 400 kHz T = 27 °C	33	47	56	μF	ESR: < 15 mΩ Rated voltage: > 10 VDC X7R
L _{Buck1_04} L _{Buck2_04}	Output inductor at 400 kHz	11	15	18	μН	Rdc : < 40 mΩ Isat > 6.2 A SRF > 4 MHz SMD Choice: SPM6545VT-150M-D
C _{c_Buck1_04}	Compensation network capacitor at F = 400 kHz	8	10	12	nF	-
R _{c_Buck1_04}	Compensation network resistor at F = 400 kHz	4.84	5.1	5.35	kΩ	-
C _{VREG} (1)	VREG output capacitor	3	4.7	10	μF	max ESR < 0.1 Ω Rated voltage > 5 V X7R
C _{LDO1}	LDO1 output capacitor	1.0	2.2	10	μF	-
C _{LDO2} (1)	LDO2 output capacitor	1.0	2.2	10	μF	-
R _{NFSO1_PU}	Pull-up resistor to V _{bat}	28.5	30	31.5	kΩ	-
R _{IRQ_PU}	Pull-up resistor to V _{IO}	28.5	30	31.5	kΩ	-
R _{NRST_PU}	Pull-up resistor to V _{IO}	28.5	30	31.5	kΩ	-
C _{VIN12} (1)	Buck1, 2 input capacitors	38	47	56	μF	ESR < 15 mΩ Rated voltage: > 40 VDC X7R
C _{VIN3} (1)	Buck3 input capacitor	38	47	56	μF	ESR < 15 m Ω Rated voltage: > 10 VDC X7R

DS14964 - Rev 1 page 121/239

Component	Block/Usage	Min	Тур	Max	Unit	Note
D _{VS}	VS pin Schottky diode					STPS140ZY
C _{Pi-Filter}	Pi-Filter capacitor		4 x 4.7		μF	4 x 4.7 μF capacitors in parallel are recommended to reduce ESR. 50 V voltage rating with 10% tolerance
L _{Pi-Filter}	Pi-Filter inductor		220		nH	Rdc < 5 mΩ Isat > 20 A SRF > 300 MHz Choice: 7447798022 Wurth Elektronik

Capacitance to be dimensioned, for example, according to voltage drop out requirements. In order to reduce the ESR it is recommended to use more capacitors in parallel.

8.2 External components calculation

8.2.1 Buck1 and Buck2 inductor

The value of the output inductor is usually calculated to satisfy the peak-to-peak ripple current requirement. For the best compromise of cost, size and performance, it is suggested to keep the inductor current ripple between 20% and 40% of maximum load current.

For example, if:

$$\Delta I_L = IRipple = 0.3 I_{OUT(MAX)} \tag{1}$$

Where I_{OUT(MAX)} is the maximum output current, then the inductor value can be estimated by the following equation:

$$L > \frac{1}{f_{SW}X\Delta I_L}XV_{OUT}X\left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right)$$
 (2)

where f_{SW} is the switching frequency and $V_{\text{IN}(\text{max})}$ is the maximum input voltage.

The peak current flowing in the inductor is:

$$I_{L(PEAK)} = I_{OUT(MAX)} + \frac{\Delta I_L}{2} \tag{3}$$

If the inductor value decreases, the peak current increases. The peak current has to be lower than the current limit of the device. The inductor should have a saturation current higher than the device current limit.

Note: In order to meet slope compensation, L needs to meet the following equation:

$$L > \frac{1}{2} X \frac{V_{OUT}}{I_{slope}} \tag{4}$$

With $I_{slope} = 650 \text{ mA} \times f_{SW}$.

8.2.2 Buck3 inductor

The value of the output inductor is usually calculated to satisfy the peak-to-peak ripple current requirement. For the best compromise of cost, size and performance, it is suggested to keep the inductor current ripple between 20% and 40% of maximum load current.

For example, if:

$$\Delta I_L = IRipple = 0.3 I_{OUT(MAX)}$$
 (5)

DS14964 - Rev 1 page 122/239

^{2.} Minimum capacitor value needed to cover VW8000 E-07b test.

where I_{OUT(MAX)} is the maximum output current, then the inductor value can be estimated by the following equation:

$$L > \frac{1}{f_{SW}X\Delta I_L}XV_{OUT}X\left(1 - \frac{V_{OUT}}{V_{IN(MAX)}}\right)$$
 (6)

where f_{SW} is the switching frequency and $V_{\text{IN}(\text{max})}$ is the maximum input voltage.

The peak current flowing in the inductor is:

$$I_{L(PEAK)} = I_{OUT(MAX)} + \frac{\Delta I_L}{2} \tag{7}$$

If the inductor value decreases, the peak current increases. The peak current has to be lower than the current limit of the device. The inductor should have a saturation current higher than the device current limit.

Note: In order to meet slope compensation, L needs to meet the following equation:

$$L > \frac{1}{2} X \frac{V_{OUT}}{I_{slope}} \tag{8}$$

With $I_{slope} = 325 \text{ mA} \times f_{SW}$.

DS14964 - Rev 1 page 123/239

9 SPI registers

9.1 Global Status Byte GSB

Table 66. Global Status Byte GSB

	Global Status Byte GSB											
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24					
1 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)					
GSBN	RSTB	SPIE	FE2	FE1	DE	GW	FS					
Global Status Bit Inverted	Reset	SPI Error	Functional Error Bit 2	Functional Error Bit 2 Functional Error Bit 1 Device Error Global Warning								
Bit	Name	Description										
31	GSBN	This bit can also directly after pullii 1: no error detect Specific fault dete	egical NOR combination be used as global status ng CSN low. 0: error det red (default after power- ection may be masked in	of GSB Bits 0 to Bit 6 (1 s flag without starting a c tected (one or several GS on) n the configuration regist or it is not reflected in the	omplete communica SB bits from 0 to 6 a ers 0x3F. A masked	are set)	I be reported in					
30	RSTB	- power-down sec 0: no reset signal	quence has been generated (d	itput has been asserted l efault) 1: Reset signal ha mmand to all bits in statu	s been generated							
29	SPIE 2)	- SPI_SDI_STUC - SPI_SDI_STUC - SPI_CSN_TIMI - SPI_CRC_ERF - SPI_UNDEF_A	CK_HIGH (SR4 - 0x24) CK_LOW (SR4 - 0x24) EOUT (SR4 - 0x24) R (SR4 - 0x24) DD (SR4 - 0x24) WRT (SR4 - 0x24) (SR4 - 0x24) SR4 - 0x24)	ong SPI communication.								
28	FE2	1: error detected Functional Error Bit 2 The FE2 is a logical OR combination of errors related to the CAN transceiver. - CAN_RXD_REC (SR2 - 0x22) - CAN_PERM_REC (SR2 - 0x22) - CAN_PERM_DOM (SR2 - 0x22) - CAN_TXD_DOM (SR2 - 0x22) 0: no error (default) 1: error detected										

DS14964 - Rev 1 page 124/239

				Global Status Byte GSB									
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24						
		FE2 is cleared by	a Read and clear co	ommand to all related bits in	status registers 2	and 12.							
		Functional Error Bit 1											
		The FE1 is a logical OR combination of errors coming from functional blocks.											
		- OUTHS_OC (Si	R2 - 0x22)										
		– OUTHS_OL (SF	R2 - 0x22)										
		– BUCK1_UV (SF	₹1 - 0x21)										
		– BUCK2_UV (SF											
		– BUCK3_UV (SF	₹1 - 0x21)										
		- BUCK1_OV (SR1 - 0x21)											
			BUCK2_OV (SR1 - 0x21)										
27	FE1	– BUCK3_OV (SF											
		– BUCK1_OC (SF											
		– BUCK2_OC (SF											
		– BUCK3_OC (SF											
		- LDO2_UV (SR1											
		- LDO2_OV (SR1											
			IEOUT from SPI requ										
			OUT from SPI reque	st (SR1 - 0x21)									
			It) 1: error detected										
		_		ommand to all related bits in	status registers 3,	5,6							
		Device Error Bit											
		_	_	bal errors related to the devi	ce.								
		– FBB_OV (SR2 -	ŕ										
		– FBB_UV (SR2 -											
		- VIO_UV (SR2 -											
		- TSD_CLx (SR2	•										
26	DE		IO_ERROR (SR2 - 0										
			CHO_ERROR (SR2 -										
			_ERROR (SR2 – 0x2	22)									
			ROR (SR2 – 0x22)										
			ERROR (SR2 0x22)										
			It) 1: error detected										
		DE is cleared by a	a Read & Clear comi	mand to all related bits in st	atus registers 2, 4	and 7							
		Global Warning I	Bit										
		GW is a logical Of functions.	R combination of wa	rning flags. Warning bits do	not lead to any de	vice state change or s	witch-off of						
		- FBB_UV_EW (S	SR4 - 0x24)										
		- FBB_OV_EW (S	SR4 - 0x24)										
25	GW ²⁾	- VS_UV_EW (SF	R4 0x24)										
		- CAN_SUP_LOV	N (SR4 - 0x24)										
		- TW_CLx (SR4 (0x24)										
		0: no error (defau	lt) 1: error detected										
		GW is cleared by	a Read and clear co	ommand to all related bits in	status register 2,4								
24	FS	Fail Safe											
24	FS	· ·	a Read and clear co	ommand to all related bits in	status register 2,4								

DS14964 - Rev 1 page 125/239

			G	Blobal Status Byte GS	В								
Bit 31	Bit 30	Bit 29	Bit 28	Bit 27	Bit 26	Bit 25	Bit 24						
		The FS bit indicates the device was forced into DEEP-SLEEP, RECOVERY-1 or -2 state due to the following fault conditions:											
		- FCCUFAIL (SR	3 - 0x23)										
		- WDFAIL (SR3 -	0x23)										
		- FORCED_SLEI	EP_TSD (SR3 - 0x23)										
		- FORCED_SLEI	EP_POWUP (SR5 – 0x2	25)									
		- GNDLOSS (SR	- GNDLOSS (SR3 - 0x23)										
		INT_REG_UV (S	IT_REG_UV (SR3 - 0x23)										
		INT_REG_OV (S	NT_REG_OV (SR3 - 0x23)										
		CURRENT_MISMATCH (SR3 - 0x23)											
		OSC_ERROR (S	OSC_ERROR (SR3 - 0x23)										
		LBIST_ERROR (SR3 - 0x23) ⁽¹⁾										
		NVM_COMP_ER	ROR (SR3 - 0x23)										
		NVM_CRC_ERR	OR (SR3 - 0x23)										
		SPI_REG_COMF	P_ERROR (SR3 - 0x23)										
		FSM_COMP_ER	ROR (SR3 - 0x23)										
		All control registe	rs are set to default										
		control registers a	are blocked for WRITE a	access except the follow	ving bits:								
		- error flags											
		- wakeup settings	;										
		- timer setting											
		1: Fail Safe active	e										
		FS is cleared by a	a Read and clear comm	and to all related bits in	status register SR3 a	and SR5							

1. Only after a DO_POWER_CYCLE.

DS14964 - Rev 1 page 126/239

9.2 Control register overview

	bit		31	30	29	28	27	26	25	24	Mode
ОрО	Code + Add	ress	OC1	OC2	A5	A4	A3	A2	A1	A0	R/W
Co	ntrol Regis	ter									
			23	22	21	20	19	18	17	16	
Addr.		bits	15	14	13	12	11	10	9	8	
			7	6	5	4	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB				rese	erved				
0x00						rese	erved				
		LSB				rese	erved				
		MSB	RES	RES	RES	RES	RES	WD_NRS T_MASK	WD_TIM E_3	WD_TIM E_2	
0x01	DCR1		WD_TIM E_1	WD_TIM E_0	VBUCK3 _ENA	VBUCK2 _ENA	VBUCK1 _ENA	LDO1_E NA	LDO2_E NA	LOW_PO WER_SE T	R/W
		LSB	WD_LP_ ENA	DO_POW ER_DOW N	U- NVM_PR OG	DO_POW ER_CYC LE	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	NFSO_A SSERT_L OW	LBIST	ABIST	RES	FCCU_C OUNTER _12	FCCU_C OUNTER _11	
0x02	DCR2		FCCU_C OUNTER _10	FCCU_C OUNTER _9	FCCU_C OUNTER _8	FCCU_C OUNTER _7	FCCU_C OUNTER _6	FCCU_C OUNTER _5	FCCU_C OUNTER _4	FCCU_C OUNTER _3	R/W
		LSB	FCCU_C OUNTER _2	FCCU_C OUNTER _1	FCCU_C OUNTER _0	FCCU_E NA	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	BUCK3_ SPREAD _ENA	BUCK2_ SPREAD _ENA	BUCK1_ SPREAD _ENA	CLR_WD FAIL_CN T	RES	BUCK3_F TUNE_2	
0x03	DCR3		BUCK3_F TUNE_1	BUCK3_F TUNE_0	BOOST_ OFF	FBB_OV_ EW_TH_ 3	FBB_OV_ EW_TH_ 2	FBB_OV_ EW_TH_ 1	FBB_OV_ EW_TH_ 0	FBB_UV_ EW_TH_ 3	R/W
		LSB	FBB_UV_ EW_TH_ 2	FBB_UV_ EW_TH_ 1	FBB_UV_ EW_TH_ 0	SPI_PRO TECT_A CCESS	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	BOOST_ DSMON_ TH_2	BOOST_ DSMON_ TH_1	BOOST_ DSMON_ TH_0	SWDBG_ EXIT	VS_UV_E W_TH_4	VS_UV_E W_TH_3	VS_UV_E W_TH_2	
0x04	DCR4		VS_UV_E W_TH_1	VS_UV_E W_TH_0	FCCU_P ROTOCO L	FCCU_S TATIC_E RROR	OUTHS_ 1	OUTHS_ 0	BYPASS_ DSMON_ TH_2	BYPASS_ DSMON_ TH_1	R/W
		LSB	BYPASS_ DSMON_ TH_0	CLR_RE G_FAIL_ CNT	KILL_SW DBG_TIM EOUT	WD_TRI G	CRC 3	CRC 2	CRC 1	CRC 0	
0x05	DCR5	MSB	RES	CLR_RE C2_FRO M_DO_P OWER_C YCLE	CLR_DE EP_SLEE P_FROM _DO_PO WER_DO WN	CLR_PO WUP_RE TRY_CO UNT	T1_ENA_ 2	T1_ENA_ 1	T1_ENA_ 0	T1_PER_ 2	R/W

DS14964 - Rev 1 page 127/239

0x05	DCR5		T1_PER_ 1	T1_PER_ 0	TIMER_ WAKE_E NA	IGN_CO NFIG	IGN_FILT	IGN_ENA	IGN_PU	WU_CON FIG	R/W
		LSB	WU_ENA	WU_PU	WU_FILT	TIMER_E NA	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	MASK_B UCK3_P G_TIMEO UT_IRQ	MASK_B UCK3_O C_IRQ	MASK_B UCK3_P G_IRQ	MASK_B UCK3_IR Q	MASK_B UCK2_P G_TIMEO UT_IRQ	MASK_B UCK2_O C_IRQ	MASK_B UCK2_P G_IRQ	
0x06	DCR6		MASK_B UCK2_IR Q	MASK_B UCK1_P G_TIMEO UT_IRQ	MASK_B UCK1_O C_IRQ	MASK_B UCK1_P G_IRQ	MASK_B UCK1_IR Q	MASK_F BB_OV_I RQ	MASK_F BB_UV_I RQ	MASK_F BB_OV_ EW_IRQ	R/W
		LSB	MASK_F BB_UV_E W_IRQ	MASK_L DO2_PG _IRQ	MASK_L DO2_PG _TIMEOU T_IRQ	MASK_L DO2_IRQ	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	MASK_L DO1_PG _IRQ	MASK_L DO1_PG _TIMEOU T_IRQ	MASK_L DO1_IRQ	MASK_B OOST_IN _LP_IRQ	MASK_B YPASS_V DSMON_ IRQ	MASK_B OOST_V DSMON_ IRQ	IRQ_REQ UEST	
0x07	DCR7		MASK_V S_EW_IR Q	MASK_C AN_IRQ	MASK_C L4_TW_I RQ	MASK_C L3_TW_I RQ	MASK_C L2_TW_I RQ	MASK_C L1_TW_I RQ	MASK_C L0_TW_I RQ	MASK_O UTHS_IR Q	R/W
		LSB	MASK_S PI_ERRO R_IRQ	MASK_N FSO1_E CHO_ER ROR_IR Q	MASK_W D_ENA_ ECHO_E RROR_IR Q	MASK_F CCU_EN A_ECHO _ERROR _IRQ	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	MASK_S WDBG_V IO_IRQ	MASK_L P_READ Y_IRQ	CLR_TS D_CNT_F AIL	MASK_B UCK3_O C_POWE R_OFF	MASK_B UCK2_O C_POWE R_OFF	MASK_B UCK1_O C_POWE R_OFF	MASK_B UCK3_U V_POWE R_OFF	
0x08	DCR8		MASK_B UCK2_U V_POWE R_OFF	MASK_B UCK1_U V_POWE R_OFF	MASK_T W_GW	MASK_O L_GSB	MASK_F E2_GSB	MASK_G W_GSB	CAN_AC T	CAN_AU TO_BIAS	R/W
		LSB	CAN_LO OP_ENA	CAN_RE C_ONLY	CAN_WU _ENA	GO_INIT	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	LDT_TIM ER_REA D_ENA	NFSO_U NMASK	BOOST_ CNT_EN D	RES	MASK_B OOST_TI MER_CN T_END_I RQ	LDT_CNT _THR_4	LDT_CNT _THR_3	
0x09	DCR9		LDT_CNT _THR_2	LDT_CNT _THR_1	LDT_CNT _THR_0	LDT_CNT _THR_M SB_POS _4	LDT_CNT _THR_M SB_POS _3	LDT_CNT _THR_M SB_POS _2	LDT_CNT _THR_M SB_POS _1	LDT_CNT _THR_M SB_POS _0	R/W
		LSB	LDT_DEB UG	LDT_MO DE	LDT_ENA	LDT_CNT _ENA	CRC 3	CRC 2	CRC 1	CRC 0	

DS14964 - Rev 1 page 128/239

9.3 U_NVM register overview

Table 67. U_NVM Register Overview

	bit		31	3	80	29	2	8	2	7		26		2	25	24	Mode										
OpC	ode + Ado	Iress	OC1	00	C2	A5	А	4	А	3		A2		А	\1	A0	R/W										
U_I	NVM Regis	ster																									
			23	22		21		2	10	1	9	18		17	1	6											
Addr.		bits	15	14		13		1	2	1	11	10		9		8											
			7	6		5		4	4	CR	C 3	CRC 2	CF	RC 1	CR	C 0											
		MSB	RES	RI	ES	RES	RE	ΞS	BUCK1	_FREQ	BUCK	1_PU_VA	LUE_1	_	PU_VAL	BUCK1 _PU_S TEP_E NA_2											
0x0A	DCR10		BUCK1 _PU_S TEP_E NA_1		PU_STE NA_0	BUCK1 PD_S BUCK1_PD_STE P_OFF_0 BUCK1_IPEAK_2 BUCK1_IPEAK_					BUCK1 _IPEA K_0	R/W															
		LSB	BUCK1 _REGF AIL_G O_REC		SS_VAL	BUCK1 _SS_V ALUE_ 0	BUCK1_ SH_F		CR	C 3		CRC 2		CRC 2		CR	C 1	CRC 0									
		MSB	RES	RI	ΞS	RES	RE	ΞS	BUCK2	_FREQ	BUCK	BUCK2_PU_VALUE_1			PU_VAL _0	BUCK2 _PU_S TEP_E NA_2											
0x0B	DCR11		BUCK2 _PU_S TEP_E NA_1		PU_STE NA_0	BUCK2 _PD_S TEP_O FF_2	BUCK2_ P_OI	PD_STE FF_1	BUCK2_ P_OI		BUCK2_IPEAK_2		BUCK2_IPEAK_2		BUCK2_IPEAK_2		JCK2_IPEAK_2		K2_IPEAK_2		CK2_IPEAK_2		K2_IPEAK_2		_IPEAK_ 1	BUCK2 _IPEA K_0	R/W
		LSB	BUCK2 _REGF AIL_G O_REC	BUCK2_ UE	SS_VAL _1	BUCK2 _SS_V ALUE_ 0	BUCK2_ SH_F		CR	C 3	CRC 2		CRC 1		CRC 0												
		MSB	RES	RI	ES	RES	RE	ΞS	BYPAS	S_DIS	BUCK	3_PU_VA	LUE_2	JE_2 BUCK3_PU_VAL		BUCK3 _PU_V ALUE_ 0											
0x0C	DCR12		BUCK3 _PU_S TEP_E NA_2	BUCK3_ P_Et	PU_STE NA_1	BUCK3 _PU_S TEP_E NA_0		PD_STE FF_2	BUCK3_ P_O		BUCK3_	BUCK3_PD_STEP_OFF_0			_IPEAK_ 1	BUCK3 _IPEA K_0	R/W										
		LSB	BUCK3 _REGF AIL_G O_REC		SS_VAL	BUCK3 _SS_V ALUE_ 0	BUCK3_ SH_F		CR	C 3		CRC 2		CR	C 1	CRC 0											
		MSB	RES	RI	ES	RES	RE	ES .	U_NVN	1_D_15	U_	_NVM_D_	14	U_NVN	/I_D_13	U_NV M_D_1 2											
0x0D	DCR13		U_NV M_D_1 1	U_NVN	/I_D_10	U_NV M_D_9	U_NVI	M_D_8	U_NVI	M_D_7	U_NVM_D_6		U_NVI	M_D_5	U_NV M_D_4	R/W											
		LSB	U_NV M_D_3	U_NVI	M_D_2	U_NV M_D_1	U_NVI	M_D_0	CR	C 3	CRC 2		CR	C 1	CRC 0												
		MSB	RES	RI	ES	RES	RE	ES	PU_LOC _E\	P_FOR ER	LDO2_R	EGFAIL_0	GO_REC	LDO2_	TRK_1	LDO2_ TRK_0											
0x0E	DCR14		LDO2_ PD_ST EP_OF F_2	LDO2_P _OF	D_STEP	LDO2_ PD_ST EP_OF F_0	LDO2_P _EN		LDO2_P _EN	U_STEP A_1	LDO2_F	PU_STEP	_ENA_0	LDO1_P _OF	D_STEP	LDO1_ PD_ST EP_OF F_1	R/W										
		LSB	LDO1_ PD_ST EP_OF F_0		U_STEP IA_2	LDO1_ PU_ST EP_EN A_1	LDO1_P _EN		CR	C 3		CRC 2		CR	C 1	CRC 0											

DS14964 - Rev 1 page 129/239

		MSB	RES	RES	RES	RES	U_NVM_F_15	U_NVM_F_14	PU_WAIT_DEL_ ENA_7_1	PU_W AIT_D EL_EN A_7_0	
0x0F	DCR15		PU_W AIT_D EL_EN A_6_1	PU_WAIT_DEL_ ENA_6_0	PU_W AIT_D EL_EN A_5_1	PU_WAIT_DEL_ ENA_5_0	PU_WAIT_DEL_ ENA_4_1	PU_WAIT_DEL_ENA_4_0	PU_WAIT_DEL_ ENA_3_1	PU_W AIT_D EL_EN A_3_0	R/W
		LSB	PU_W AIT_D EL_EN A_2_1	PU_WAIT_DEL_ ENA_2_0	PU_W AIT_D EL_EN A_1_1	PU_WAIT_DEL_ ENA_1_0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	U_NVM_G_15	U_NVM_G_14	U_NVM_G_13	NRESE T_PD_ STEP_ ASSER T_2	
0x10	DCR16		NRESE T_PD_ STEP_ ASSER T_1	NRESET_PD_ST EP_ASSERT_0	NRESE T_PU_ STEP_ DEASS ERT_2	NRESET_PU_ST EP_DEASSERT_ 1	NRESET_PU_ST EP_DEASSERT_ 0	PU_WAIT_PG_ENA_7	PU_WAIT_PG_E NA_6	PU_W AIT_P G_ENA _5	R/W
		LSB	PU_W AIT_P G_ENA _4	PU_WAIT_PG_E NA_3	PU_W AIT_P G_ENA _2	PU_WAIT_PG_E NA_1	CRC 3	CRC 2	CRC 1	CRC 0	

		MSB	RES	RES	RES	RES	U_NVM_CR C0_7	U_NVM_CR C0_6	U_NVM_CR C0_5	U_NVM_CR C0_4	
0x11	DCR17		U_NVM_CR C0_3	U_NVM_CR C0_2	U_NVM_CR C0_1	U_NVM_CR C0_0	U_PROG0_ 1	U_PROG0_ 0	U_NVM_H_ 5	U_NVM_H_ 4	R/W
		LSB	NFSO_STA TE_IN_DEE P_SLEEP	U_NVM_H_ 2	U_NVM_H_ 1	BOOST_DI	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	PD_WAIT_V REG_DEL_ OFF_1	PD_WAIT_V REG_DEL_ OFF_0	PD_WAIT_ DEL_OFF_7 _1	PD_WAIT_ DEL_OFF_7 _0	
0x12	DCR18		PD_WAIT_ DEL_OFF_6 _1	PD_WAIT_ DEL_OFF_6 _0	PD_WAIT_ DEL_OFF_5 _1	PD_WAIT_ DEL_OFF_5 _0	PD_WAIT_ DEL_OFF_4 _1	PD_WAIT_ DEL_OFF_4 _0	PD_WAIT_ DEL_OFF_3 _1	PD_WAIT_ DEL_OFF_3 _0	R/W
		LSB	PD_WAIT_ DEL_OFF_2 _1	PD_WAIT_ DEL_OFF_2 _0	PD_WAIT_ DEL_OFF_1 _1	PD_WAIT_ DEL_OFF_1 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	U_NVM_RE LEASE_15	U_NVM_RE LEASE_14	U_NVM_RE LEASE_13	U_NVM_RE LEASE_12	
0x13	DCR19		U_NVM_RE LEASE_11	U_NVM_RE LEASE_10	U_NVM_RE LEASE_9	U_NVM_RE LEASE_8	U_NVM_RE LEASE_7	U_NVM_RE LEASE_6	U_NVM_RE LEASE_5	U_NVM_RE LEASE_4	R/W
		LSB	U_NVM_RE LEASE_3	U_NVM_RE LEASE_2	U_NVM_RE LEASE_1	U_NVM_RE LEASE_0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	FBB_OK_S EL_1	FBB_OK_S EL_0	BYPASS_O FFSET_SEL	FBB_REG_ LEVEL_SEL _1	
0x14	DCR20		FBB_REG_ LEVEL_SEL _0	WAKEUP_G O_TO_DEE P_SLEEP_I NH	BOOST_CR K_TO_2	BOOST_CR K_TO_1	BOOST_CR K_TO_0	BOOST_CR K_ONLY	VS_SENSE _LEVEL_SE L_1	VS_SENSE _LEVEL_SE L_0	R/W
		LSB	LOW_SET_	LOW_SET_ 2	LOW_SET_ 1	LOW_SET_ 0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	U_NVM_L_ 15	U_NVM_L_ 14	U_NVM_L_ 13	U_NVM_L_ 12	
0x15	DCR21		U_NVM_L_ 11	U_NVM_L_ 10	U_NVM_L_ 9	U_NVM_L_ 8	U_NVM_L_ 7	U_NVM_L_ 6	U_NVM_L_ 5	U_NVM_L_ 4	R/W
		LSB	RES	RES	FBB_UV_E W_PD	FBB_UV_L EVEL_SEL	CRC 3	CRC 2	CRC 1	CRC 0	
010	DODGG	MSB	RES	RES	RES	RES	U_NVM_M_ 15	U_NVM_M_ 14	U_NVM_M_ 13	U_NVM_M_ 12	DAM
0x16	DCR22		U_NVM_M_ 11	U_NVM_M_ 10	U_NVM_M_ 9	U_NVM_M_ 8	U_NVM_M_ 7	U_NVM_M_ 6	U_NVM_M_ 5	U_NVM_M_ 4	R/W

DS14964 - Rev 1 page 130/239

0x16	DCR22	LSB	U_NVM_M_ 3	U_NVM_M_ 2	U_NVM_M_ 1	U_NVM_M_ 0	CRC 3	CRC 2	CRC 1	CRC 0	R/W
		MSB	RES	RES	RES	RES	U_NVM_N_ 15	U_NVM_N_ 14	U_NVM_N_ 13	U_NVM_N_ 12	
0x17	DCR23		U_NVM_N_ 11	U_NVM_N_ 10	U_NVM_N_ 9	U_NVM_N_ 8	U_NVM_N_ 7	U_NVM_N_ 6	U_NVM_N_ 5	U_NVM_N_ 4	R/W
		LSB	U_NVM_N_ 3	U_NVM_N_ 2	U_NVM_N_ 1	U_NVM_N_ 0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	U_NVM_O_ 15	U_NVM_O_ 14	U_NVM_O_ 13	U_NVM_O_ 12	
0x18	DCR24		U_NVM_O_ 11	U_NVM_O_ 10	U_NVM_O_ 9	U_NVM_O_ 8	U_NVM_O_ 7	U_NVM_O_ 6	U_NVM_O_ 5	U_NVM_O_ 4	R/W
		LSB	U_NVM_O_ 3	U_NVM_O_ 2	U_NVM_O_ 1	U_NVM_O_ 0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	U_NVM_CR C1_7	U_NVM_CR C1_6	U_NVM_CR C1_5	U_NVM_CR C1_4	
0x19	DCR25		U_NVM_CR C1_3	U_NVM_CR C1_2	U_NVM_CR C1_1	U_NVM_CR C1_0	U_PROG1_ 1	U_PROG1_ 0	U_NVM_P_ 5	U_NVM_P_ 4	R/W
		LSB	U_NVM_P_ 3	U_NVM_P_ 2	U_NVM_P_ 1	U_NVM_P_ 0	CRC 3	CRC 2	CRC 1	CRC 0	

Table 68. USER_NVM setting used for configuration1

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
	0	BUCK1_REFRESH_FREQ	1	Buck1 refresh frequency at 1 kHz
	1	BUCK1_SS_VALUE[0]	1	Dueld as first at 0.05 Mars
	2	BUCK1_SS_VALUE[1]	0	Buck1 soft-start at 8.25 V/ms
	3	BUCK1_REGFAIL_GO_RE C	1	Buck1 defined as critical for application
	4	BUCK1_IPEAK[0]	0	
	5	BUCK1_IPEAK[1]	1	Buck1 peak limitation current @ 5.0 A
	6	BUCK1_IPEAK[2]	1	
DCR10 (0x0A)	7	BUCK1_PD_STEP_OFF[0]	1	
, ,	8	BUCK1_PD_STEP_OFF[1]	1	Buck1 turn-off at step 4
	9	BUCK1_PD_STEP_OFF[2]	0	
	10	BUCK1_PU_STEP_ENA[0]	1	
	11	BUCK1_PU_STEP_ENA[1]	0	Buck1 turn-on at step 1
	12	BUCK1_PU_STEP_ENA[2]	0	
	13	BUCK1_PU_VALUE[0]	0	Dualid vallege action at 2.2 V
	14	BUCK1_PU_VALUE[1]	0	Buck1 voltage setting at 3.3 V
	15	BUCK1_FREQ	1	Buck1 switching frequency at 400 kHz
	0	BUCK2_REFRESH_FREQ	1	Buck2 refresh frequency at 1 kHz
	1	BUCK2_SS_VALUE[0]	1	Duelo estadad of OS Mare
	2	BUCK2_SS_VALUE[1]	0	Buck2 soft-start at 8.25 V/ms
DCR11 (0x0B)	3	BUCK2_REGFAIL_GO_RE C	0	Buck2 defined as not critical for application
20111 (0.02)	4	BUCK2_IPEAK[0]	0	
	5	BUCK2_IPEAK[1]	0	Buck2 peak limitation current @ 4.0 A
	6	BUCK2_IPEAK[2]	1	
	7	BUCK2_PD_STEP_OFF[0]	1	Buck2 turn-off at step 4

DS14964 - Rev 1 page 131/239

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
	8	BUCK2_PD_STEP_OFF[1]	1	
	9	BUCK2_PD_STEP_OFF[2]	0	Buck2 turn-off at step 4
	10	BUCK2_PU_STEP_ENA[0]	1	
DOD44 (0.0D)	11	BUCK2_PU_STEP_ENA[1]	1	Buck2 turn-on at step 3
DCR11 (0x0B)	12	BUCK2_PU_STEP_ENA[2]	0	-
	13	BUCK2_PU_VALUE[0]	1	
	14	BUCK2_PU_VALUE[1]	0	Buck2 voltage setting at 5.0 V
	15	BUCK2_FREQ	1	Buck1 switching frequency at 400 kHz
	0	BUCK3_REFRESH_FREQ	1	Buck3 refresh frequency at 1 kHz
	1	BUCK3_SS_VALUE[0]	1	
	2	BUCK3_SS_VALUE[1]	1	Buck3 soft-start at 0.87 V/ms
	3	BUCK3_REGFAIL_GO_RE	1	BUCK3 defined as critical for application
	4	BUCK3_IPEAK[0]	1	Duck4 neek limitation current @ 7.0 A
	5	BUCK3_IPEAK[1]	1	Buck1 peak limitation current @ 7.0 A
	6	BUCK3_PD_STEP_OFF[0]	0	
DCR12 (0x0C)	7	BUCK3_PD_STEP_OFF[1]	1	Buck1 turn-off at step 3
, ,	8	BUCK3_PD_STEP_OFF[2]	0	
	9	BUCK3_PU_STEP_ENA[0]	0	
	10	BUCK3_PU_STEP_ENA[1]	1	Buck3 turn-on at step 2
	11	BUCK3_PU_STEP_ENA[2]	0	
	12	BUCK3_PU_VALUE[0]	1	
	13	BUCK3_PU_VALUE[1]	0	Buck3 voltage setting at 0.98 V
	14	BUCK3_PU_VALUE[2]	0	
	15	BYPASS_DIS	0	Bypass not disabled
	0	U_NVM_D[0]	0	
	1	U_NVM_D[1]	0	
	2	U_NVM_D[2]	0	
	3	U_NVM_D[3]	0	
	4	U_NVM_D[4]	0	
	5	U_NVM_D[5]	0	
	6	U_NVM_D[6]	0	
DCR13 (0x0D)	7	U_NVM_D[7]	0	
DCICI3 (0x0D)	8	U_NVM_D[8]	0	
	9	U_NVM_D[9]	0	
	10	U_NVM_D[10]	0	
	11	U_NVM_D[11]	0	
	12	U_NVM_D[12]	0	
	13	U_NVM_D[13]	0	
	14	U_NVM_D[14]	0	
	15	U_NVM_D[15]	0	
DCR14 (0x0E)	0	LDO1_PU_STEP_ENA[0]	1	LDO1 turn-on at step 5

DS14964 - Rev 1 page 132/239

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
	1	LDO1_PU_STEP_ENA[1]	0	LDO1 turn on at aton 5
	2	LDO1_PU_STEP_ENA[2]	1	LDO1 turn-on at step 5
	3	LDO1_PD_STEP_OFF[0]	1	
	4	LDO1_PD_STEP_OFF[1]	0	LDO1 turn-off at step 2
	5	LDO1_PD_STEP_OFF[2]	0	
	6	LDO2_PU_STEP_ENA[0]	0	
	7	LDO2_PU_STEP_ENA[1]	0	LDO2 turn-on at step 4
DCR14 (0x0E)	8	LDO2_PU_STEP_ENA[2]	1	
	9	LDO2_PD_STEP_OFF[0]	1	
	10	LDO2_PD_STEP_OFF[1]	0	LDO2 turn-off at step 2
	11	LDO2_PD_STEP_OFF[2]	0	
	12	LDO2_TRK[0]	1	L DOO to allow of Books
	13	LDO2_TRK[1]	0	LDO2 tracker of Buck2
	14	LDO2_REGFAIL_GO_REC	0	LDO2 defined as not critical for application
	15	PU_LOOP_FOR_EVER	0	Power-up sequence not set at infinite retry
	0	PU_WAIT_DEL_ENA_1[0]	0	Device up deleviet store 4 equal to 0 and
	1	PU_WAIT_DEL_ENA_1[1]	0	Power-up delay at step 1 equal to 0 ms
	2	PU_WAIT_DEL_ENA_2[0]	0	Device we deleve at store 2 amount to 0 and
	3	PU_WAIT_DEL_ENA_2[1]	0	Power-up delay at step 2 equal to 0 ms
	4	PU_WAIT_DEL_ENA_3[0]	0	Development delice of the Comment of Comment
	5	PU_WAIT_DEL_ENA_3[1]	0	Power-up delay at step 3 equal to 0 ms
	6	PU_WAIT_DEL_ENA_4[0]	0	Device up deleviet stop 4 annel to 0 and
DOD45 (0: 05)	7	PU_WAIT_DEL_ENA_4[1]	0	Power-up delay at step 4 equal to 0 ms
DCR15 (0x0F)	8	PU_WAIT_DEL_ENA_5[0]	0	Development delice of the Company
	9	PU_WAIT_DEL_ENA_5[1]	0	Power-up delay at step 5 equal to 0 ms
	10	PU_WAIT_DEL_ENA_6[0]	0	Development delice of the Committee Committee
	11	PU_WAIT_DEL_ENA_6[1]	0	Power-up delay at step 6 equal to 0 ms
	12	PU_WAIT_DEL_ENA_7[0]	0	Device in delevier states 7 annual to 0 and
	13	PU_WAIT_DEL_ENA_7[1]	0	Power-up delay at step 7 equal to 0 ms
	14	U_NVM_F[14]	0	
	15	U_NVM_F[15]	0	
	0	PU_WAIT_PG_ENA[1]	1	at power-up step 1, wait for power-good signal
	1	PU_WAIT_PG_ENA[2]	1	at power-up step 2, wait for power-good signal
	2	PU_WAIT_PG_ENA[3]	1	at power-up step 3, wait for power-good signal
	3	PU_WAIT_PG_ENA[4]	1	at power-up step 4, wait for power-good signal
	4	PU_WAIT_PG_ENA[5]	0	at power-up step 5, no wait for power-good signal
DCR16 (0x10)	5	PU_WAIT_PG_ENA[6]	0	at power-up step 6, no wait for power-good signal
	6	PU_WAIT_PG_ENA[7]	0	at power-up step 7, no wait for power-good signal
	7	NRESET_PU_STEP_DEA SSERT[0]	0	NDECET descention of the 7 of the second
	8	NRESET_PU_STEP_DEA SSERT[1]	1	NRESET deassertion at step 7 at power-up

DS14964 - Rev 1 page 133/239

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
	9	NRESET_PU_STEP_DEA SSERT[2]	1	NRESET deassertion at step 7 at power-up
	10	NRESET_PD_STEP_ASS ERT[0]	0	
DCR16 (0x10)	11	NRESET_PD_STEP_ASS ERT[1]	0	NRESET assertion at step 1 at power-down
	12	NRESET_PD_STEP_ASS ERT[2]	0	
	13	U_NVM_G[13]	0	
	14	U_NVM_G[14]	0	
	15	U_NVM_G[15]	0	
	0	BOOST_DIS	0	Boost is not disabled and depends on BOOST_OFF control bit
	1	U_NVM_H[1]	0	
	2	U_NVM_H[2]	0	
	3	NFSO_STATE_IN_DEEP_ SLEEP	1	NFSO pin will be high when FSM in DEEP- SLEEP state
	4	U_NVM_H[4]	0	
	5	U_NVM_H[5]	0	
	6	U_PROG0[0]	0	
DCR17 (0x11)	7	U_PROG0[1]	0	
	8	U_NVM_CRC0[0]	X	
	9	U_NVM_CRC0[1]	Х	
	10	U_NVM_CRC0[2]	Х	
	11	U_NVM_CRC0[3]	X	
	12	U_NVM_CRC0[4]	X	
	13	U_NVM_CRC0[5]	X	
	14	U_NVM_CRC0[6]	X	
	15	U_NVM_CRC0[7]	X	
	0	PD_WAIT_DEL_OFF_1[0]	1	Power-down delay at step 1 equal to 2 ms
	1	PD_WAIT_DEL_OFF_1[1]	0	Power-down delay at step 1 equal to 2 ms
	2	PD_WAIT_DEL_OFF_2[0]	1	Power-down delay at step 2 equal to 2 ms
	3	PD_WAIT_DEL_OFF_2[1]	0	Prower-down delay at step 2 equal to 2 ms
	4	PD_WAIT_DEL_OFF_3[0]	1	Power-down delay at step 3 equal to 2 ms
	5	PD_WAIT_DEL_OFF_3[1]	0	Fower-down delay at step 3 equal to 2 ms
DOD40 (0::40)	6	PD_WAIT_DEL_OFF_4[0]	1	Power-down delay at step 4 equal to 2 ms
DCR18 (0x12)	7	PD_WAIT_DEL_OFF_4[1]	0	1 owor-down delay at step 4 equal to 2 ms
	8	PD_WAIT_DEL_OFF_5[0]	1	Power-down delay at step 5 equal to 2 ms
	9	PD_WAIT_DEL_OFF_5[1]	0	1 onor-down dolay at step 5 equal to 2 ms
	10	PD_WAIT_DEL_OFF_6[0]	1	Power-down delay at step 6 equal to 2 ms
	11	PD_WAIT_DEL_OFF_6[1]	0	Tower-down delay at step 0 equal to 2 IIIs
	12	PD_WAIT_DEL_OFF_7[0]	1	Power-down delay at step 7 equal to 2 ms
	13	PD_WAIT_DEL_OFF_7[1]	0	1 own down dolay at step / equal to 2 ms

DS14964 - Rev 1 page 134/239

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
DCR18 (0x12)	14	PD_WAIT_VREG_DEL_OF F[0]	0	Power-down delay for VREG equal to 10 ms after
DOINTO (0X12)	15	PD_WAIT_VREG_DEL_OF F[1]	1	the end of power-down sequence
	0	U_NVM_RELEASE[0]	1	
-	1	U_NVM_RELEASE[1]	0	
	2	U_NVM_RELEASE[2]	0	
	3	U_NVM_RELEASE[3]	0	
	4	U_NVM_RELEASE[4]	0	
	5	U_NVM_RELEASE[5]	0	
	6	U_NVM_RELEASE[6]	0	
DCD10 (0v13)	7	U_NVM_RELEASE[7]	0	NVM release 1
DCR19 (0x13)	8	U_NVM_RELEASE[8]	0	NVIVI release 1
	9	U_NVM_RELEASE[9]	0	
	10	U_NVM_RELEASE[10]	0	
	11	U_NVM_RELEASE[11]	0	
	12	U_NVM_RELEASE[12]	0	
	13	U_NVM_RELEASE[13]	0	
	14	U_NVM_RELEASE[14]	0	
	15	U_NVM_RELEASE[15]	0	
	0	LOW_SET[0]	0	
	1	LOW_SET[1]	0	Long Open Window duration at 210 mg
	2	LOW_SET[2]	0	Long Open Window duration at 319 ms
	3	LOW_SET[3]	0	
	4	VS_SENSE_LEVEL_SEL[0]	1	VS_SENSE threshold set at 5.85 V
	5	VS_SENSE_LEVEL_SEL[1]	1	VO_GENGE tilleshold set at 5.05 V
	6	BOOST_CRK_ONLY	0	Boost not working only below VS_SENSE_LEVEL_SEL threshold
DCR20 (0x14)	7	BOOST_CRK_TO[0]	0	
_	8	BOOST_CRK_TO[1]	0	No timeout on Boost when VS below VS_SENSE_LEVEL_SEL threshold
	9	BOOST_CRK_TO[2]	0	
	10	WAKEUP_GO_TO_DEEP_ SLEEP_INH	1	Go to DEEP-SLEEP inhibition if a wake-up flag is present
	11	FBB_REG_LEVEL_SEL[0]	1	FBB regulation level set at 9 V
	12	FBB_REG_LEVEL_SEL[1]	1	FDD regulation level set at 9 v
	13	BYPASS_OFFSET_SEL	1	BYPASS offset set at FBB_REG_LEVEL + 1.0 V = 10 V
	14	FBB_OK_SEL[0]	0	ERR OK threshold set at 7.5 V
	15	FBB_OK_SEL[1]	1	FBB_OK threshold set at 7.5 V
	0	FBB_UV_LEVEL_SEL	0	FBB_UV threshold set at 5.25 V
DCR21 (0x15)	1	FBB_UV_EW_PD	0	Power-down sequence not linked to FBB_UV_EW threshold

DS14964 - Rev 1 page 135/239

NVM Sector	Bit Number	Field Name	Configuration 1	Comment
	2	U_NVM_L[2]	0	
	3	U_NVM_L[3]	0	
	4	U_NVM_L[4]	0	
	5	U_NVM_L[5]	0	
	6	U_NVM_L[6]	0	
	7	U_NVM_L[7]	0	
DCR21 (0x15)	8	U_NVM_L[8]	0	
DOI(21 (0x13)	9	U_NVM_L[9]	0	
	10	U_NVM_L[10]	0	
	11	U_NVM_L[11]	0	
	12	U_NVM_L[12]	0	
	13	U_NVM_L[13]	0	
	14	U_NVM_L[14]	0	
	15	U_NVM_L[15]	0	

DS14964 - Rev 1 page 136/239

9.4 Status register overview

	bit		31	30	29	28	27	26	25	24	Mode
	Global Status		GSBN	RSTB	SPIE	FE2	FE1	DE	GW	FS	R
	Status Registe	r									
			23	22	21	20	19	18	17	16	
Addr.		bits	15	14	13	12	11	10	9	8	
			7	6	5	4	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	BOOST_TI MER_CNT_ END	FORCED_S LEEP_WDF AIL	BUCK3_OC	BUCK3_OV	BUCK3_UV	BUCK3_PG _TIMEOUT	BUCK2_OC	
0x21	DSR1		BUCK2_OV	BUCK2_UV	BUCK2_PG _TIMEOUT	BUCK1_OC	BUCK1_OV	BUCK1_UV	BUCK1_PG _TIMEOUT	LDO2_PG_ TIMEOUT	R
		LSB	LDO2_UV	LDO2_OV	LDO1_PG_ TIMEOUT	LDO1_UV	CRC 3	CRC 2	CRC 1	CRC 0	
	0x22 DSR2	MSB	RES	OUTHS_OL	OUTHS_OC	BOOST_IN_ LP	BYPASS_V DSMON_E RROR	BOOST_VD SMON_ER ROR	FBB_OV	FBB_UV	
0x22			IRQ_ECHO _ERROR	FCCU_ENA _ECHO_ER ROR	NFSO1_EC HO_ERRO R	WD_ENA_E CHO_ERR OR	NRST_ECH O_ERROR	VIO_UV	TSD_CL4	TSD_CL3	R
		LSB	TSD_CL2	TSD_CL1	TSD_CL0	TSD	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	LBIST_STO PPED	BUCK3_INT _FAIL	BUCK2_INT _FAIL	BUCK1_INT _FAIL	LBIST_ERR OR_1	LBIST_ERR OR_0	ABIST_ERR OR	
0x23	DSR3		CURRENT_ MISMATCH	FORCED_S LEEP_TSD	FCCUFAIL	WDFAIL	INT_REG_U V	INT_REG_ OV	NVM_COM P_ERROR	NVM_CRC_ ERROR	R
		LSB	GNDLOSS	OSC_ERRO R	SPI_REG_C OMP_ERR OR	FSM_COM P_ERROR	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	SPI_ALL_W AKEUP_DIS ABLE	SPI_CLK_C NT	SPI_CSN_T IMEOUT	SPI_CRC_E RR	SPI_SDI_S TUCK_HIG H	SPI_SDI_S TUCK_LOW	SPI_UNDEF _ADD	
0x24	DSR4		SPI_STATU S_WRT	SPI_LBISTE D	FBB_OV_E W	FBB_UV_E W	VS_UV_EW	CAN_SUP_ LOW	TW_CL4	TW_CL3	R
		LSB	TW_CL2	TW_CL1	TW_CL0	TW	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	FP_READY	RES	BOOST_EN A_STATUS	BYPASS_S TATUS	BUCK3_PG _OK	BUCK2_PG _OK	BUCK1_PG _OK	
0x25	DSR5		DEV_STAT E_5	DEV_STAT E_4	DEV_STAT E_3	DEV_STAT E_2	DEV_STAT E_1	DEV_STAT E_0	DEEP- SLEEP_FR OM_DO_P OWER_DO WN_1	DEEP- SLEEP_FR OM_DO_P OWER_DO WN_0	R
		LSB	FORCED_S LEEP_POW UP	FSM_TO_R EC2	REC2_FRO M_DO_PO WER_CYCL E_1	REC2_FRO M_DO_PO WER_CYCL E_0	CRC 3	CRC 2	CRC 1	CRC 0	

	MSB	RES	LP_READY	SWDBG_VI O	SWDBG_ST ATE	CAN_TO	CAN_RXD_ REC	CAN_PERM _REC	CAN_PERM _DOM		
0x26	0x26 DSR6		CAN_TXD_ DOM	FIN1_STAT E	IGN_STATE	WU_STATE	IGN_WAKE	WU_WAKE	CAN_WAKE	TIMER_WA KE	R
		LSB	IRQ_ECHO	NRST_ECH O	IRQ_SENT	NFSO1_EC HO	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	VPOR	LDO1_PG_ OK	LDO2_ENA _STATUS	LDO2_PG_ OK	FCCU_ENA _ECHO	WD_ENA_E CHO	WD_TIMER _STATE_1	R
0x27	DSR7		WD_TIMER _STATE_0	WDFAIL_C NT_3	WDFAIL_C NT_2	WDFAIL_C NT_1	WDFAIL_C NT_0	TSD_CNT_ FAIL_1	TSD_CNT_ FAIL_0	POWUP_R ETRY_CNT _1	
		LSB	POWUP_R ETRY_CNT _0	RES	NVM_PRO G_OK	NVM_PRO G_DONE	CRC 3	CRC 2	CRC 1	CRC 0	

DS14964 - Rev 1 page 137/239

		MSB	RES	FCCU_LAS T_STABLE_ 12	FCCU_LAS T_STABLE_ 11	FCCU_LAS T_STABLE_ 10	FCCU_LAS T_STABLE_ 9	FCCU_LAS T_STABLE_ 8	FCCU_LAS T_STABLE_ 7	FCCU_LAS T_STABLE_ 6	
0x28	DSR8		FCCU_LAS T_STABLE_ 5	FCCU_LAS T_STABLE_ 4	FCCU_LAS T_STABLE_ 3	FCCU_LAS T_STABLE_ 2	FCCU_LAS T_STABLE_ 1	FCCU_LAS T_STABLE_ 0	FORCED_S LEEP_REG FAIL	REG_FAIL_ CNT_1	R
		LSB	REG_FAIL_ CNT_0	ABIST_BO OST_IGNO RED	LBIST_CO MPLETE	ABIST_CO MPLETE	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
)x29	DSR9		RES	RES	TEMP_CL0 _9	TEMP_CL0 _8	TEMP_CL0 _7	TEMP_CL0 _6	TEMP_CL0 _5	TEMP_CL0 _4	R
		LSB	TEMP_CL0	TEMP_CL0 _2	TEMP_CL0 _1	TEMP_CL0 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x2A	DSR10		RES	RES	TEMP_CL1 _9	TEMP_CL1 _8	TEMP_CL1 _7	TEMP_CL1 _6	TEMP_CL1 _5	TEMP_CL1 _4	R
		LSB	TEMP_CL1	TEMP_CL1 _2	TEMP_CL1 _1	TEMP_CL1 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x2B	DSR11		RES	RES	TEMP_CL2 _9	TEMP_CL2 _8	TEMP_CL2 _7	TEMP_CL2 _6	TEMP_CL2 _5	TEMP_CL2 _4	R
		LSB	TEMP_CL2 _3	TEMP_CL2 _2	TEMP_CL2 _1	TEMP_CL2 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x2C	DSR12		RES	RES	TEMP_CL3	TEMP_CL3 _8	TEMP_CL3 _7	TEMP_CL3 _6	TEMP_CL3 _5	TEMP_CL3 _4	R
		LSB	TEMP_CL3	TEMP_CL3 _2	TEMP_CL3 _1	TEMP_CL3 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	R
0x2D	DSR13		RES	RES	TEMP_CL4 _9	TEMP_CL4 _8	TEMP_CL4 _7	TEMP_CL4 _6	TEMP_CL4 _5	TEMP_CL4 _4	
		LSB	TEMP_CL4 _3	TEMP_CL4 _2	TEMP_CL4 _1	TEMP_CL4 _0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x2E	DSR14		RES	RES	VS_9	VS_8	VS_7	VS_6	VS_5	VS_4	R
		LSB	VS_3	VS_2	VS_1	VS_0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x2F	DSR15	WOD	RES	RES	WU_9	WU_8	WU_7	WU_6	WU_5	WU_4	R
VA41	DOICIO	LSB	WU 3	WU_2	WU_1	WU_0	CRC 3	CRC 2	W0_3 CRC 1	CRC 0	IX
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x30	DSR16		RES	RES	IGN 9	IGN_8	IGN_7	IGN_6	IGN_5	IGN_4	R
- -		LSB	IGN_3	IGN_2	IGN_1	IGN_0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	RES	RES	RES	RES	RES	
0x31	DSR17		RES	RES	FBB_9	FBB_8	FBB_7	FBB_6	FBB_5	FBB_4	R
		LSB	FBB_3	FBB_2	FBB_1	FBB_0	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	RES	RES	BUCK2_FB LOSS	BUCK1_FB LOSS	NVM_COM PARE_ENA _STATUS	WD_TIME_ STATUS_3	WD_TIME_ STATUS_2	
0x32	DSR18		WD_TIME_	WD_TIME_	VBUCK3 E	VBUCK2 E	VBUCK1 E	LDO1_ENA	OUTHS EN	LOW_STAT	R

DS14964 - Rev 1 page 138/239

0x32	DSR18	LSB	BOOST_EN A_STATUS	FCCU_ENA _STATUS	CAN_ACT_ STATUS	CAN_AUTO _BIAS_STA TUS	CRC 3	CRC 2	CRC 1	CRC 0	R
	0x33 DSR19	MSB	RES	LDT_TIMER _VALUE_23	LDT_TIMER _VALUE_22				LDT_TIMER _VALUE_18		
0x33			LDT_TIMER _VALUE_16	LDT_TIMER _VALUE_15					LDT_TIMER _VALUE_10		R
		LSB	LDT_TIMER _VALUE_8	LDT_TIMER _VALUE_7	LDT_TIMER _VALUE_6	LDT_TIMER _VALUE_5	CRC 3	CRC 2	CRC 1	CRC 0	
		MSB	RES	LDT_TIMER _VALUE_4	LDT_TIMER _VALUE_3	LDT_TIMER _VALUE_2	LDT_TIMER _VALUE_1	LDT_TIMER _VALUE_0	LDT_WAKE	LDT_RUNNI NG	
0x34	0x34 DSR20		RES	RES	RES	RES	RES	RES	RES	RES	R
		LSB	RES	RES	RES	RES	CRC 3	CRC 2	CRC 1	CRC 0	

9.5 Control registers

Table 69. DCR1 (0x01) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)					
RES	RES	RES	RES	RES	RES	WD_TIME_3	WD_TIME_2
Reserved	Reserved	Reserved	Reserved	Reserved	Reserved	Watchdog trigger time 3	Watchdog trigger time 2

Table 70. DCR1 (0x01) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	WD_TIME_3	Watchdog trigger time 0000: Window 1 0001: Window 2 (default window once WD kick) 0010: Window 3 0011: Window 4 0100: Window 5 0101: Window 6 0110: Window 7 0111: Window 8 1000: Window 9 1001-1110: Window 10 → 5-50 ms window 1111: Stop watchdog The modified WD trigger time is valid after the next WD trig (CSN transition low-to-high) protected by the
16	WD_TIME_2	SPI_PROTECT_ACCESS bit

DS14964 - Rev 1 page 139/239

Table 71. DCR1 (0x01)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	1 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
WD_TIME_1	WD_TIME_0	VBUCK3_ENA	VBUCK2_ENA	VBUCK1_ENA	LDO1_ENA	LDO2_ENA	LOW_POWER_SET
Watchdog trigger time 1	Watchdog trigger time 0	Buck3 enable bit	Buck2 enable bit	Buck1 enable bit	LDO1 enable bit	LDO2 enable bit	Set LOW-POWER mode

Table 72. DCR1 (0x01) description

Bit	Name	Description
15	WD_TIME_1	
14	WD_TIME_0	
		Buck3 enable bit (default value link to start-up sequence setting)
		1: Enable
13	VBUCK3_ENA	Protected by SPI_PROTECT_ACCESS bit
10		0: Disabled
		Note that, after the first power-up, it is necessary to align the live bit associated in DSR18 (VBUCK3_ENA_STATUS) with the current value associated in DCR1
		Buck2 enable bit (default value link to start-up sequence setting)
		1: Enable
12	VBUCK2_ENA	Protected by SPI_PROTECT_ACCESS bit
	_	0: Disabled
		Note that, after the first power-up, it is necessary to align the live bit associated in DSR18 (VBUCK2_ENA_STATUS) with the current value associated in DCR1
		Buck1 enable bit (default value link to start-up sequence setting)
		1: Enable
11	VBUCK1 FNA	Protected by SPI_PROTECT_ACCESS bit
	11 VBUCK1_ENA	0: Disabled
		Note that, after the first power-up, it is necessary to align the live bit associated in DSR18 (VBUCK1_ENA_STATUS) with the current value associated in DCR1
		LDO1 enable bit (default value link to start up sequence setting)
		1: Enable
10	LDO1_ENA	0: Disabled
		Protected by SPI_PROTECT_ACCESS bit
		Note that, after the first power-up, it is necessary to align the live bit associated in DSR18 (LDO1_ENA_STATUS) with the current value associated in DCR1
		LDO2 enable bit (default value link to start up sequence setting)
		1: Enable
9	LDO2_ENA	0: Disabled
	2502_2101	Protected by SPI_PROTECT_ACCESS bit
		Note that, after the first power-up, it is necessary to align the live bit associated in DSR18 (LDO2_ENA_STATUS) with the current value associated in DCR1
		Set LOW-POWER mode
0	LOW DOMED SET	1: Go to LOW-POWER
8	LOW_POWER_SET	0: Back to FULL-POWER
		Protected by SPI_PROTECT_ACCESS bit

DS14964 - Rev 1 page 140/239

Table 73. DCR1 (0x01) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
WD_LP_ENA	DO_POWER_DOWN	U-NVM_PROG	DO_POWER_CYCLE	CRC3	CRC2	CRC1	CRC0
Watchdog in LOW-POWER mode enable bit	Power-down sequence bit	User NVM program bit	Power cycle bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 74. DCR1 (0x01) LSB description

Bit	Name	Description
		1: Watchdog is enabled in LOW-POWER mode (default)
		Is taken into account as soon the LOW_POWER_SET bit is set to "1"
7	WD_LP_ENA	0: Watchdog is disabled in LOW-POWER mode
		Is taken into account as soon the LOW_POWER_SET bit is set to "1"
		Protected by SPI_PROTECT_ACCESS bit
		1: Execute power-down sequence
		Bit is reset after entry in DEEP-SLEEP state
6	DO_POWER_DOWN	This bit is automatically cleared and always read low
		0: No action (default)
		Protected by SPI_PROTECT_ACCESS bit
		To start a user NVM program
5	U-NVM_PROG	0: No action
		Protected by SPI_PROTECT_ACCESS bit
4	DO_POWER_CYCLE	This bit is automatically cleared and always read low
4	DO_FOWER_CTOLL	Protected by SPI_PROTECT_ACCESS bit
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 75. DCR2 (0x02) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
-(R0)	-(R0)	1 (R/W)	0 (R/W)	0 (R/W)	- (R0)	0 (R/W)	0 (R/W)
RES	RES	NFSO_ASSERT_LOW	LBIST	ABIST	RES	FCCU_COUNTER_12	FCCU_COUNTER_11
Reserved	Reserved	NFSO low bit	Logical BIST request bit	Analog BIST request bit	Reserved	FCCU counter bit 12	FCCU counter bit 11

Table 76. DCR2 (0x02) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	NFSO_ASSERT_LOW	Force NFSO pin low Protected by SPI_PROTECT_ACCESS bit
20	LBIST	Logical BIST request

DS14964 - Rev 1 page 141/239

Bit	Name	Description
		This bit is automatically cleared and always read low
		Protected by SPI_PROTECT_ACCESS bit
		Analog BIST request
19	19 ABIST	This bit is automatically cleared and always read low
		Protected by SPI_PROTECT_ACCESS bit
18	RES	Reserved
47	FOOL COUNTED 40	FCCU counter value selection
17	FCCU_COUNTER_12	Protected by SPI_PROTECT_ACCESS bit
16	FCCU_COUNTER_11	

Table 77. DCR2 (0x02)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
FCCU_COUNTER_10	FCCU_COUNTER_9	FCCU_COUNTER_8	FCCU_COUNTER_7	FCCU_COUNTER_6	FCCU_COUNTER_5	FCCU_COUNTER_4	FCCU_COUNTER_3
FCCU counter bit 10	FCCU counter bit 9	FCCU counter bit 8	FCCU counter bit 7	FCCU counter bit 6	FCCU counter bit 5	FCCU counter bit 4	FCCU counter bit 3

Table 78. DCR2 (0x02) description

Bit	Name	Description
15	FCCU_COUNTER_10	
14	FCCU_COUNTER_9	
13	FCCU_COUNTER_8	
12	FCCU_COUNTER_7	
11	FCCU_COUNTER_6	
10	FCCU_COUNTER_5	
9	FCCU_COUNTER_4	
8	FCCU_COUNTER_3	

Table 79. DCR2 (0x02) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
FCCU_COUNTER_2	FCCU_COUNTER_1	FCCU_COUNTER_0	FCCU_ENA	CRC3	CRC2	CRC1	CRC0
FCCU counter bit 2	FCCU counter bit 1	FCCU counter bit 0	FCCU monitor enable bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 80. DCR2 (0x02) LSB description

Bit	Name	Description
7	FCCU_COUNTER_2	
6	FCCU_COUNTER_1	
5	FCCU_COUNTER_0	
4	FCCU_ENA	Enable FCCU monitor 1: Enabled 0: Disabled (pull-up/-down defined by FCCU_STATIC_ERROR) Protected by SPI_PROTECT_ACCESS bit

DS14964 - Rev 1 page 142/239

Bit	Name	Description
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 81. DCR3 (0x03) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
-(R0)	-(R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	-(R0)	0 (R/W)
RES	RES	BUCK3_SPREAD_ENA	BUCK2_SPREAD_ENA	BUCK1_SPREAD_ENA	CLR_WDFAIL_CNT	RES	BUCK3_FTUNE_2
Reserved	Reserved	Buck3 spread enable bit	Buck2 spread enable bit	Buck1 spread enable bit	Clear WDFAIL_CNT bits	reserved	Buck3 fine-tune bit 2

Table 82. DCR3 (0x03) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
		Frequency spread selection
21	BUCK3_SPREAD_ENA	1: Enabled
		0: Disabled (default)
		Frequency spread selection
20	BUCK2_SPREAD_ENA	1: Enabled
		0: Disabled (default)
		Frequency spread selection
19	BUCK1_SPREAD_ENA	1: Enabled
		0: Disabled (default)
18	CLD WDEAU CNT	Clear WDFAIL_CNT to 0
10	CLR_WDFAIL_CNT	This bit is always read low
17	RES	Reserved
16	BUCK3_FTUNE_2	

Table 83. DCR3 (0x03)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
BUCK3_FTUNE_1	BUCK3_FTUNE_0	BOOST_OFF	FBB_OV_EW_TH_3	FBB_OV_EW_TH_2	FBB_OV_EW_TH_1	FBB_OV_EW_TH_0	FBB_UV_EW_TH_3
Buck3 fine-tune bit	Buck3 fine-tune bit 0	BOOST disable bit	FBB overvoltage early warning threshold bit 3	FBB overvoltage early warning threshold bit 2	FBB overvoltage early warning threshold bit 1	FBB overvoltage early warning threshold bit 0	FBB undervoltage early warning threshold bit 3

Table 84. DCR3 (0x03) description

Bit	Name	Description		
15	BUCK3_FTUNE_1			
14	BUCK3_FTUNE_0	Valid only if U-NVM bits BUCK3_PU_VALUE = 001 11x: 0.95 V 101: 0.96 V		
		100: 0.97 V		

DS14964 - Rev 1 page 143/239

Bit	Name	Description			
		000: 0.98 V (default)			
		001: 0.99 V			
		010: 1.00 V			
		011: 1.01 V			
		Boost disable			
13	BOOST_OFF	1: Boost is disabled			
		0: Boost feature defined by BOOST_DIS U-NVM bit (default)			
	FBB_OV_EW_TH_3	FBB overvoltage early warning threshold			
		At FBB > FBB_OV_EW_TH, an interrupt is generated on the IRQ pin and the status bit FBB_OV_EW in SR4 is set (in active mode)			
12		0000: (default) feature deactivated			
		0001: qith 24 V			
		(1 V step)			
		1111: 38 V			
11	FBB_OV_EW_TH_2				
10	FBB_OV_EW_TH_1				
9	FBB_OV_EW_TH_0				
	FBB_UV_EW_TH_3	FBB undervoltage early warning threshold.			
8		At FBB < FBB_UV_EW_TH, an interrupt is generated on the IRQ pin and the status bit FBB_UV_EW in SR4 is set (in active mode)			
		0000: (default) feature deactivated			
		0001: 5 V			
		(0.24 V step)			
		1111: 8.36 V			

Table 85. DCR3 (0x03) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
FBB_UV_EW_TH_2	FBB_UV_EW_TH_1	FBB_UV_EW_TH_0	SPI_PROTECT_ACCESS	CRC3	CRC2	CRC1	CRC0
FBB undervoltage early warning threshold bit 2	FBB undervoltage early warning threshold bit 1	FBB undervoltage early warning threshold bit 0	SPI protect access bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 86. DCR3 (0x03) LSB description

Bit	Name	Description		
7	FBB_UV_EW_TH_2			
6	FBB_UV_EW_TH_1			
5	FBB_UV_EW_TH_0			
4	SPI_PROTECT_ACCESS	1: Allows write access to protected SPI bits on next write SPI frame This bit is automatically cleared on the next write SPI frame but can be read high before the next write SPI frame 0: Access to protected SPI bits is blocked		
3	CRC 3			
2	CRC 2			
1	CRC 1			

DS14964 - Rev 1 page 144/239

Bit	Name	Description
0	CRC 0	

Table 87. DCR4 (0x04) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	1 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	BOOST_DSMON_TH_2	BOOST_DSMON_TH_1	BOOST_DSMON_TH_0	SWDBG_EXIT	VS_UV_EW_TH_4	VS_UV_EW_TH_3	VS_UV_EW_TH_2
Reserved	BOOST monitor threshold bit 2	BOOST monitor threshold bit 1	BOOST monitor threshold bit 0	Software debug exit bit	V _S undervoltage early warning threshold bit 4	V _S undervoltage early warning threshold bit 3	V _S undervoltage early warning threshold bit 2

Table 88. DCR4 (0x04) MSB description

Bit	Name	Description
23	RES	Reserved
		Control BOOST_VDMON_TH:
		000 : 0.25 V
		001 : 0.45 V
		010 : 0.65 V
22	BOOST_DSMON_TH_2	011 : 0.85 V
		100 : 1.1 V
		101 : 1.3 V
		110 : 1.5 V
		111 : 1.7 V
21	BOOST_DSMON_TH_1	
20	BOOST_DSMON_TH_0	
		This bit is active in software debug mode
10	CWDDC EVIT	1: Forces the device to exit software debug mode
19	SWDBG_EXIT	Watchdog restarts with a LOW
		0: No action (default)
		V _S undervoltage early warning threshold
		At $V_S < VS_EW_TH$, an interrupt is generated on the IRQ pin and the status bit VS_UV_EW in SR4 is set (in active mode)
18	VS_UV_EW_TH_4	00000: Feature deactivated (default)
		00001: 2.6 V
		(0.24 V step)
		11111: 9.8 V
17	VS_UV_EW_TH_3	
16	VS_UV_EW_TH_2	

Table 89. DCR4 (0x04)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	1 (R/W)	0 (R/W)
VS_UV_EW_TH_1	VS_UV_EW_TH_0	FCCU_PROTOCOL	FCCU_STATIC_ERROR	OUTHS_1	OUTHS_0	BYPASS_DSMON_TH_2	BYPASS_DSMON_TH_1
V _S undervoltage early warning threshold bit 1	V _S undervoltage early warning threshold bit 0	FCCU protocol bit	FCCU static error bit	OUTHS configuration bit 1	OUTHS configuration bit 0	BYPASS monitor threshold bit 2	BYPASS monitor threshold bit 1

DS14964 - Rev 1 page 145/239

Table 90. DCR4 (0x04) description

Bit	Name	Description
15	VS_UV_EW_TH_1	
14	VS_UV_EW_TH_0	
13	FCCU_PROTOCOL	1: Toggle (pull-up/-down defined by FCCU_STATIC_ERROR) 0: Static (error state defined by FCCU_STATIC_ERROR)
12	FCCU_STATIC_ERROR	1: Error when FIN1 = 1 (→ pull-up active) 0: Error when FIN1 = 0 (→ pull-down active)
11	OUTHS_1	OUTHS configuration bits 00: Off (default) 01: On 1x: Timer 1
10	OUTHS_0	
9	BYPASS_DSMON_TH_2	Configuration of Bypass Drain Source monitoring threshold: 000: 125 mV 001: 175 mV 010: 225 mV 011: 275 mV 100: 325 mV 101: 375 mV 110: 425 mV
8	BYPASS_DSMON_TH_1	

Table 91. DCR4 (0x04) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
BYPASS_DSMON_TH_0	CLR_REG_FAIL_CNT	KILL_SWDBG_TIMEOUT	WD_TRIG	CRC3	CRC2	CRC1	CRC0
BYPASS monitor threshold bit 0	Clear REG_FAIL_CNT bits	Kill software debug timeout bit	Watchdog trigger bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 92. DCR4 (0x04) LSB description

Bit	Name	Description
7	BYPASS_DSMON_TH_0	
6	CLR_REG_FAIL_CNT	Clear REG_FAIL_CNT to 0 This bit is always read low
5	KILL_SWDBG_TIMEOUT	Kill the 10 s timeout that runs when the SWDBG pin is shorted to VIO at start-up. With this bit at '1', the timeout is killed \rightarrow the state machine exits the SWDBG state and transitions to REC-1 and the watchdog is started with a LOW. SWDBG mode is then NOT entered. This feature allows the MCU to take control in case of hardware fault without waiting for the 10 s timeout to elapse.
4	WD_TRIG	Watchdog trig alternatively with 0 and 1. First trig has to be with 1 Watchdog trig alternatively with 0 and 1
3	CRC 3	
2	CRC 2	
1	CRC 1	

DS14964 - Rev 1 page 146/239

Bit	Name	Description
0	CRC 0	

Table 93. DCR5 (0x05) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	CLR_REC2_FROM_DO_POWER_CYCLE	CLR_DEEP_SLEEP_FROM_DO_POWER_DOWN	CLR_POWUP_RETRY_COUNT	T1_ENA_2	T1_ENA_1	T1_ENA_0	T1_PER_2
Reserved	Clear REC2_FROM_DO_POWER_CYCLE bit	Clear DEEP_SLEEP_FROM_DO_POWER_DOWN bit	Clear POWUP_RETRY_COUNT bit	Timer 1 enable bit 2	Timer 1 enable bit 1	Timer 1 enable bit 0	Timer 1 period bit 2

Table 94. DCR5 (0x05) MSB description

Bit	Name	Description		
23	RES	Reserved		
22	CLD DEC2 EDOM DO DOWED CYCLE	Clear REC2_FROM_DO_POWER_CYCLE to 0		
22	CLR_REC2_FROM_DO_POWER_CYCLE	This bit is always read low		
21	CLR_DEEP_SLEEP_FROM_DO_POWER_DOWN	Clear DEEP-SLEEP_FROM_DO_POWER_DOWN to 0		
21	OUT_PEET_OLLEL _I NOM_BO_I OWEIT_BOWN	This bit is always read low		
20	CLR_POWUP_RETRY_COUNT	Clear POWUP_RETRY_CNT to 0		
		This bit is always read low		
		Configuration of timer 1 ON duration		
		000: t _{ON1} - 0.1 ms (default)		
10	T1_ENA_2	001: t _{ON2} - 0.3 ms		
19		010: t _{ON3} - 1 ms		
		011: t _{ON4} - 10 ms		
		1xx: t _{ON5} - 20 ms		
18	T1_ENA_1			
17	T1_ENA_0			
		Configuration of timer 1 period		
		000: T1 - 10 ms (default)		
		001: T2 - 20 ms		
		010: T3 - 50 ms		
16	T1_PER_2	011: T4 - 100 ms		
		100: T5 - 200 ms		
		101: T6 - 500 ms		
		110: T7 - 1000 ms		
		111: T8 - 2000 ms		

Table 95. DCR5 (0x05)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	1 (R/W)	0 (R/W)	0 (R/W)
T1_PER_1	T1_PER_0	TIMER_WAKE_ENA	IGN_CONFIG	IGN_FILT	IGN_ENA	IGN_PU	WU_CONFIG
Timer 1 period bit 1	Timer 1 period bit 0	Timer wake-up enable bit	IGN configuration bit	IGN filter configuration bit	IGN enable bit	IGN pull-up/- down configuration bit	Wake-up configuration bit

DS14964 - Rev 1 page 147/239

Table 96. DCR5 (0x05) description

Bit	Name	Description
15	T1_PER_1	
14	T1_PER_0	
		Timer wake-up enable
13	TIMER_WAKE_ENA	1: Wake after timer period
		0: No timer wake-up capability
		Configuration of input pin IGN input configured as wake-up input
12	IGN_CONFIG	1: IGN voltage measurement enabled
		0: IGN configured as wake-up input (default)
		IGN filter configuration bits
11	IGN_FILT	1: IGN input monitored in cyclic mode with Timer1 (filter time: tIGN_cyc, blanking time 80% of timer ON time)
		0: IGN input monitored in static mode (filter time tGN_stat) (default)
		IGN input enable:
10	IGN_ENA	1: Device wake-up capability by IGN pin enabled (default)
		0: No wake-up possible by IGN pin
		IGN Pull-up/-down configuration
9	IGN_PU	1: PULL-UP
		0: PULL-DOWN
		Configuration of input pin WU input configured as wake-up input
8	WU_CONFIG	1: WU voltage measurement enabled
		0: WU configured as wake-up input (default)

Table 97. DCR5 (0x05) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
1 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
WU_ENA	WU_PU	WU_FILT	TIMER_ENA	CRC3	CRC2	CRC1	CRC0
Wake-up enable bit	Wake-up pull-up/- down configuration bit	Wake-up filter configuration bit	Timer enable bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 98. DCR5 (0x05) LSB description

Bit	Name	Description
		WU input enable:
7	WU_ENA	1: Device wake-up capability by WU pin enabled (default)
		0: No wake-up possible by WU pin
		WU pull-up/-down configuration
6	WU_PU	1: PULL-UP
		0: PULL-DOWN
		WU filter configuration bits
5	WU_FILT	1: WU input monitored in cyclic mode with Timer1 (filter time: tWU_cyc, blanking time 80% of timer ON time)
		0: WU input monitored in static mode (filter time tWU_stat) (default)
4	TIMER_ENA	Enables timer counting

DS14964 - Rev 1 page 148/239

Bit	Name	Description
		1: Allow counting
		0: Counter stopped
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 99. DCR6 (0x06) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	MASK_BUCK3_PG_TIMEOUT_IRQ	MASK_BUCK3_OC_IRQ	MASK_BUCK3_PG_IRQ	MASK_BUCK3_IRQ	MASK_BUCK2_PG_TIMEOUT_IRQ	MASK_BUCK2_OC_IRQ	MASK_BUCK2_PG_IRQ
Reserved	Mask Buck3 PG timeout interrupt bit	Mask Buck3 overcurrent interrupt bit	Mask Buck3 PG interrupt bit	Mask Buck3 interrupt bit	Mask Buck2 PG timeout interrupt bit	Mask Buck2 overcurrent interrupt bit	Mask Buck2 PG interrupt bit

Table 100. DCR6 (0x06) MSB description

Bit	Name	Description
23	RES	Reserved
		Mask BUCK PG timeout interruption when turned on by SPI command
22	MASK_BUCK3_PG_TIME	When turned on by a power-up sequence, IRQ is never masked
22	OUT_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK overcurrent interruption
21	MASK_BUCK3_OC_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK power-good interruption when turned ON through SPI
20	MASK_BUCK3_PG_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated when the regulator is turned ON through SPI (default)
		Mask BUCK interruption for overvoltage, undervoltage and for buck internal OV or UV in HIGH- or LOW-POWER
19	MASK_BUCK3_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK PG timeout interruption when turned on by SPI command
18	MASK_BUCK2_PG_TIME	When turned on by power-up sequence, IRQ is never masked
10	OUT_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK overcurrent interruption
17	MASK_BUCK2_OC_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask Buck Power Good interruption when turned ON through SPI
16	MASK_BUCK2_PG_IRQ	1: IRQ signal is not generated
		0 : IRQ signal is generated when regulator is turned ON through SPI (default)

Table 101. DCR6 (0x06)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)							

DS14964 - Rev 1 page 149/239

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
MASK_BUCK2_IRQ	MASK_BUCK1_PG_TIMEOUT_IRQ	MASK_BUCK1_OC_IRQ	MASK_BUCK1_PG_IRQ	MASK_BUCK1_IRQ	MASK_FBB_OV_IRQ	MASK_FBB_UV_IRQ	MASK_FBB_OV_EW_IRQ
Mask BUCK2 interrupt bit	Mask BUCK1 PG timeout interrupt bit	Mask BUCK1 overcurrent interrupt bit	Mask BUCK1 PG interrupt bit	Mask BUCK1 interrupt bit	Mask FBB overvoltage interrupt bit	Mask FBB undervoltage interrupt bit	Mask FBB overvoltage early warning interrupt bit

Table 102. DCR6 (0x06) description

Bit	Name	Description
		Mask Buck interruption for overvoltage, undervoltage and for buck internal OV or UV in HIGH- or LOW-POWER
15	MASK_BUCK2_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK PG timeout interruption when turned on by SPI command
14	MASK BLICKA DC TIMEOLIT IDO	When turned on by a power-up sequence, IRQ is never masked
14	MASK_BUCK1_PG_TIMEOUT_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask BUCK overcurrent interruption
13	MASK_BUCK1_OC_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
	MASK_BUCK1_PG_IRQ	Mask BUCK power-good interruption when turned ON through SPI
12		1: IRQ signal is not generated
		0: IRQ signal is generated when the regulator is turned ON through SPI (default)
		Mask BUCK interruption for overvoltage, undervoltage and for BUCK internal OV or UV in HIGH- or LOW-POWER
11	MASK_BUCK1_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
40	MARK EDD OV IDO	1: IRQ masked
10	MASK_FBB_OV_IRQ	0: IRQ not masked
	MARK EDD IN IDO	1: IRQ masked
9	MASK_FBB_UV_IRQ	0: IRQ not masked
	MACK EDD OV EW IDO	1: IRQ masked
8	MASK_FBB_OV_EW_IRQ	0: IRQ not masked

Table 103. DCR6 (0x06) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
MASK_FBB_UV_EW_IRQ	MASK_LDO2_PG_IRQ	MASK_LDO2_PG_TIMEOUT_IRQ	MASK_LDO2_IRQ CRC3		CRC2	CRC1	CRC0
Mask FBB undervoltage early warning interrupt bit Mask LDO2 PG interrupt bit Mask LDO2 PG interrupt bit		Mask LDO2 PG timeout interrupt bit	Mask LDO2 interrupt bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

Table 104. DCR6 (0x06) LSB description

Bit	Name	Description
7	MASK_FBB_UV_EW_IRQ	1: IRQ masked 0: IRQ not masked
6	MASK_LDO2_PG_IRQ	Mask regulator power-good interruption when turned ON through SPI No interrupt generated when turned on by power-up sequence

DS14964 - Rev 1 page 150/239

Bit	Name	Description
		1: IRQ signal is not generated
		0: IRQ signal is generated when the regulator is turned ON through SPI (default)
		Mask LDO2 power-good timeout when turned on by SPI request
5	MASK LDO2 DC TIMEOUT IDO	No interrupt generated when turned on by power-up sequence
5	MASK_LDO2_PG_TIMEOUT_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
		Mask LDO2 overvoltage or undervoltage interruption
4	MASK_LDO2_IRQ	1: IRQ signal is not generated
		0: IRQ signal is generated (default)
3	CRC3	
2	CRC2	
1	CRC1	
0	CRC0	

Table 105. DCR7 (0x07) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	MASK_LDO1_PG_IRQ	MASK_LDO1_PG_TIMEOUT_IRQ	MASK_LDO1_IRQ	MASK_BOOST_IN_LP_IRQ	MASK_BYPASS_VDSMON_IRQ	MASK_BOOST_VDSMON_IRQ	IRQ_REQUEST
Reserved	Mask LDO1 PG interrupt bit	Mask LDO1 PG timeout interrupt bit	Mask LDO1 interrupt bit	Mask BOOST in LOW-POWER mode interrupt bit	Mask bypass VDSMON interrupt bit	Mask BOOST VDSMON interrupt bit	Interrupt request bit

Table 106. DCR7 (0x07) MSB description

Bit	Name	Description
23	RES	Reserved
22	MASK_LDO1_PG_IRQ	Mask regulator power-good interruption when turned ON through SPI No interrupt generated when turned on by power-up sequence 1: IRQ signal is not generated 0: IRQ signal is generated when the regulator is turned ON through SPI (default)
21	MASK_LDO1_PG_TIMEOUT_IRQ	Mask LDO1 power-good timeout when turned on by SPI request No interrupt generated when turned on by power-up sequence 1: IRQ signal is not generated 0: IRQ signal is generated (default)
20	MASK_LDO1_IRQ	Mask LDO1 undervoltage interruption 1: IRQ signal is not generated 0: IRQ signal is generated (default)
19	MASK_BOOST_IN_LP_IRQ	1: IRQ masked 0: IRQ not masked
18	MASK_BYPASS_VDSMON_IRQ	1: IRQ masked 0: IRQ not masked
17	MASK_BOOST_VDSMON_IRQ	1: IRQ masked 0: IRQ not masked
16	IRQ_REQUEST	1: Send IRQ to MCU This bit is automatically cleared and always read low 0: No action

DS14964 - Rev 1 page 151/239

Table 107. DCR7 (0x07)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
MASK_VS_EW_IRQ	MASK_CAN_IRQ	MASK_CL4_TW_IRQ	MASK_CL3_TW_IRQ	MASK_CL2_TW_IRQ	MASK_CL1_TW_IRQ	MASK_CL0_TW_IRQ	MASK_OUTHS_IRQ
Mask V _S early warning interrupt bit	Mask CAN Interrupt Bit	Mask current limitation 4 thermal warning interrupt bit	Mask current limitation 3 thermal warning interrupt bit	Mask current limitation 2 thermal warning interrupt bit	Mask current limitation 1 thermal warning interrupt bit	Mask current limitation 0 thermal warning interrupt bit	Mask out high side interrupt bit

Table 108. DCR7 (0x07) description

Bit	Name	Description
15	MASK_VS_EW_IRQ	1: IRQ masked
15	WASK_VS_EW_IKQ	0: IRQ not masked
14	MASK_CAN_IRQ	1: IRQ masked
14	MASK_CAN_IKQ	0: IRQ not masked
13	MASK_CL4_TW_IRQ	1: IRQ masked
13	WASK_CL4_TW_IKQ	0: IRQ not masked
12	MASK_CL3_TW_IRQ	1: IRQ masked
12	WASK_CLS_TW_IKQ	0: IRQ not masked
11	MASK_CL2_TW_IRQ	1: IRQ masked
11	MASIN_CL2_TW_IINQ	0: IRQ not masked
10	MASK_CL1_TW_IRQ	1: IRQ masked
10	MASIC_CET_TW_IRQ	0: IRQ not masked
9	MASK_CL0_TW_IRQ	1: IRQ masked
3	WACK_CLC_TW_IKQ	0: IRQ not masked
8	MASK_OUTHS_IRQ	1: IRQ masked
3	WACK_COTTIC_ING	0: IRQ not masked

Table 109. DCR7 (0x07) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
MASK_SPI_ERROR_IRQ	MASK_NFSO1_ECHO_ERROR_IRQ	MASK_WD_ENA_ECHO_ERROR_IRQ	MASK_FCCU_ENA_ECHO_ERROR_IRQ	CRC3	CRC2	CRC1	CRC0
Mask SPI error interrupt bit	Mask NFSO1 echo error interrupt bit	Mask watchdog enable echo error interrupt bit	Mask FCCU enable echo error interrupt bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 110. DCR7 (0x07) LSB description

Bit	Name	Description
7	MASK SPI ERROR IRQ	1: IRQ masked
,	WASK_SFI_ERROR_IRQ	0: IRQ not masked
6	MASK NFSO1 ECHO ERROR IRQ	1: IRQ masked
	WASK_NI SOT_ECHO_EKKOK_IKQ	0: IRQ not masked
5	MASK WD ENA ECHO ERROR IRQ	1: IRQ masked
5	WASK_WD_ENA_ECHO_ERROR_IRQ	0: IRQ not masked
4	MASK FCCU ENA ECHO ERROR IRQ	1: IRQ masked
4	WASK_FCCO_ENA_ECHO_ERROR_IRQ	0: IRQ not masked
3	CRC3	
2	CRC2	

DS14964 - Rev 1 page 152/239

Bit	Name	Description
1	CRC1	
0	CRC0	

Table 111. DCR8 (0x08) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	MASK_SWDBG_VIO_IRQ	MASK_LP_READY_IRQ	CLR_TSD_CNT_FAIL	MASK_BUCK3_OC_POWER_OFF	MASK_BUCK2_OC_POWER_OFF	MASK_BUCK1_OC_POWER_OFF	MASK_BUCK3_UV_POWER_OFF
Reserved	Mask software debug VIO interrupt bit	Mask LOW-POWER mode ready interrupt bit	Clear TSD_CNT_FAIL bit	Mask BUCK3 overcurrent power-off bit	Mask BUCK2 overcurrent power-off bit	Mask BUCK1 overcurrent power-off bit	Mask BUCK3 undervoltage power-off bit

Table 112. DCR8 (0x08) MSB description

Bit	Name	Description
23	RES	reserved
		Mask IRQ when SWDBG is still at V_{IO} at the end of timeout detection. In this case, watchdog is restarted with a long open window and SWDBG is ignored.
22	MASK_SWDBG_VIO_IRQ	1: IRQ is masked
		0: IRQ not masked
		Mask IRQ when FSM goes to LOW-POWER state.
21	MASK_LP_READY_IRQ	1: IRQ is masked
		0: IRQ not masked
20	CLR_TSD_CNT_FAIL	Clear TSD_CNT_FAIL to 0
20	CEIX_TOD_CIVI_I AIE	This bit is always read low
		Mask regulator overcurrent as source of its power-off
19	MASK_BUCK3_OC_POWER_OFF	1: Regulator is not turned off after an overcurrent occurs
		0: Regulator is turned off after an overcurrent occurs
		Mask regulator overcurrent as source of its power-off
18	MASK_BUCK2_OC_POWER_OFF	1: Regulator is not turned off after an overcurrent occurs
		0: Regulator is turned off after an overcurrent occurs
		Mask regulator overcurrent as source of its power-off
17	MASK_BUCK1_OC_POWER_OFF	1: Regulator is not turned off after an overcurrent occurs
		0: Regulator is turned off after an overcurrent occurs
		Mask regulator under voltage as source of its power-off
16	MASK_BUCK3_UV_POWER_OFF	1: Regulator is not turned off after an undervoltage occurs
		0: Regulator is turned off after an undervoltage occurs

Table 113. DCR8 (0x08)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
MASK_BUCK2_UV_POWER_OFF	MASK_BUCK1_UV_POWER_OFF	MASK_TW_GW	MASK_OL_GSB	RES	MASK_GW_GSB	RES	RES
Mask BUCK2 undervoltage power-off bit	Mask BUCK1 undervoltage power-off bit	Mask thermal warning GW bit	Mask open load GSB bit	RES	Mask global warning GSB bit	RES	Reserved

Table 114. DCR8 (0x08) description

Bit	Name	Description	
15	MASK_BUCK2_UV_POWER_OFF	Mask regulator undervoltage as source of its power-off	

DS14964 - Rev 1 page 153/239

Name	Description				
	1: Regulator is not turned off after an undervoltage occurs				
	0: Regulator is turned off after an undervoltage occurs				
	Mask regulator undervoltage as source of its power-off				
MASK_BUCK1_UV_POWER_OFF	1: Regulator is not turned off after an undervoltage occurs				
	0: Regulator is turned off after an undervoltage occurs				
	Mask thermal Warnings				
MASK_TW_GW	1: Thermal warnings are masked in GW				
	0: Thermal warnings are not masked (default)				
	Mask open-load				
MACK OL CCD	1: Open-load condition at OUTHS is masked				
MASK_OL_GSB	It is reported as a functional error 1 (GSB bit 3) but not as a global error (GSB bit 7)				
	0: Open-load condition at OUTHS is not masked (default)				
	Mask physical layer error				
MACK FEE COD	1: Physical layer errors are masked				
MASK_FEZ_GSB	i.e. reported as a physical layer error (GSB bit 4) but not as a global error (GSB bit 7)				
	0: Physical layer errors are not masked (default)				
	Mask global warning				
MACK OW OOD	1: Global warning conditions are masked				
MASK_GW_GSB	It is reported as a global warning (GSB bit 1) but not as a global error (GSB bit 7)				
	0: Global warning conditions are not masked (default)				
	CAN Transceiver activation				
CAN ACT	1 : CAN Trx normal active mode				
9 CAN_ACT	At Exit from normal active mode, this bit is set to '0' automatically				
	0 : CAN Trx low power mode (default)				
	CAN automatic biasing activation				
CAN_AUTO_BIAS	1 : auto biasing enabled				
	0 : auto biasing disabled (default)				
	MASK_BUCK1_UV_POWER_OFF MASK_TW_GW MASK_OL_GSB MASK_FE2_GSB CAN_ACT				

Table 115. DCR8 (0x08) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	1 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	RES	RES	GO_INIT	CRC3	CRC2	CRC1	CRC0
Reserved	Reserved	Reserved	NVM INIT bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 116. DCR8 (0x08) LSB description

Bit	Name	Description
		CAN Loop enable: TxD_C signal is internal routed to RxD_C pin
7	CAN_LOOP_ENA	1: CAN loop enabled
		0: CAN loop disabled (default)
		CAN Receive only Mode
6	CAN_REC_ONLY	1 : CAN Receive only mode enabled (CAN Trx must be activated, see CAN_ACT bit)
		0: TX & RX enabled (default)

DS14964 - Rev 1 page 154/239

Bit	Name	Description
5	CAN_WU_ENA	CAN Wake-up enable: enable wake-up by CAN 1 : enabled (default) 0: CAN wake-up disabled
4	GO_INIT	1: NVM emulation and load phases are completed and INIT state can be executed (valid only in USER_NVM_PROG state) This bit is automatically cleared and always read low and always read low 0: (default)
3	CRC3	
2	CRC2	
1	CRC1	
0	CRC0	

Table 117. DCR9 (0x09) MSB

Bit 23 (MSB)	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
RES	LDT_TIMER_READ_ENA	NFSO_UNMASK	BOOST_CNT_END	RES	MASK_BOOST_TIMER_CNT_END_IRQ	LDT_CNT_THR_4	LDT_CNT_THR_3
reserved	Lock LDT counter	De-assert NFSO in REC1 state	Reset Boost Counter	N/A	Mask Boost timer end IRQ	LDT Counter threshold setting bit 4	LDT Counter threshold setting bit 3

Table 118. DCR9 (0x09) MSB description

Bit	Name	Description
23	RES	reserved
22	LDT_TIMER_READ_ENA	Lock the LDT counter to allow MCU to read the LDT counter value 1 : lock the LDT counter 0 : normal LDT counter updates
21	NFSO_UNMASK	NFSO de-assert in REC1 state 1 : allow to de-assert NFSO if all conditions are true, written HIGH only during REC1 state of FSM 0 : NFSO may be de-asserted if all other conditions are true when FSM passes from REC1 to ACTIVE_HP state
20	BOOST_CNT_END	Allow to stop and reset the Boost Counter 1 : stop and reset the boost counter 0 : re-launch boost timer
19	RES	reserved
18	MASK_BOOST_TIMER_CNT _END_IRQ	To mask IRQ in case of Boost timer counter end
17	LDT_CNT_THR_4	Long Duration timer duration (locked when LDT_CNT_ENA =1)
16	LDT_CNT_THR_3	

Table 119. DCR9 (0x09)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
LDT_CNT_THR_2	LDT_CNT_THR_1	LDT_CNT_THR_0	LDT_CNT_THR_MSB_POS_4	LDT_CNT_THR_MSB_POS_3	LDT_CNT_THR_MSB_POS_2	LDT_CNT_THR_MSB_POS_1	LDT_CNT_THR_MSB_POS_0
LDT Counter threshold setting bit 2	LDT Counter threshold setting bit 1	LDT Counter threshold setting bit 0	LDT Counter threshold setting for MSB position bit 4	LDT Counter threshold setting for MSB position bit 3	LDT Counter threshold setting for MSB position bit 2	LDT Counter threshold setting for MSB position bit 1	LDT Counter threshold setting for MSB position bit 0

DS14964 - Rev 1 page 155/239

Table 120. DCR9 (0x09) description

Bit	Name	Description
15	LDT_CNT_THR_2	
14	LDT_CNT_THR_1	
13	LDT_CNT_THR_0	
12	LDT_CNT_THR_MSB_POS_4	Long Duration timer duration MSB position (locked when LDT_CNT_ENA =1)
11	LDT_CNT_THR_MSB_POS_3	
10	LDT_CNT_THR_MSB_POS_2	
9	LDT_CNT_THR_MSB_POS_1	
8	LDT_CNT_THR_MSB_POS_0	

Table 121. DCR9 (0x09) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)	0 (R/W)
LDT_DEBUG	LDT_MODE	LDT_ENA	LDT_CNT_ENA	CRC3	CRC2	CRC1	CRC0
LDT debug to reduce duration by a factor 100	LDT wake up	LDT enable	LDT Counter enable	Cyclic Redundancy Checking Bit 3	Cyclic Redundancy Checking Bit 2	Cyclic Redundancy Checking Bit 1	Cyclic Redundancy Checking Bit 0

Table 122. DCR9 (0x09) LSB description

Bit	Name	Description
		Long duration time mode to reduce LDT duration by a factor 100
7	LDT_DEBUG	1: count with 10 ms period
		0: count with 1s period (locked when LDT_CNT_ENA =1)
		Long Duration Timer wake-up capability selection
6	LDT_MODE	1: count up to LDT_THR and take action (wake-up)
		0: count up to max count and take no action (locked when LDT_CNT_ENA =1)
		Long Duration Timer enable
5	LDT_ENA	1: enable LDT functionality
		0: Disable and Reset LDT functionality
		Long Duration Timer counter enable
4	LDT_CNT_ENA	1 : Start LDT CNT
		0 : Stop LDT CNT (Cnt Value is retained, Cnt value is restarted to 0 at next LDT_CNT set to 1)
3	CRC3	
2	CRC2	
1	CRC1	
0	CRC0	

DS14964 - Rev 1 page 156/239

9.6 U_NVM registers

During the emulation mode (described in Section 3.8.2), the U_NVM SPI registers from DCR10 to DRC28 can be R/W. After a valid USER-NVM programming procedure, the U_NVM SPI registers from DCR10 to DRC28 can only be readable as shown below.

Table 123. DCR10 (0x0A) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	BUCK1_FREQ	BUCK1_PU_VALUE_1	BUCK1_PU_VALUE_0	BUCK1_PU_STEP_ENA_2
Reserved	Reserved	Reserved	Reserved	BUCK1 frequency bit	BUCK1 pull-up value bit 1	BUCK1 pull-up value bit 0	BUCK1 pull-up step enables bit 2

Table 124. DCR10 (0x0A) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	BUCK1_FREQ	BUCK1 frequency: 1: 0.4 MHz 0: 2.4 MHz
18	BUCK1_PU_VALUE_1	BUCK1 voltage setting 00: 3.3 V 01: 5.0 V 1X: 6.5 V
17	BUCK1_PU_VALUE_0	
16	BUCK1_PU_STEP_ENA_2	

Table 125. DCR10 (0x0A)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK1_PU_STEP_ENA_1	BUCK1_PU_STEP_ENA_0	BUCK1_PD_STEP_OFF_2	BUCK1_PD_STEP_OFF_1	BUCK1_PD_STEP_OFF_0	BUCK1_IPEAK_2	BUCK1_IPEAK_1	BUCK1_IPEAK_0
BUCK1 pull-up step enables bit 1	BUCK1 pull-up step enables bit 0	BUCK1 power-down step off bit 2	BUCK1 power-down step off bit 1	BUCK1 power-down step off bit 0	BUCK1 peak limitation current bit 2	BUCK1 peak limitation current bit 1	BUCK1 peak limitation current bit 0

Table 126. DCR10 (0x0A) description

Bit	Name	Description
15	BUCK1_PU_STEP_ENA_1	
		To define BUCK1 turn-on steps
		000: BUCK is not turned ON
	BUCK1_PU_STEP_ENA_0	001: Step 1
14		010: Step 2
14		011: Step 3
		100: Step 4
		101: Step 5
		110: Step 6

DS14964 - Rev 1 page 157/239

Bit	Name	Description
		111: Step 7
13	BUCK1_PD_STEP_OFF_2	
12	BUCK1_PD_STEP_OFF_1	
		To define BUCK1 turn-off steps
		000: Step 1
		001: Step 2
11	DUCKA DD STED OFF A	010: Step 3
11	BUCK1_PD_STEP_OFF_0	011: Step 4
		100: Step 5
		101: Step 6
		11X: Step 7
10	BUCK1_IPEAK_2	
9	BUCK1_IPEAK_1	
		BUCK1 peak limitation current
		000: 2.0 A
		001: 2.5 A
8	DUCKI IDEAK O	010: 3.0 A
0	BUCK1_IPEAK_0	011: 3.5 A
		100: 4.0 A
		101: 4.5 A
		11X: 5.0 A

Table 127. DCR10 (0x0A) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK1_REGFAIL_GO_REC	BUCK1_SS_VALUE_1	BUCK1_SS_VALUE_0	BUCK1_REFRESH_FREQ	CRC3	CRC2	CRC1	CRC0
BUCK1 regulator fail receive bit	BUCK1 soft start value bit 1	BUCK1 soft start value bit 0	BUCK1 refresh frequency bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

Table 128. DCR10 (0x0A) LSB description

Bit	Name	Description
		1: A fail on BUCK1 regulator initiates a power-down sequence and moves the state machine to REC-2 state
7	BUCK1_REGFAIL_GO_REC	0: A fail on BUCK1 regulator sends an IRQ (UV, OV, PG_nok, TW are maskable by SPI, but not TSD), and turns the regulator OFF if the fail is unmasked (UV, PG_nok are maskable by SPI, but not OV and TSD. TW never turns the regulator OFF)
6	BUCK1_SS_VALUE_1	
		BUCK1 soft-start setting
		00: 16.5 V/ms
5	BUCK1_SS_VALUE_0	01: 8.25 V/ms
		10: 3.3 V/ms
		11: 1.65 V/ms
4	BUCK1 REFRESH FREQ	1: Refresh frequency 1 kHz
4	BOOKT_NEI KESIT_I KEQ	0: Refresh frequency 25 kHz

DS14964 - Rev 1 page 158/239

Bit	Name	Description
3	CRC3	
2	CRC2	
1	CRC1	
0	CRC0	

Table 129. DCR11 (0x0B) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	BUCK2_FREQ	BUCK2_PU_VALUE_1	BUCK2_PU_VALUE_0	BUCK2_PU_STEP_ENA_2
Reserved	Reserved	Reserved	Reserved	BUCK2 frequency bit	BUCK2 pull-up value bit 1	BUCK2 pull-up value bit 0	BUCK2 pull-up step enables bit 2

Table 130. DCR11 (0x0B) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
		BUCK2 frequency
19	BUCK2_FREQ	1: 0.4 MHz
		0: 2.4 MHz
		BUCK2 voltage setting
18	DIICKS DII VALLE 1	00: 3.3 V
10	I8 BUCK2_PU_VALUE_1	01: 5.0 V
		1X: 6.5 V
17	BUCK2_PU_VALUE_0	
16	BUCK2_PU_STEP_ENA_2	

Table 131. DCR11 (0x0B)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK2_PU_STEP_ENA_1	BUCK2_PU_STEP_ENA_0	BUCK2_PD_STEP_OFF_2	BUCK2_PD_STEP_OFF_1	BUCK2_PD_STEP_OFF_0	BUCK2_IPEAK_2	BUCK2_IPEAK_1	BUCK2_IPEAK_0
BUCK2 pull-up step enables bit 1	BUCK2 pull-up step enables bit 0	BUCK2 pull-down step off bit 2	BUCK2 pull-down step off bit 1	BUCK2 pull-down step off bit 0	BUCK2 peak limitation current bit 2	BUCK2 peak limitation current bit	BUCK2 peak limitation current bit 0

Table 132. DCR11 (0x0B) description

Bit	Name	Description
15	BUCK2_PU_STEP_ENA_1	
		To define BUCK2 turn-on steps
		000: BUCK is not turned ON
		001: Step 1
14	BUCK2_PU_STEP_ENA_0	010: Step 2
		011: Step 3
		100: Step 4
		101: Step 5

DS14964 - Rev 1 page 159/239

Bit	Name	Description
		110: Step 6
		111: Step 7
13	BUCK2_PD_STEP_OFF_2	
12	BUCK2_PD_STEP_OFF_1	
11	BUCK2_PD_STEP_OFF_0	To define BUCK2 turn-off steps 000: Step 1 001: Step 2 010: Step 3 011: Step 4 100: Step 5 101: Step 6
10	BUCK2_IPEAK_2	11X: Step 7
9	BUCK2_IPEAK_1	
8	BUCK2_IPEAK_0	BUCK2 peak limitation current 000: 2.0 A 001: 2.5 A 010: 3.0 A 011: 3.5 A 100: 4.0 A 101: 4.5 A 11X: 5.0 A

Table 133. DCR11 (0x0B) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK2_REGFAIL_GO_REC	BUCK2_SS_VALUE_1	BUCK2_SS_VALUE_0	BUCK2_REFRESH_FREQ	CRC3	CRC2	CRC1	CRC0
BUCK2 regulator fail receive bit	BUCK2 soft start value bit 1	BUCK2 soft start value bit 0	BUCK2 refresh frequency bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

Table 134. DCR11 (0x0B) LSB description

Bit	Name	Description
		1: A fail on BUCK2 regulator initiates a power-down sequence and moves the state machine to REC-2 state
7	BUCK2_REGFAIL_GO_REC	0: A fail on BUCK2 regulator sends an IRQ (UV, OV, PG_nok, TW are maskable by SPI, but not TSD), and turns the regulator OFF if the fail is unmasked (UV, PG_nok are maskable by SPI, but not OV and TSD. TW never turns the regulator OFF)
6	BUCK2_SS_VALUE_1	
		BUCK2 soft start setting
		00: 16.5 V/ms
5	BUCK2_SS_VALUE_0	01: 8.25 V/ms
		10: 3.3 V/ms
		11: 1.65 V/ms
4	BUCK2_REFRESH_FREQ	1: Refresh frequency 1 kHz

DS14964 - Rev 1 page 160/239

Bit	Name	Description
		0: Refresh frequency 25 kHz
3	CRC3	
2	CRC2	
1	CRC1	
0	CRC0	

Table 135. DCR12 (0x0C) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
-(R0)	-(R0)	-(R0)	-(R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	BYPASS_DIS	BUCK3_PU_VALUE_2	BUCK3_PU_VALUE_1	BUCK3_PU_VALUE_0
Reserved	Reserved	Reserved	Reserved	Bypass disable bit	BUCK3 pull-up value bit 2	BUCK3 pull-up value bit 1	BUCK3 pull-up value bit 0

Table 136. DCR12 (0x0C) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
		If bit BYPASS_DIS = 1:
19	BYPASS_DIS	BYPASS will always be OFF
19	DTPASS_DIS	If bit BYPASS_DIS = 0:
		BYPASS will be ON and OFF based on the sensed Vbat value
18	BUCK3_PU_VALUE_2	
17	BUCK3_PU_VALUE_1	
		BUCK3 voltage setting
		001: 0.98 V
		010: 1.1 V
16	BUCK3_PU_VALUE_0	011: 1.2 V
		100: 1.25 V
		101: 3.3 V
		11X: 3.3 V

Table 137. DCR12 (0x0C)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK3_PU_STEP_ENA_2	BUCK3_PU_STEP_ENA_1	BUCK3_PU_STEP_ENA_0	BUCK3_PD_STEP_OFF_2	BUCK3_PD_STEP_OFF_1	BUCK3_PD_STEP_OFF_0	BUCK3_IPEAK_1	BUCK3_IPEAK_0
BUCK3 pull-up step enables bit 2	BUCK3 pull-up step enables bit 1	BUCK3 pull-up step enables bit 0	BUCK3 pull-down step off bit 2	BUCK3 pull-down step off bit 1	BUCK3 pull-down step off bit 0	BUCK3 peak switching current bit 1	BUCK3 peak switching current bit 0

Table 138. DCR12 (0x0C) description

Bit	Name	Description
15	BUCK3_PU_STEP_ENA_2	
14	BUCK3_PU_STEP_ENA_1	
13	BUCK3_PU_STEP_ENA_0	To define BUCK3 turn-on steps

DS14964 - Rev 1 page 161/239

Bit	Name	Description
		000: BUCK is not turned ON
		001: Step 1
		010: Step 2
		011: Step 3
		100: Step 4
		101: Step 5
		110: Step 6
		111: Step 7
		To define BUCK3 turn-off steps
		000: Step 1
	DUOKA DD OTED OFF A	001: Step 2
12		010: Step 3
12	BUCK3_PD_STEP_OFF_2	011: Step 4
		100: Step 5
		101: Step 6
		11X: Step 7
11	BUCK3_PD_STEP_OFF_1	
10	BUCK3_PD_STEP_OFF_0	
		BUCK3 peak switching current
		00: 4.0 A
9	BUCK3_IPEAK_1	01: 5.0 A
		10: 6.0 A
		11: 7.2 A
8	BUCK3_IPEAK_0	

Table 139. DCR12 (0x0C) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
BUCK3_REGFAIL_GO_REC	BUCK3_SS_VALUE_1	BUCK3_SS_VALUE_0	BUCK3_REFRESH_FREQ	CRC3	CRC2	CRC1	CRC0
BUCK3 regulator fail go receiver bit	BUCK3 soft start value bit 1	BUCK3 soft start value bit 0	BUCK3 refresh frequency bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

Table 140. DCR12 (0x0C) LSB description

Bit	Name	Description
		1: A fail on BUCK3 regulator initiates a power-down sequence and moves the state machine to REC-2 state
7	BUCK3_REGFAIL_GO_REC	0: A fail on BUCK3 regulator sends an IRQ (UV, OV, PG_nok, TW are maskable by SPI, but not TSD), and turns the regulator OFF if the fail is unmasked (UV, PG_nok are maskable by SPI, but not OV and TSD. TW never turns the regulator OFF)
		Buck3 Soft-Start setting :
		00 : 8.7 V/ms
6	BUCK3_SS_VALUE_1	01 : 4.35 V/ms
		10 : 1.75 V/ms
		11 : 0.87 V/ms

DS14964 - Rev 1 page 162/239

Bit	Name	Description
5	BUCK3_SS_VALUE_0	
4	BUCK3_REFRESH_FREQ	Refresh frequency 1 kHz Refresh frequency 25 kHz
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 141. DCR13 (0x0D) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_D_15	U_NVM_D_14	U_NVM_D_13	U_NVM_D_12
Reserved	Reserved	Reserved	Reserved	User NVM D register bit 15	User NVM D register bit 14	User NVM D register bit 13	User NVM D register bit 12

Table 142. DCR13 (0x0D) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_D_15	User-NVM registers Can be emulated when FSM in U_PROG_1 state
18	U_NVM_D_14	
17	U_NVM_D_13	
16	U_NVM_D_12	

Table 143. DCR13 (0x0D)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_D_11	U_NVM_D_10	U_NVM_D_9	U_NVM_D_8	U_NVM_D_7	U_NVM_D_6	U_NVM_D_5	U_NVM_D_4
User NVM D register bit 11	User NVM D register bit 10	User NVM D register bit 9	User NVM D register bit 8	User NVM D register bit 7	User NVM D register bit 6	User NVM D register bit 5	User NVM D register bit 4

Table 144. DCR13 (0x0D) description

Bit	Name	Description
15	U_NVM_D_11	
14	U_NVM_D_10	
13	U_NVM_D_9	
12	U_NVM_D_8	
11	U_NVM_D_7	
10	U_NVM_D_6	

DS14964 - Rev 1 page 163/239

Bi	t Name	Description
9	U_NVM_D_5	
8	U_NVM_D_4	

Table 145. DCR13 (0x0D) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_D_3	U_NVM_D_2	U_NVM_D_1	U_NVM_D_0	CRC3	CRC2	CRC1	CRC0
User NVM D register bit 3	User NVM D register bit 2	User NVM D register bit 1	User NVM D register bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 146. DCR13 (0x0D) LSB description

Bit	Name	Description
7	U_NVM_D_3	
6	U_NVM_D_2	
5	U_NVM_D_1	
4	U_NVM_D_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 147. DCR14 (0x0E) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	PU_LOOP_FOR_EVER	LDO2_REGFAIL_GO_REC	LDO2_TRK_1	LDO2_TRK_0
Reserved	Reserved	Reserved	Reserved	Pull-up infinite loop bit	LDO2 regulator fail go receiver bit	LDO2 tracker bit 1	LDO2 tracker bit 0

Table 148. DCR14 (0x0E) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	PU_LOOP_FOR_EVER	User-NVM registers Can be emulated when FSM in U_PROG_1 state
18	LDO2_REGFAIL_GO_REC	1: A fail on LDO2 regulator initiates a power-down sequence and moves the state machine to REC-2 state 0: A fail on LDO2 regulator sends an IRQ (UV, OV, PG_nok, TW are maskable by SPI, but not TSD), and turns the regulator OFF if the fail is unmasked (UV, PG_nok are maskable by SPI, but not OV and TSD. TW never turns the regulator OFF)
17	LDO2_TRK_1	
16	LDO2_TRK_0	

DS14964 - Rev 1 page 164/239

Table 149. DCR14 (0x0E)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
LDO2_PD_STEP_OFF_2	LDO2_PD_STEP_OFF_1	LDO2_PD_STEP_OFF_0	LDO2_PU_STEP_ENA_2	LDO2_PU_STEP_ENA_1	LDO2_PU_STEP_ENA_0	LDO1_PD_STEP_OFF_2	LDO1_PD_STEP_OFF_1
LDO2 pull-down step off bit 2	LDO2 pull-down step off bit 1	LDO2 pull-down step off bit 0	LDO2 pull-up step enables bit 2	LDO2 pull-up step enables bit 1	LDO2 pull-up step enables bit 0	LDO1 pull-down step off bit 2	LDO1 pull-down step off bit 1

Table 150. DCR14 (0x0E) description

To define LDO2 turn-off steps 000: Step 1 001: Step 2	
15 LDO2_PD_STEP_OFF_2 010: Step 3 011: Step 4 100: Step 5 101: Step 6 11X: Step 7	
14 LDO2_PD_STEP_OFF_1	
13 LDO2_PD_STEP_OFF_0	
To define LDO2 turn-on steps 000: LDO2 is not turned ON 001: Step 1 010: Step 2 12 LDO2_PU_STEP_ENA_2 011: Step 3 100: Step 4 101: Step 5 110: Step 6 111: Step 7	
11 LDO2_PU_STEP_ENA_1	
10 LDO2_PU_STEP_ENA_0	
To define LDO1 turn-off steps 000: Step 1 001: Step 2 010: Step 3 011: Step 4 100: Step 5 101: Step 6 11X: Step 7	
8 LDO1_PD_STEP_OFF_1	

Table 151. DCR14 (0x0E) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
LDO1_PD_STEP_OFF_0	LDO1_PU_STEP_ENA_2	LDO1_PU_STEP_ENA_1	LDO1_PU_STEP_ENA_0	CRC3	CRC2	CRC1	CRC0
LDO1 pull-down step off bit	LDO1 pull-up step enables bit 2	LDO1 pull-up step enables bit 1	LDO1 pull-up step enables bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

DS14964 - Rev 1 page 165/239

Table 152. DCR14 (0x0E) LSB description

Bit	Name	Description
7	LDO1_PD_STEP_OFF_0	
		To define LDO1 turn-on steps
		000: LDO1 is not turned ON
		001: Step 1
		010: Step 2
6	LDO1_PU_STEP_ENA_2	011: Step 3
		100: Step 4
		101: Step 5
		110: Step 6
		111: Step 7
5	LDO1_PU_STEP_ENA_1	
4	LDO1_PU_STEP_ENA_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 153. DCR15 (0x0F) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_F_15	U_NVM_F_14	PU_WAIT_DEL_ENA_7_1	PU_WAIT_DEL_ENA_7_0
Reserved	Reserved	Reserved	Reserved	User NVM F register bit 15	User NVM F register bit 14	Pull-up wait delay enable 7 bit 1	Pull-up wait delay enable 7 bit 0

Table 154. DCR15 (0x0F) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_F_15	User-NVM registers
19	0_NVM_1 _13	Can be emulated when FSM in U_PROG_1 state
18	U_NVM_F_14	
		Power-up delay at step 7
	PU_WAIT_DEL_ENA_7_1	00: 0 ms
17		01: 2 ms
		10: 5 ms
		11: 10 ms
16	PU_WAIT_DEL_ENA_7_0	

DS14964 - Rev 1 page 166/239

Table 155. DCR15 (0x0F)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)							
PU_WAIT_DEL_ENA_6_1	PU_WAIT_DEL_ENA_6_0	PU_WAIT_DEL_ENA_5_1	PU_WAIT_DEL_ENA_5_0	PU_WAIT_DEL_ENA_4_1	PU_WAIT_DEL_ENA_4_0	PU_WAIT_DEL_ENA_3_1	PU_WAIT_DEL_ENA_3_0
Pull-up wait delay enable 6 bit 1	Pull-up wait delay enable 6 bit 0	Pull-up wait delay enable 5 bit 1	Pull-up wait delay enable 5 bit 0	Pull-up wait delay enable 4 bit 1	Pull-up wait delay enable 4 bit 0	Pull-up wait delay enable 3 bit 1	Pull-up wait delay enable 3 bit 0

Table 156. DCR15 (0x0F) description

Bit	Name	Description
		Power-up delay at step 6
		00: 0 ms
15	PU_WAIT_DEL_ENA_6_1	01: 2 ms
		10: 5 ms
		11: 10 ms
14	PU_WAIT_DEL_ENA_6_0	
		Power-up delay at step 5
		00: 0 ms
13	PU_WAIT_DEL_ENA_5_1	01: 2 ms
		10: 5 ms
		11: 10 ms
12	PU_WAIT_DEL_ENA_5_0	
		Power-up delay at step 4
		00: 0 ms
11	PU_WAIT_DEL_ENA_4_1	01: 2 ms
		10: 5 ms
		11: 10 ms
10	PU_WAIT_DEL_ENA_4_0	
		Power-up delay at step 3
		00: 0 ms
9	PU_WAIT_DEL_ENA_3_1	01: 2 ms
		10: 5 ms
		11: 10 ms
8	PU_WAIT_DEL_ENA_3_0	

Table 157. DCR15 (0x0F) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
PU_WAIT_DEL_ENA_2_1	PU_WAIT_DEL_ENA_2_0	PU_WAIT_DEL_ENA_1_1	PU_WAIT_DEL_ENA_1_0	CRC3	CRC2	CRC1	CRC0
Pull-up wait delay enable 2 bit 1	Pull-up wait delay enable 2 bit 0	Pull-up wait delay enable 1 bit 1	Pull-up wait delay enable 1 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 158. DCR15 (0x0F) LSB description

Bit	Name	Description
		Power-up delay at step 2
7		00: 0 ms
		01: 2 ms

DS14964 - Rev 1 page 167/239

Bit	Name	Description
		10: 5 ms
		11: 10 ms
6	PU_WAIT_DEL_ENA_2_0	
		Power-up delay at step 1
		00: 0 ms
5	PU_WAIT_DEL_ENA_1_1	01: 2 ms
		10: 5 ms
		11: 10 ms
4	PU_WAIT_DEL_ENA_1_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 159. DCR16 (0x10) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_G_15	U_NVM_G_14	U_NVM_G_13	NRESET_PD_STEP_ASSERT_2
Reserved	Reserved	Reserved	Reserved	User NVM G register bit 15	User NVM G register bit 14	User NVM G register bit 13	NRESET pull-down step assertion bit 2

Table 160. DCR16 (0x10) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_G_15	User-NVM registers
19	0_NVM_0_13	Can be emulated when FSM in U_PROG_1 state
18	U_NVM_G_14	
17	U_NVM_G_13	
		To define NRESET assertion steps
		000: Step 1
		001: Step 2
16	NRESET_PD_STEP_ASSERT_2	010: Step 3
10	TAREOUT_I D_OTEL _NOOEKT_E	011: Step 4
		100: Step 5
		101: Step 6
		11x: Step 7

Table 161. DCR16 (0x10)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
NRESET_PD_STEP_ASSERT_1	NRESET_PD_STEP_ASSERT_0	NRESET_PU_STEP_DEASSERT_2	NRESET_PU_STEP_DEASSERT_1	NRESET_PU_STEP_DEASSERT_0	PU_WAIT_PG_	PU_WAIT_PG_	PU_WAIT_PG_

DS14964 - Rev 1 page 168/239

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
					ENA_7	ENA_6	ENA_5
NRESET pull-down step assertion bit	NRESET pull-down step assertion bit 0	NRESET pull-up step deassertion bit 2	NRESET pull-up step deassertion bit 1	NRESET pull-up step deassertion bit 0	Pull-up wait power- good enable bit 7	Pull-up wait power- good enable bit 6	Pull-up wait power- good enable bit 5

Table 162. DCR16 (0x10) description

Bit	Name	Description
15	NRESET_PD_STEP_ASSERT_1	
14	NRESET_PD_STEP_ASSERT_0	
13	NRESET_PU_STEP_DEASSERT _2	To define NRESET deassertion and WD start step 000: End of step 7 001: Step 1 010: Step 2 011: Step 3 100: Step 4 101: Step 5 110: Step 6 111: Step 7
12	NRESET_PU_STEP_DEASSERT _1	
11	NRESET_PU_STEP_DEASSERT _0	
10	PU_WAIT_PG_ENA_7	1: At power-up step 7, wait for power-good signal 0: At power-up step 7, no wait for power-good signal
9	PU_WAIT_PG_ENA_6	1: At power-up step 6, wait for power-good signal 0: At power-up step 6, no wait for power-good signal
8	PU_WAIT_PG_ENA_5	1: At power-up step 5, wait for power-good signal 0: At power-up step 5, no wait for power-good signal

Table 163. DCR16 (0x10) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
PU_WAIT_PG_ENA_4	PU_WAIT_PG_ENA_3	PU_WAIT_PG_ENA_2	PU_WAIT_PG_ENA_1	CRC3	CRC2	CRC1	CRC0
Pull-up wait power-good enable bit 4	Pull-up wait power-good enable bit 3	Pull-up wait power-good enable bit 2	Pull-up wait power-good enable bit 1	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 164. DCR16 (0x10) LSB description

Bit	Name	Description
7	DII WAIT DO ENA 4	1: At power-up step 4, wait for power-good signal
/	7 PU_WAIT_PG_ENA_4	0: At power-up step 4, no wait for power-good signal
6	DIL WAIT DO ENA 2	1: At power-up step 3, wait for power-good signal
0	PU_WAIT_PG_ENA_3	0: At power-up step 3, no wait for power-good signal
_	5 PU_WAIT_PG_ENA_2	1: At power-up step 2, wait for power-good signal
5		0: At power-up step 2, no wait for power-good signal
4	DIL WAIT DO ENA 4	1: At power-up step 1, wait for power-good signal
4	PU_WAIT_PG_ENA_1	0: At power-up step 1, no wait for power-good signal

DS14964 - Rev 1 page 169/239

Bit	Name	Description
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 165. DCR17 (0x11) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_CRC0_7	U_NVM_CRC0_6	U_NVM_CRC0_5	U_NVM_CRC0_4
Reserved	Reserved	Reserved	Reserved	User NVM CRC 0 bit 7	User NVM CRC 0 bit 6	User NVM CRC 0 bit 5	User NVM CRC 0 bit 4

Table 166. DCR17 (0x11) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_CRC0_7	
18	U_NVM_CRC0_6	
17	U_NVM_CRC0_5	
16	U_NVM_CRC0_4	

Table 167. DCR17 (0x11)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)						
U_NVM_CRC0_3	U_NVM_CRC0_2	U_NVM_CRC0_1	U_NVM_CRC0_0	U_PROG0_1	U_PROG0_1	U_NVM_H_5	U_NVM_H_4
User NVM CRC 0 bit 3	User NVM CRC 0 bit 2	User NVM CRC 0 bit 1	User NVM CRC 0 bit 0	User program 0 bit 1	User program 0 bit 0	User NVM H register bit 5	User NVM H register bit 4

Table 168. DCR17 (0x11) description

Bit	Name	Description
15	U_NVM_CRC0_3	
14	U_NVM_CRC0_2	
13	U_NVM_CRC0_1	
12	U_NVM_CRC0_0	
11	U_PROG0_1	Not accessible by user but programmed by NVM controller during user programming
10	U_PROG0_0	Not accessible by user but programmed by NVM controller during user programming
9	U_NVM_H_5	
8	U_NVM_H_4	

DS14964 - Rev 1 page 170/239

Table 169. DCR17 (0x11) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
NFSO_STATE_IN_DEEP_SLEEP	U_NVM_H_2	U_NVM_H_1	BOOST_DIS	CRC3	CRC2	CRC1	CRC0
Set NFSO default state in DEEP- SLEEP bit	User NVM H register bit 2	User NVM H register bit 1	BOOST disable bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 170. DCR17 (0x11) LSB description

Bit	Name	Description
7	NFSO_STATE_IN_DEEP_SLEEP	1: NFSO pin is high when FSM is in DEEP-SLEEP state
,	NI 30_31ATE_IN_DEEF_SEEEF	0: NFSO pin is low when FSM is in DEEP-SLEEP state
6	U_NVM_H_2	
5	U_NVM_H_1	
4	BOOST DIS	1: Disable boost
	D0001_D10	0: Boost is not disabled and depends on BOOST_OFF control bit
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 171. DCR18 (0x12) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	PD_WAIT_VREG_DEL_OFF_1	PD_WAIT_VREG_DEL_OFF_0	PD_WAIT_DEL_OFF_7_1	PD_WAIT_DEL_OFF_7_0
Reserved	Reserved	Reserved	Reserved	Pull-down wait VREG delay off bit 1	Pull-down wait VREG delay off bit 0	Pull-down wait delay off 7 bit 1	Pull-down wait delay off 7 bit 0

Table 172. DCR18 (0x12) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
		Power-down delay for VREG
		00: 2 ms
19	PD_WAIT_VREG_DEL_OFF_1	01: 5 ms
		10: 10 ms
		11: 20 ms
18	PD_WAIT_VREG_DEL_OFF_0	
		Power-down delay at step 7
		00: 0 ms
17	PD_WAIT_DEL_OFF_7_1	01: 2 ms
		10: 5 ms
		11: 10 ms
16	PD_WAIT_DEL_OFF_7_0	

DS14964 - Rev 1 page 171/239

Table 173. DCR18 (0x12)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)							
PD_WAIT_DEL_OFF_6_1	PD_WAIT_DEL_OFF_6_0	PD_WAIT_DEL_OFF_5_1	PD_WAIT_DEL_OFF_5_0	PD_WAIT_DEL_OFF_4_1	PD_WAIT_DEL_OFF_4_0	PD_WAIT_DEL_OFF_3_1	PD_WAIT_DEL_OFF_3_0
Pull-down wait delay off 6 bit 1	Pull-down wait delay off 6 bit 0	Pull-down wait delay off 5 bit 1	Pull-down wait delay off 5 bit 0	Pull-down wait delay off 4 bit 1	Pull-down wait delay off 4 bit 0	Pull-down wait delay off 3 bit 1	Pull-down wait delay off 3 bit 0

Table 174. DCR18 (0x12) description

Bit	Name	Description
		Power-down delay at step 6
		00: 0 ms
15	PD_WAIT_DEL_OFF_ 6_1	01: 2 ms
	_	10: 5 ms
		11: 10 ms
14	PD_WAIT_DEL_OFF_ 6_0	
		Power-down delay at step 5
		00: 0 ms
13	PD_WAIT_DEL_OFF_ 5_1	01: 2 ms
	_	10: 5 ms
		11: 10 ms
12	PD_WAIT_DEL_OFF_ 5_0	
		Power-down delay at step 4
	DD WAIT DEL CEE	00: 0 ms
11	PD_WAIT_DEL_OFF_ 4_1	01: 2 ms
	_	10: 5 ms
		11: 10 ms
10	PD_WAIT_DEL_OFF_ 4_0	
		Power-down delay at step 3
		00: 0 ms
9	PD_WAIT_DEL_OFF_ 3_1	01: 2 ms
		10: 5 ms
		11: 10 ms
8	PD_WAIT_DEL_OFF_ 3_0	

Table 175. DCR18 (0x12) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
PD_WAIT_DEL_OFF_2_1	PD_WAIT_DEL_OFF_2_0	PD_WAIT_DEL_OFF_1_1	PD_WAIT_DEL_OFF_1_0	CRC3	CRC2	CRC1	CRC0
Pull-down wait delay off 2 bit 1	Pull-down wait delay off 2 bit 0	Pull-down wait delay off 1 bit 1	Pull-down wait delay off 1 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit	Cyclic redundancy checking bit 0

DS14964 - Rev 1 page 172/239

Table 176. DCR18 (0x12) LSB description

Bit	Name	Description
		Power-down delay at step 2
		00: 0 ms
7	PD_WAIT_DEL_OFF_2_1	01: 2 ms
		10: 5 ms
		11: 10 ms
6	PD_WAIT_DEL_OFF_2_0	
		Power-down delay at step 1
	PD_WAIT_DEL_OFF_1_1	00: 0 ms
5		01: 2 ms
		10: 5 ms
		11: 10 ms
4	PD_WAIT_DEL_OFF_1_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 177. DCR19 (0x13) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_RELEASE_15	U_NVM_RELEASE_14	U_NVM_RELEASE_13	U_NVM_RELEASE_12
Reserved	Reserved	Reserved	Reserved	User NVM release bit 15	User NVM release bit 14	User NVM release bit 13	User NVM release bit 12

Table 178. DCR19 (0x13) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_RELEASE_15	User-NVM registers Can be emulated when FSM in U_PROG_1 state (available for customer to identify the user NVM release)
18	U_NVM_RELEASE_14	
17	U_NVM_RELEASE_13	
16	U_NVM_RELEASE_12	

Table 179. DCR19 (0x13)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_RELEASE_11	U_NVM_RELEASE_10	U_NVM_RELEASE_9	U_NVM_RELEASE_8	U_NVM_RELEASE_7	U_NVM_RELEASE_6	U_NVM_RELEASE_5	U_NVM_RELEASE_4
User NVM release bit 11	User NVM release bit 10	User NVM release bit 9	User NVM release bit 8	User NVM release bit 7	User NVM release bit 6	User NVM release bit 5	User NVM release bit 4

DS14964 - Rev 1 page 173/239

Table 180. DCR19 (0x13) description

Bit	Name	Description
15	U_NVM_RELEASE_11	
14	U_NVM_RELEASE_10	
13	U_NVM_RELEASE_9	
12	U_NVM_RELEASE_8	
11	U_NVM_RELEASE_7	
10	U_NVM_RELEASE_6	
9	U_NVM_RELEASE_5	
8	U_NVM_RELEASE_4	

Table 181. DCR19 (0x13) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_RELEASE_3	U_NVM_RELEASE_2	U_NVM_RELEASE_1	U_NVM_RELEASE_0	CRC3	CRC2	CRC1	CRC0
User NVM release bit 3	User NVM release bit 2	User NVM release bit 1	User NVM release bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 182. DCR19 (0x13) LSB description

Bit	Name	Description
7	U_NVM_RELEASE_3	
6	U_NVM_RELEASE_2	
5	U_NVM_RELEASE_1	
4	U_NVM_RELEASE_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 183. DCR20 (0x14) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	FBB_OK_SEL_1	FBB_OK_SEL_0	BYPASS_OFFSET_SEL	FBB_REG_LEVEL_SEL_1
Reserved	Reserved	Reserved	Reserved	FBB OK threshold selection Bit 1	FBB OK threshold selection Bit 0	VTH_BYPASS threshold offset selection	FBB Regulation level selection bit 1

Table 184. DCR20 (0x14) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	FBB_OK_SEL_1	To add flexibility on FBB_OK threshold selection :

DS14964 - Rev 1 page 174/239

Bit	Name	Description
		00 : 5.5 V
		01:6.5 V
		10: 7.5 V
		11: 8.5 V
18	FBB_OK_SEL_0	
		VTH_BYPASS threhold offset selection
17	BYPASS_OFFSET_S EL	1: FBB_REG_LEVEL + 1.0 V
	LL	0: FBB_REG_LEVEL + 0.5 V
		To add flexibility on FBB_REG level selection :
		00 : 6 V
16	FBB_REG_LEVEL_S EL_1	01:7 V
		10:8 V
		11:9 V

Table 185. DCR20 (0x14)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
FBB_REG_LEVEL_SEL_0	WAKEUP_GO_TO_DEEP_SLEEP_INH	BOOST_CRK_TO_2	BOOST_CRK_TO_1	BOOST_CRK_TO_0	BOOST_CRK_ONLY	VS_SENSE_LEVEL_SEL_1	VS_SENSE_LEVEL_SEL_0
FBB Regulation level selection bit 0	Inhibit transition to Deep Sleep if a wake up flag is present	Boost timer duration setting Bit 2	Boost timer duration setting Bit 1	Boost timer duration setting Bit 0	Boost activation during cranking	VS SENSE threshold selection Bit	VS SENSE threshold selection Bit 0

Table 186. DCR20 (0x14) description

Bit	Name	Description
15	FBB_REG_LEVEL_SEL_0	
14	WAKEUP_GO_TO_DEEP_SLEEP _INH	
13	BOOST_CRK_TO_2	To add flexibility on Boost timeout duration selection when $V_S < V_{S_SENSE}$: $000: no boost timer$ $001: 0.5 s$ $010: 1 s$ $011: 2 s$ $100: 4 s$ $101: 6 s$ $110: 8 s$ $111: 10 s$
12	BOOST_CRK_TO_1	
11	BOOST_CRK_TO_0	
10	BOOST_CRK_ONLY	Selection bit to activate boost only when V _S < V _{S_SENSE} 1 : Boost activation in cranking mode enabled 0 : Boost activation in cranking mode disabled
9	VS_SENSE_LEVEL_SEL_1	To add flexibility on VS_SENSE_LEVEL level selection: 00:5.4 V 01:5.55 V 10:5.7 V 11:5.85 V

DS14964 - Rev 1 page 175/239

Bit	Name	Description
8	VS_SENSE_LEVEL_SEL_0	

Table 187. DCR20 (0x14) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
LOW_SET_3	LOW_SET_2	LOW_SET_1	LOW_SET_0	CRC3	CRC2	CRC1	CRC0
LOW set bit 3	LOW set bit 2	LOW set bit 1	LOW set bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 188. DCR20 (0x14) LSB description

Bit	Name	Description
7	LOW_SET_3	Long open window duration 0000: 319 ms max 0001: 479 ms max 0010: 638 ms max 0011: 1025 ms max 0100: 115 ms max 0101: 159 ms max 0110: 230 ms max 0111: 460 ms max 1000-1011: 2300 ms max 1100: 4600 ms max 1111: Infinite
6	LOW_SET_2	
5	LOW_SET_1	
4	LOW_SET_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 189. DCR21 (0x15) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_L_15	U_NVM_L_14	U_NVM_L_13	U_NVM_L_12
Reserved	Reserved	Reserved	Reserved	User NVM L register bit 15	User NVM L register bit 14	User NVM L register bit 13	User NVM L register bit 12

DS14964 - Rev 1 page 176/239

Table 190. DCR21 (0x15) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_L_15	User-NVM registers Can be emulated when FSM in U_PROG_1 state
18	U_NVM_L_14	
17	U_NVM_L_13	
16	U_NVM_L_12	

Table 191. DCR21 (0x15)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_L_11	U_NVM_L_10	U_NVM_L_9	U_NVM_L_8	U_NVM_L_7	U_NVM_L_6	U_NVM_L_5	U_NVM_L_4
User NVM L register bit 11	User NVM L register bit 10	User NVM L register bit 9	User NVM L register bit 8	User NVM L register bit 7	User NVM L register bit 6	User NVM L register bit 5	User NVM L register bit 4

Table 192. DCR21 (0x15) description

Bit	Name	Description
15	U_NVM_L_11	
14	U_NVM_L_10	
13	U_NVM_L_9	
12	U_NVM_L_8	
11	U_NVM_L_7	
10	U_NVM_L_6	
9	U_NVM_L_5	
8	U_NVM_L_4	

Table 193. DCR21 (0x15) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_L_3	U_NVM_L_2	FBB_UV_EW_PD	FBB_UV_LEVEL_SEL	CRC3	CRC2	CRC1	CRC0
User NVM L Register Bit 3	User NVM L Register Bit 2	Power Down execution done by FBB_UV_EW	FBB_UV threshold selection	Cyclic Redundancy Checking Bit 3	Cyclic Redundancy Checking Bit 2	Cyclic Redundancy Checking Bit 1	Cyclic Redundancy Checking Bit 0

Table 194. DCR21 (0x15) LSB description

Bit	Name	Description
7	U_NVM_L_3	
6	U_NVM_L_2	
5	U_NVM_L_1	

DS14964 - Rev 1 page 177/239

Bit	Name	Description
4	U_NVM_L_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 195. DCR22 (0x16) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_M_15	U_NVM_M_14	U_NVM_M_13	U_NVM_M_12
Reserved	Reserved	Reserved	Reserved	User NVM M register bit 15	User NVM M register bit 14	User NVM M register bit 13	User NVM M register bit 12

Table 196. DCR22 (0x16) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_M_15	User-NVM registers Can be emulated when FSM is in U_PROG_1 state
18	U_NVM_M_14	
17	U_NVM_M_13	
16	U_NVM_M_12	

Table 197. DCR22 (0x16)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_M_11	U_NVM_M_10	U_NVM_M_9	U_NVM_M_8	U_NVM_M_7	U_NVM_M_6	U_NVM_M_5	U_NVM_M_4
User NVM M register bit 11	User NVM M register bit 10	User NVM M register bit 9	User NVM M register bit 8	User NVM M register bit 7	User NVM M register bit 6	User NVM M register bit 5	User NVM M register bit 4

Table 198. DCR22 (0x16) description

Bit	Name	Description
15	U_NVM_M_11	
14	U_NVM_M_10	
13	U_NVM_M_9	
12	U_NVM_M_8	
11	U_NVM_M_7	
10	U_NVM_M_6	
9	U_NVM_M_5	

DS14964 - Rev 1 page 178/239

Bit	Name	Description
8	U_NVM_M_4	

Table 199. DCR22 (0x16) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_M_3	U_NVM_M_2	U_NVM_M_1	U_NVM_M_0	CRC3	CRC2	CRC1	CRC0
User NVM M register bit 3	User NVM M register bit 2	User NVM M register bit 1	User NVM M register bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 200. DCR22 (0x16) LSB description

Bit	Name	Description
7	U_NVM_M_3	
6	U_NVM_M_2	
5	U_NVM_M_1	
4	U_NVM_M_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 201. DCR23 (0x17) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_N_15	U_NVM_N_14	U_NVM_N_13	U_NVM_N_12
Reserved	Reserved	Reserved	Reserved	User NVM N register bit 15	User NVM N register bit 14	User NVM N register bit 13	User NVM N register bit 12

Table 202. DCR23 (0x17) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_N_15	User-NVM registers Can be emulated when FSM is in U_PROG_1 state
18	U_NVM_N_14	
17	U_NVM_N_13	
16	U_NVM_N_12	

DS14964 - Rev 1 page 179/239

Table 203. DCR23 (0x17)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_N_11	U_NVM_N_10	U_NVM_N_9	U_NVM_N_8	U_NVM_N_7	U_NVM_N_6	U_NVM_N_5	U_NVM_N_4
User NVM N register bit 11	User NVM N register bit 10	User NVM N register bit 9	User NVM N register bit 8	User NVM N register bit 7	User NVM N register bit 6	User NVM N register bit 5	User NVM N register bit 4

Table 204. DCR23 (0x17) description

Bit	Name	Description
15	U_NVM_N_11	
14	U_NVM_N_10	
13	U_NVM_N_9	
12	U_NVM_N_8	
11	U_NVM_N_7	
10	U_NVM_N_6	
9	U_NVM_N_5	
8	U_NVM_N_4	

Table 205. DCR23 (0x17) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_N_3	U_NVM_N_2	U_NVM_N_1	U_NVM_N_0	CRC3	CRC2	CRC1	CRC0
User NVM N register bit 3	User NVM N register bit 2	User NVM N register bit 1	User NVM N register bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 206. DCR23 (0x17) LSB

Bit	Name	Description
7	U_NVM_N_3	
6	U_NVM_N_2	
5	U_NVM_N_1	
4	U_NVM_N_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 207. DCR24 (0x18) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_O_15	U_NVM_O_14	U_NVM_O_13	U_NVM_O_12
Reserved	Reserved	Reserved	Reserved	User NVM O register bit 15	User NVM O register bit 14	User NVM O register bit 13	User NVM O register bit 12

DS14964 - Rev 1 page 180/239

Table 208. DCR24 (0x18) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_O_15	User-NVM registers Can be emulated when FSM is in U_PROG_1 state
18	U_NVM_O_14	
17	U_NVM_O_13	
16	U_NVM_O_12	

Table 209. DCR24 (0x18)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_O_11	U_NVM_O_10	U_NVM_O_9	U_NVM_O_8	U_NVM_O_7	U_NVM_O_6	U_NVM_O_5	U_NVM_O_4
User NVM O register bit 11	User NVM O register bit 10	User NVM O register bit 9	User NVM O register bit 8	User NVM O register bit 7	User NVM O register bit 6	User NVM O register bit 5	User NVM O register bit 4

Table 210. DCR24 (0x18) description

Bit	Name	Description
15	U_NVM_O_11	
14	U_NVM_O_10	
13	U_NVM_O_9	
12	U_NVM_O_8	
11	U_NVM_O_7	
10	U_NVM_O_6	
9	U_NVM_O_5	
8	U_NVM_O_4	

Table 211. DCR24 (0x18) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_O_3	U_NVM_O_2	U_NVM_O_1	U_NVM_O_0	CRC3	CRC2	CRC1	CRC0
User NVM O register bit 3	User NVM O register bit 2	User NVM O register bit 1	User NVM O register bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 212. DCR24 (0x18) LSB description

Bit	Name	Description
7	U_NVM_O_3	
6	U_NVM_O_2	
5	U_NVM_O_1	

DS14964 - Rev 1 page 181/239

Bit	Name	Description
4	U_NVM_O_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 213. DCR25 (0x19) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	- (R0)	- (R)	- (R)	- (R)	- (R)
RES	RES	RES	RES	U_NVM_CRC1_7	U_NVM_CRC1_6	U_NVM_CRC1_5	U_NVM_CRC1_4
Reserved	Reserved	Reserved	Reserved	User NVM CRC1 bit 7	User NVM CRC1 bit 6	User NVM CRC1 bit 5	User NVM CRC1 bit 4

Table 214. DCR25 (0x19) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	U_NVM_CRC1_7	User-NVM registers Can be emulated when FSM is in U_PROG_1 state
18	U_NVM_CRC1_6	
17	U_NVM_CRC1_5	
16	U_NVM_CRC1_4	

Table 215. DCR25 (0x19)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)	- (R)
U_NVM_CRC1_3	U_NVM_CRC1_2	U_NVM_CRC1_1	U_NVM_CRC1_0	U_PROG1_1	U_PROG1_0	U_NVM_P_5	U_NVM_P_4
User NVM CRC1 bit 3	User NVM CRC1 bit 2	User NVM CRC1 bit	User NVM CRC1 bit 0	User program 1 bit 1	User program 1 bit 0	User NVM P register bit 5	User NVM P register bit 4

Table 216. DCR25 (0x19)

Bit	Name	Description
15	U_NVM_CRC1_3	
14	U_NVM_CRC1_2	
13	U_NVM_CRC1_1	
12	U_NVM_CRC1_0	
11	U_PROG1_1	Not accessible by user but programmed by NVM controller during user programming
10	U_PROG1_0	Not accessible by user but programmed by NVM controller during user programming
9	U_NVM_P_5	
8	U_NVM_P_4	

DS14964 - Rev 1 page 182/239

Table 217. DCR25 (0x19) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R)	- (R)	- (R)	- (R)				
U_NVM_P_3	U_NVM_P_2	U_NVM_P_1	U_NVM_P_0	CRC3	CRC2	CRC1	CRC0
User NVM P register bit 3	User NVM P register bit 2	User NVM P register bit 1	User NVM P register bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 218. DCR25 (0x19) LSB description

Bit	Name	Description
7	U_NVM_P_3	
6	U_NVM_P_2	
5	U_NVM_P_1	
4	U_NVM_P_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

9.7 Status registers

Table 219. DSR1 (0x21) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	BOOST_TIMER_CNT_END	FORCED_SLEEP_WDFAIL	BUCK3_OC	BUCK3_OV	BUCK3_UV	BUCK3_PG_TIMEOUT	BUCK2_OC
Reserved	Boost timer end Bit	Device enters in DEEP-SLEEP state after 15 WD fail bit	BUCK3 overcurrent bit	BUCK3 overvoltage bit	BUCK3 undervoltage bit	BUCK3 power-good timeout bit	BUCK2 overcurrent bit

Table 220. DSR1 (0x21) MSB description

Bit	Name	Description
23	RES	Reserved
22	BOOST TIMER CNT END	1 : Boost timer ended
	BOOGT_TIMER_CIVI_EIND	0 : Boost timer not ended
21	FORCED_SLEEP_WDFAIL	1: state machine reaches DEEP-SLEEP after 15 watchdog fails
21	TORGED_SEEEI _WDI AIE	0: No transition to DEEP-SLEEP due to 15 consecutive watchdog fails
20	BUCK3 OC	1: BUCK3 overcurrent detected
20	B00K3_00	0: No error
19	BUCK3 OV	1: BUCK3 overvoltage detected
15	200N3_0V	0: No error
18	BUCK3 UV	1: BUCK3 undervoltage detected
10	Bocks_ov	0: No error
		BUCK3 power-good timeout during power-up sequence
17	BUCK3_PG_TIMEOUT	1: Indicates that the power-good is not reached at the end of timeout
		Bit is latched until a "Read and clear" command

DS14964 - Rev 1 page 183/239

Bit	Name	Description
16	BUCK2_OC	1: BUCK2 overcurrent detected 0: No error

Table 221. DSR1 (0x21)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
BUCK2_OV	BUCK2_UV	BUCK2_PG_TIMEOUT	BUCK1_OC	BUCK1_OV	BUCK1_UV	BUCK1_PG_TIMEOUT	LDO2_PG_TIMEOUT
BUCK2 overvoltage bit	BUCK2 undervoltage bit	BUCK2 power-good timeout bit	BUCK1 overcurrent bit	BUCK1 overvoltage bit	BUCK1 undervoltage bit	BUCK1 power-good timeout bit	LDO2 power-good timeout bit

Table 222. DSR1 (0x21) description

Bit	Name	Description
15	BUCKS OV	1: BUCK2 overvoltage detected
15	BUCK2_OV	0: No error
14	BUCK2 UV	1: BUCK2 undervoltage detected
14	BOCK2_0V	0: No error
		BUCK2 power-good timeout during power-up sequence
13	BUCK2_PG_TIMEOUT	1: Indicates that the power-good is not reached at the end of timeout
		Bit is latched until a "Read and clear" command
12	12 BUCK1_OC	1: BUCK1 overcurrent detected
12		0: No error
11	BUCK1 OV	1: BUCK1 overvoltage detected
		0: No error
10	BUCK1 UV	1: BUCK1 undervoltage detected
10		0: No error
		BUCK1 power-good timeout during power-up sequence
9	BUCK1_PG_TIMEOUT	1: Indicates that the power-good is not reached at the end of timeout
		Bit is latched until a "Read and clear" command
8	LDO2_PG_TIMEOUT	1: PG timeout occurs following a SPI request to turn on LDO2

Table 223. DSR1 (0x21) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1	L) 0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
LDO2_	UV LDO2_OV	LDO1_PG_TIMEOUT	LDO1_UV	CRC3	CRC2	CRC1	CRC0
LDO2 undervol bit		LDO1 power-good timeout bit	LDO1 undervoltage bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 224. DSR1 (0x21) LSB description

Bit	Name	Description
		Indicates undervoltage condition at voltage regulator LDO2 (LDO2 < VRTx)
7	LDO2_UV	1: Undervoltage
		Bit is latched until a "Read and clear" command
6	LDO2_OV	Indicates overvoltage condition at voltage regulator LDO2

DS14964 - Rev 1 page 184/239

Bit	Name	Description
		1: Overvoltage
		Bit is latched until a "Read and clear" command
5	LDO1_PG_TIMEOUT	1: PG timeout occurs following a SPI request to turn on LDO1
		Indicates undervoltage condition at voltage regulator LDO1 (LDO1 < VRTx)
4	LDO1_UV	1: Undervoltage
		Bit is latched until a "Read and clear" command
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 225. DSR2 (0x22) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	OUTHS_OL	OUTHS_OC	BOOST_IN_LP	BYPASS_VDSMON_ERROR	BOOST_VDSMON_ERROR	FBB_OV	FBB_UV
Reserved	OUTHS open load bit	OUTHS overcurrent bit	BOOST in LOW-POWER mode bit	Bypass VDSMON error bit	BOOST VDSMON error bit	FBB overvoltage bit	FBB undervoltage bit

Table 226. DSR2 (0x22) MSB description

Bit	Name	Description
23	RES	Reserved
		Open-load
22	OUTHS_OL	1: Indicates an open-load condition was detected at OUTHS output
		Bit is latched until a "Read and clear" command
		Overcurrent
21	OUTHS_OC	1: Indicates an overcurrent condition was detected at OUTHS output
		Bit is latched until a "Read and clear" command
20	BOOST_IN_LP	Boost switched on in LOW-POWER mode
20	BOOS1_IN_LF	1: Occurred
		BYPASS V _{ds} monitoring error
19	BYPASS_VDSMON_ERROR	1: Error is detected
		0: No error reported
		BOOST V _{ds} monitoring error
18	BOOST_VDSMON_ERROR	1: Error is detected
		0: No error reported
		FBB overvoltage
17	FBB_OV	1: Indicates the voltage at FBB increased above the FBB overvoltage threshold
17	LPP_OA	In ACTIVE and REC-1 modes, an interrupt pulse is generated at IRQ
		Bit is latched until a "Read and clear" command
		FBB undervoltage
16	EDD IIV	1: Indicates the voltage at FBB decreased below the FBB undervoltage threshold
10	FBB_UV	In ACTIVE and REC-1 modes, an interrupt pulse is generated at IRQ
		Bit is latched until a "Read and clear" command

DS14964 - Rev 1 page 185/239

Table 227. DSR2 (0x22)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
IRQ_ECHO_ERROR	FCCU_ENA_ECHO_ERROR	NFSO1_ECHO_ERROR	WD_ENA_ECHO_ERROR	NRST_ECHO_ERROR	VIO_UV	TSD_CL4	TSD_CL3
Interrupt echo error bit	FCCU enable echo error bit	NFSO1 echo error bit	Watchdog enable echo error bit	NRESET echo error bit	VIO undervoltage bit	Thermal shutdown of cluster 4 bit	Thermal shutdown of cluster 3 bit

Table 228. DSR2 (0x22) description

Bit	Name	Description
15	IRQ_ECHO_ERROR	IRQ asserted but still high
13	INQ_ECHO_ERROR	1: Still high when asserted low
14	FCCU ENA ECHO ERROR	1: The FCCU_ENA echo monitor reported an error
14	T COO_ENA_ECTIO_ENNON	0: No error reported
13	NFSO1 ECHO ERROR	1: The NFSO1 echo monitor reported an error
	W 001_E0H0_ERROR	0: No error reported
12	WD ENA ECHO ERROR	1: The WD_ENA echo monitor reported an error
12	WB_ENV_EONO_ENROR	0: No error reported
11	NRST_ECHO_ERROR	1: NRESET input high while NRESET output (expected) low after filter
	MINOT_EGITO_ERINGIN	0: No error
		V _{IO} undervoltage
10	VIO_UV	1: Indicates the voltage at VIO has reached the undervoltage threshold
		Bit is latched until a "Read and clear" command
		Thermal shutdown of cluster x
9	TSD_CL4	1: Indicates cluster x has reached the thermal shutdown threshold (TSD) and the output cluster was shut down
		Bit is latched until a "Read and clear" command
8	TSD_CL3	

Table 229. DSR2 (0x22) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TSD_CL2	TSD_CL1	TSD_CL0	TSD	CRC3	CRC2	CRC1	CRC0
Thermal shutdown of cluster 2 bit	Thermal shutdown of cluster 1 bit	Thermal shutdown of cluster 0 bit	Thermal shutdown bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 230. DSR2 (0x22) LSB description

Bit	Name	Description
7	TSD_CL2	
6	TSD_CL1	
5	TSD_CL0	Central thermal shutdown
4	TSD	Thermal shutdown was reached (logical or combination of all TSD_CLx, see status register DSR6) This bit cannot be cleared directly. It is reset if the corresponding TSD_CLx bits in SR6 are cleared
3	CRC 3	
2	CRC 2	

DS14964 - Rev 1 page 186/239

Bit	Name	Description
1	CRC 1	
0	CRC 0	

Table 231. DSR3 (0x23) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	LBIST_STOPPED	BUCK3_INT_FAIL	BUCK2_INT_FAIL	BUCK1_INT_FAIL	LBIST_ERROR_1	LBIST_ERROR_0	ABIST_ERROR
Reserved	LBIST stopped bit	BUCK3 interrupt fail bit	BUCK2 interrupt fail bit	BUCK31 interrupt fail bit	Logic BIST error bit 1	Logic BIST error bit 0	Analog BIST error bit

Table 232. DSR3 (0x23) MSB description

Bit	Name	Description				
23	RES	Reserved				
22	LBIST_STOPPED	1: Indicates that LBIST has been stopped due to fault events				
		BUCK3 internal fail that may be caused by LDO_BUCK3_OV or LDO_Buck3_UV				
21	BUCK3_INT_FAIL	1: Indicates that an internal error occurs on BUCK3				
		Bit is latched until a "Read and clear" command				
		BUCK2 internal fail that may be caused by LDO_BUCK2_OV or LDO_BUCK2_UV				
20	BUCK2_INT_FAIL	1: Indicates that an internal error occurs on BUCK2				
		Bit is latched until a "Read and clear" command				
		BUCK1 internal fail that may be caused by LDO_BUCK1_OV or LDO_BUCK1_UV				
19	BUCK1_INT_FAIL	1: Indicates that an internal error occurs on buck1				
		Bit is latched until a "Read and clear" command				
18	LBIST_ERROR_1 1: The logic BIST2 reported an error					
17	LBIST_ERROR_0	1: The logic BIST1 reported an error				
16	ABIST_ERROR	1: The analog BIST reported an error				

Table 233. DSR3 (0x23)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
CURRENT_MISMATCH	FORCED_SLEEP_TSD	FCCUFAIL	WDFAIL	INT_REG_UV	INT_REG_OV	NVM_COMP_ERROR	NVM_CRC_ERROR
Current mismatch bit	Forced sleep after TSD event bit	FCCU fail bit	Watchdog fail bit	Interrupt regulator undervoltage bit	Interrupt regulator overvoltage bit	NVM compare error bit	NVM CRC error bit

Table 234. DSR3 (0x23) description

Bit	Name	Description				
15	5 CURRENT_MISMATCH 1: A current mismatch occurs between main and monitoring currents					
14	FORCED_SLEEP_TSD	D_SLEEP_TSD 1: State machine reaches DEEP-SLEEP after 3 TSD events				
13	FCCUFAIL	FCCU fault detection				
13	13 FCCOFAIL	1: A fault has been detected by the FCCU monitor bit is latched until a "Read and clear" command				
		A WD trig fail event occurred				
12	12 WDFAIL	Bit is latched until a "Read and clear" command				
		Note that after 15 consecutive WD trig faults, the device reaches DEEP-SLEEP state where WDFAIL_CNT is cleared, while WDFAIL bit is kept at 1				
11	INT_REG_UV Internal regulator undervoltage					

DS14964 - Rev 1 page 187/239

Bit	Name	Description	
	1: Indicates an internal regulator undervoltage occurs on 3V3		
		This bit is latched until a "Read and clear" command	
		Internal regulator overvoltage	
10	INT_REG_OV	1: Indicates an internal regulator overvoltage occurs on 3V3	
		This bit is latched until a "Read and clear" command	
9	NVM_COMP_ERROR	Indicates an error between NVM and mirror register	
8	NVM_CRC_ERROR	ndicates a NVM CRC error at NVM download	

Table 235. DSR3 (0x33) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
GNDLOSS	OSC_ERROR	SPI_REG_COMP_ERROR	FSM_COMP_ERROR	CRC3	CRC2	CRC1	CRC0
Ground Loss detection bit	Oscillators error bit	SPI registers compare error bit	Finite state machine compares error bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 236. DSR3 (0x33) LSB description

Bit	Name	Description
7	GNDLOSS	1: Digital or analog central ground loss detected
	GINDLOSS	0: No error
6	OSC ERROR	1: The oscillator monitor reported an error
	OSC_LINION	0: No error reported
5	SPI_REG_COMP_ERROR	1: The SPI safety registers monitor reported an error
	OF I_NEG_OOM _ENNOR	0: No error reported
4	FSM_COMP_ERROR	1: The main finite state machine monitor reported an error
	rom_oomr_Ertitort	0: No error reported
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 237. DSR4 (0x24) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	SPI_ALL_WAKEUP_DISABLE	SPI_CLK_CNT	SPI_CSN_TIMEOUT	SPI_CRC_ERR	SPI_SDI_STUCK_HIGH	SPI_SDI_STUCK_LOW	SPI_UNDEF_ADD
Reserved	SPI all wake up disable bit	SPI clock counter bit	SPI CSN timeout bit	SPI CRC error bit	SPI SDI Stuck high bit	SPI SDI Stuck Low bit	SPI undefined address bit

Table 238. DSR4 (0x24) MSB description

Bit	Name	Description
23	RES	Reserved
22	SPI_ALL_WAKEUP_DISABLE	SPI attempt occurs to disable all wake-up sources. This attempt for last wake-up disable has not been performed
21	SPI_CLK_CNT	SPI clock counter 1: Indicates an SPI frame with the wrong number of CLK cycles was detected.

DS14964 - Rev 1 page 188/239

Bit	Name	Description
		Bit is latched until a valid SPI frame
20	SPI_CSN_TIMEOUT	1: SPI CSN timeout error detected
19	SPI_CRC_ERR	1: SPI CRC error detected
18	SPI_SDI_STUCK_HIGH	1: SPI SDI stuck at high level
17	SPI_SDI_STUCK_LOW	1: SPI SDI stuck at low level
16	SPI_UNDEF_ADD	1: SPI access to undefined address

Table 239. DSR4 (0x24)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
SPI_STATUS_WRT	SPI_LBISTED	FBB_OV_EW	FBB_UV_EW	VS_UV_EW	CAN_SUP_LOW	TW_CL4	TW_CL3
SPI status write bit	SPI LBIST test bit	FBB overvoltage early warning bit	FBB undervoltage early warning bit	VS undervoltage early warning bit	CAN Supply Low Bit	Thermal warning of cluster 4 bit	Thermal warning of cluster 3 bit

Table 240. DSR4 (0x24) description

Bit	Name	Description
15	SPI_STATUS_WRT	1: SPI writes access to status register
14	SPI_LBISTED	1: SPI access while SPI is under LBIST test
13	FBB_OV_EW	FBB overvoltage early warning 1: Indicates the voltage at FBB increased above the FBB overvoltage early warning threshold (configured in CR3) In ACTIVE and REC-1 modes, an interrupt pulse is generated at IRQ. Bit is latched until a "Read and clear" command
12	FBB_UV_EW	FBB undervoltage early warning 1: Indicates the voltage at FBB decreased below the FBB undervoltage early warning threshold (configured in CR3) In ACTIVE and REC-1 modes, an interrupt pulse is generated at IRQ Bit is latched until a "Read and clear" command
11	VS_UV_EW	V_S early warning 1: Indicates the voltage at V_S decreased below the V_S early warning threshold (configured in CR3) In ACTIVE and REC-1 modes, an interrupt pulse is generated at IRQ. Bit is latched until a "Read and clear" command
10	CAN_SUP_LOW	Voltage at CAN supply pin reached the CAN supply low warning threshold $V_{CANSUP} < V_{CANSUPlow}$ Bit is latched until a "Read and clear" command
9	TW_CL4	Thermal warning of cluster x 1: Indicates cluster x has reached the thermal warning threshold (TSW) Bit is latched until a "Read and clear" command
8	TW_CL3	

Table 241. DSR4 (0x24) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TW_CL2	TW_CL1	TW_CL0	TW	CRC3	CRC2	CRC1	CRC0

DS14964 - Rev 1 page 189/239

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Thermal warning of cluster 2 bit	Thermal warning of cluster 1 bit	Central thermal warning bit	Thermal warning bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 242. DSR4 (0x24) LSB description

Bit	Name	Description
7	TW_CL2	
6	TW_CL1	
5	TW_CL0	Central thermal warning
4	TW	Thermal warning 1: Indicates the temperature has reached the thermal warning threshold (logical OR combination of bits TW_CLx in DSR6)
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 243. DSR5 (0x25) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	- (R0)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	FP_READY	RES	BOOST_ENA_STATUS	BYPASS_STATUS	BUCK3_PG_OK	BUCK2_PG_OK	BUCK1_PG_OK
Reserved	FULL-POWER Ready bit	Reserved	BOOST enable status bit	Bypass status bit	BUCK3 power-good ok bit	BUCK2 power-good ok bit	BUCK1 power-good ok bit

Table 244. DSR5 (0x25) MSB description

Bit	Name	Description
23	RES	Reserved
22	FP_READY	Transition from LOW-POWER to FULL-POWER occurred. IRQ generated when this occurs
21	RES	Reserved
20	BOOST_ENA_STATUS	1: Boost switching ON 0: Boost switching OFF Live bit
19	BYPASS_STATUS	1: Bypass ON 0: Bypass OFF Live bit
18	BUCK3_PG_OK	Power-good reached after the regulator has been turned ON by power-up sequence or through SPI PG not reached
17	BUCK2_PG_OK	Power-good reached after the regulator has been turned ON by power-up sequence or through SPI PG not reached
16	BUCK1_PG_OK	Power-good reached after the regulator has been turned ON by power-up sequence or through SPI PG not reached

DS14964 - Rev 1 page 190/239

Table 245. DSR5 (0x25)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R)	0 (RC1L)	0 (RC1L)					
DEV_STATE_5	DEV_STATE_4	DEV_STATE_3	DEV_STATE_2	DEV_STATE_1	DEV_STATE_0	DEEP-SLEEP_FROM_DO_POWER_DOWN_1	DEEP-SLEEP_FROM_DO_POWER_DOWN_0
Device state bit 5	Device state bit 4	Device state bit 3	Device state bit 2	Device state bit 1	Device state bit 0	DEEP-SLEEP from power down bit 1	DEEP-SLEEP from power down bit 0

Table 246. DSR5 (0x25) description

Bit	Name	Description
15	DEV_STATE_5	
14	DEV_STATE_4	
13	DEV_STATE_3	
12	DEV_STATE_2	
11	DEV_STATE_1	
10	DEV_STATE_0	Current state of state machine 00000: INIT
9	DEEP-SLEEP_FROM_DO_POWER_DOWN_1	00: Default 01: DEEP-SLEEP entered after a DO_POWER_DOWN command in ACTIVE state 1x: DEEP-SLEEP entered after a DO_POWER_DOWN command in REC-1 state
8	DEEP-SLEEP_FROM_DO_POWER_DOWN_0	

Table 247. DEV_STATE binary code for state machine states/modes

Digital FSM states	Spec states/modes	Binary
AA_START_UP	START-UP state	000000
ACTIVE_HP	ACTIVE FULL-POWER mode	000001
ACTIVE_LP	ACTIVE LOW-POWER mode	000010
ACTIVE_LP2HP1		000011
ACTIVE_LP2HP2	LP2FP transition	000100
ACTIVE_LP2HP3	LPZFP transition	000101
ACTIVE_LP2HP4		
ANA_TRIM	Not usable	000111
DEEPSLEEP_INIT1		001000
DEEPSLEEP_INIT2		001001
DEEPSLEEP_INIT3	DEED OF EED at a target	001010
DEEPSLEEP_INIT4	DEEP-SLEEP state	001011
DEEPSLEEP_TO_START_SM		001100
DEEP_SLEEP		001101
INIT1	INIT state	001110
INIT2	INIT state	001111
POWER_DOWN_FROM_PG_TIMEOUT		010001
POWER_DOWN_TO_DEEP_SLEEP	POWER-DOWN sequence	010010
POWER_DOWN_TO_REC_2		010011
NRESET_PULSE	POWER-UP sequence	010000

DS14964 - Rev 1 page 191/239

Digital FSM states	Spec states/modes	Binary
POWER_UP_FROM_FAIL	POWER-UP sequence	010100
POWER_UP_FROM_INIT	1 OWER-OF Sequence	010101
PROD_TEST_MODE	Not usable	010110
READ_NVM_DL	U-NVM-DL state	010111
REC_1	REC-1 state	011000
REC_2	REC-2 state	011001
RESET_SPI_REG		011010
RISE_REF	START-SM state	011011
START_SM		011100
SWDBG	SWDBG	011101
SWDBG_SET	SWDBG	011110
USER_NVM_PROG_1	U-NVM-PROG-1	011111
USER_NVM_PROG_2		100000
USER_NVM_PROG_2_COMPLETE		100001
USER_NVM_PROG_3	U-NVM-PROG-2	100010
USER_NVM_PROG_3_COMPLETE	U-INVIVI-PROG-Z	100011
USER_NVM_PROG_4		100100
USER_NVM_PROG_4_COMPLETE		100101

Table 248. DSR5 (0x25) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
FORCED_SLEEP_POWUP	FSM_TO_REC2	REC2_FROM_DO_POWER_CYCLE_1	REC2_FROM_DO_POWER_CYCLE_0	CRC3	CRC2	CRC1	CRC0
Forced sleep power up bit	Finite state machine to REC2 bit	REC2 from power cycle bit 1	REC2 from power cycle bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 249. DSR5 (0x25) LSB description

Bit	Name	Description
7	FORCED_SLEEP_POWUP	1: State machine reaches DEEP-SLEEP after 3 attempts to power up
6	FSM_TO_REC2	Functional state machine state before reaching REC2 1: REC1 Bit is latched until a "Read and clear" command 0: ACTIVE
5	REC2_FROM_DO_POWER_CYCLE_1	00: Default 01: REC2 entered after a DO_POWER_CYCLE command in ACTIVE state 1x: REC2 entered after a DO_POWER_CYCLE command in REC-1 state
4	REC2_FROM_DO_POWER_CYCLE_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

DS14964 - Rev 1 page 192/239

Table 250. DSR6 (0x26) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	LP_READY	SWDBG_VIO	SWDBG_STATE	RES	RES	RES	RES
Reserved	LOW-POWER Ready bit	Software debug VIO bit	Software debug status	Reserved bit	Reserved bit	Reserved bit	Reserved bit

Table 251. DSR6 (0x26) MSB description

Bit	Name	Description
23	RES	Reserved
22	LP_READY	1: Transition from FULL-POWER to LOW-POWER occurred. IRQ generated and this bit is set when this occurs if not masked by MASK_LP_READY_IRQ
21	SWDBG VIO	SWDBG is linked to V_{IO} up to the end of the timeout following the power-up sequence.
21	30000_00	If not masked, IRQ is generated and the watchdog starts with L.O.W.
		State of SWDBG input pin with VIO thresholds
20	SWDBG STATE	1: Input level is high
20	OVEDEO_OTATE	The bit shows the current state of SWDBG and cannot be cleared ("live bit")
		0: Input level is low
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 252. DSR6 (0x26)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (RC1L)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	FIN1_STATE	IGN_STATE	WU_STATE	IGN_WAKE	WU_WAKE	RES	TIMER_WAKE
Reserved bit	FIN1 state bit	IGN state bit	Wake-up state bit	IGN wake up bit	Wake-up bit	Reserved bit	Timer wake up bit

Table 253. DSR6 (0x26) description

Bit	Name	Description				
15	RES	Reserved				
		State of FIN1 input				
14	FIN1 STATE	1: Input level is high				
14	TINI_STATE	The bit shows the current state of FIN1 and cannot be cleared ("live bit")				
		0: Input level is low				
		State of IGN input				
		1: Input level is high				
13	IGN STATE	The bit shows the momentary status of IGN and cannot be cleared ("live bit")				
	ION_STATE	Note that the status is only valid if IGN is configured as wake-up input in configuration register (0x05). Otherwise this bit is read at its previous logic state				
		0: Input level is low				
12	VA/LL STATE	State of WU input				
12	WU_STATE	1: Input level is high				

DS14964 - Rev 1 page 193/239

Bit	Name	Description				
	The bit shows the momentary status of WU and cannot be cleared ("live bit")					
		Note that the status is only valid if WU is configured as wake-up input in configuration register (0x05). Otherwise this bit is read at its previous logic state				
		0: Input level is low				
		Wake-up by IGN: shows wake up source				
11	IGN_WAKE	1: Wake-up				
		Bits are latched until a "Read and clear" command				
		Wake-up by WU: shows wake up source				
10	WU_WAKE	1: Wake-up				
		Bits are latched until a "Read and clear" command				
9	RES	Reserved				
		Wake-up by timer: shows wake up source				
8	TIMER_WAKE	1: Wake-up				
		Bits are latched until a "Read and clear" command				

Table 254. DSR6 (0x26) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (RC1L)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
IRQ_ECHO	NRST_ECHO	IRQ_SENT	NFSO1_ECHO	CRC3	CRC2	CRC1	CRC0
Interrupt echo bit	NRST echo bit	Interrupt sent bit	NFSO1_echo bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 255. DSR6 (0x26) LSB description

Bit	Name	Description
		Indicates current status of IRQ pin.
7	IRQ_ECHO	1: High
		It is a live bit
		Indicates current status of NRST pin.
6	NRST_ECHO	1: High
		It is a live bit
5	IRQ_SENT	IRQ sent from IRQ_REQUEST rising
3	INQ_SENT	1: IRQ sent
		Indicates current status of NFSO1 pin.
4	NFSO1_ECHO	1: High
		It is a live bit
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 256. DSR7 (0x27) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (RC1L)	0 (RC1L)	0 (R)	0 (RC1L)	0 (R)	0 (R)	0 (R)

DS14964 - Rev 1 page 194/239

	Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
	RES	VPOR	LDO1_PG_OK	LDO2_ENA_STATUS	LDO2_PG_OK	FCCU_ENA_ECHO	WD_ENA_ECHO	WD_TIMER_STATE_1
Γ	Reserved	Vs power on reset bit	LDO1 power-good ok bit	LDO2 enable status bit	LDO2 power-good ok bit	FCCU enable echo bit	Watchdog enable echo bit	Watchdog timer state bit 1

Table 257. DSR7 (0x27) MSB description

Bit	Name	Description
23	RES	Reserved
20	VDOD	V _S power-on reset threshold (VPOR) reached.
22	VPOR	Bit is latched until a "Read and clear" command
21	LDO1 DC OK	Indicates power-good LDO1.
21	LDO1_PG_OK	Bit is latched until a "Read and clear" command
		LDO2 enable status bit. Live bit
20	LDO2_ENA_STATUS	LDO2 is a tracker and when disabled by SPI or UV or OV, this bit indicates the enable status
20	LDOZ_ENA_STATOS	1: Enabled
		0: Disabled
19	LDO2_PG_OK	1: Power-good reached after the regulator has been turned ON by power-up sequence or through SPI
19	LD02_1 0_0K	0: PG not reached
		echo of FCCU enable signal at FCCU block input
18	FCCU_ENA_ECHO	1: Indicates that the FCCU is running
10	1000_ENA_E0110	Live bit
		0: Indicates that FCCU block is disabled
		echo of WD enable signal at WD block input
		1: Indicates that the WD is running
17	WD_ENA_ECHO	Live bit
		0: Indicates that WD block is disabled
		It occurs in software debug or in test mode
		Watchdog timer status
16	WD_TIMER_STATE_1	00: WD counter in too early window trig
	WD_HWEN_OTATE_T	01: WD counter in valid window trig
		11: WD counter in too late window trig

Table 258. DSR7 (0x27)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)
WD_TIMER_STATE_0	WDFAIL_CNT_3	WDFAIL_CNT_2	WDFAIL_CNT_1	WDFAIL_CNT_0	TSD_CNT_FAIL_1	TSD_CNT_FAIL_0	POWUP_RETRY_CNT_1
Watchdog timer state bit 0	Watchdog fail count bit 3	Watchdog fail count bit 2	Watchdog fail count bit 1	Watchdog fail count bit 0	Thermal shutdown fail count bit 1	Thermal shutdown fail count bit 0	Power up retry count bit 1

Table 259. DSR7 (0x27) description

Bit	Name	Description
15	WD_TIMER_STATE_0	
14	WDFAIL_CNT_3	Indicates number of consecutive watchdog trig faults, from 1 to 15 Bits cannot be cleared, will be cleared with a valid watchdog trig during a long open window, or in DEEP-SLEEP
13	WDFAIL_CNT_2	

DS14964 - Rev 1 page 195/239

Bit	Name	Description
12	WDFAIL_CNT_1	
11	WDFAIL_CNT_0	
10	TSD_CNT_FAIL_1	Thermal shut-down sequence retry counter
9	TSD_CNT_FAIL_0	
8	POWUP_RETRY_CNT_1	Power-up sequence retry counter MCU must clear this counter in REC-1 or ACTIVE state

Table 260. DSR7 (0x27) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (RC1L)	- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
POWUP_RETRY_CNT_0	RES	NVM_PROG_OK	NVM_PROG_DONE	CRC3	CRC2	CRC1	CRC0
Power up retry count bit 0	Reserved	NVM program ok bit	NVM program done bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 261. DSR7 (0x27) LSB description

Bit	Name	Description
7	POWUP_RETRY_CNT_0	
6	RES	
5	NVM_PROG_OK	U-NVM programming is completed without error
4	NVM_PROG_DONE	U-NVM programming is completed
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 262. DSR8 (0x28) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)
RES	FCCU_LAST_STABLE_12	FCCU_LAST_STABLE_11	FCCU_LAST_STABLE_10	FCCU_LAST_STABLE_9	FCCU_LAST_STABLE_8	FCCU_LAST_STABLE_7	FCCU_LAST_STABLE_6
Reserved	FCCU last stable bit 12	FCCU last stable bit 11	FCCU last stable bit 10	FCCU last stable bit 9	FCCU last stable bit 8	FCCU last stable bit 7	FCCU last stable bit 6

Table 263. DSR8 (0x28) MSB description

Bit	Name	Description
23	RES	Reserved
22	FCCU_LAST_STABLE_12	
21	FCCU_LAST_STABLE_11	
20	FCCU_LAST_STABLE_10	
19	FCCU_LAST_STABLE_9	
18	FCCU_LAST_STABLE_8	
17	FCCU_LAST_STABLE_7	
16	FCCU_LAST_STABLE_6	

DS14964 - Rev 1 page 196/239

Table 264. DSR8 (0x28)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R)	0 (R)						
FCCU_LAST_STABLE_5	FCCU_LAST_STABLE_4	FCCU_LAST_STABLE_3	FCCU_LAST_STABLE_2	FCCU_LAST_STABLE_1	FCCU_LAST_STABLE_0	FORCED_SLEEP_REGFAIL	REG_FAIL_CNT_1
FCCU last stable bit 5	FCCU last stable bit 4	FCCU last stable bit 3	FCCU last stable bit 2	FCCU last stable bit 1	FCCU last stable bit 0	Forced sleep regulator fail bit	Regulator fail counter bit 1

Table 265. DSR8 (0x28) description

Bit	Name	Description
15	FCCU_LAST_STABLE_5	
14	FCCU_LAST_STABLE_4	
13	FCCU_LAST_STABLE_3	
12	FCCU_LAST_STABLE_2	
11	FCCU_LAST_STABLE_1	
10	FCCU_LAST_STABLE_0	FCCU monitor: last stable value duration
9	FORCED_SLEEP_REGFAIL	1: When REG_FAIL_CNT = 3, then FSM transitions from REC_2 to DEEP-SLEEP (similar to TSD_CNT_FAIL) and in DEEP-SLEEP 0: No transition to DEEP-SLEEP due to REG_FAIL_CNT
8	REG_FAIL_CNT_1	

Table 266. DSR8 (0x28) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
REG_FAIL_CNT_0	ABIST_BOOST_IGNORED	LBIST_COMPLETE	ABIST_COMPLETE	CRC3	CRC2	CRC1	CRC0
Regulator fail counter bit 0	ABIST boost ignored bit			Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 267. DSR8 (0x28) LSB description

Bit	Name	Description
7	REG_FAIL_CNT_0	REG_FAIL_CNT is incremented when a reg_fail event occurs on any regulator with REGFAIL_GO_REC = 1 (that is one counter for all regulators with REGFAIL_GO_REC = 1)
6	ABIST_BOOST_IGNORED	Boost PWM activity has been detected during the ABIST test. So the BOOST comparator has not been covered by ABIST to not signal a wrong ABIST error Boost ABIST well run
5	LBIST_COMPLETE	Define logical BIST ending 1: LBIST is complete 0: LBIST not complete or not running
4	ABIST_COMPLETE	Define analog BIST ending 1: ABIST is complete 0: ABIST not complete or not running
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

DS14964 - Rev 1 page 197/239

Table 268. DSR9 (0x29) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 269. DSR9 (0x29) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 270. DSR9 (0x29)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	TEMP_CL0_9	TEMP_CL0_8	TEMP_CL0_7	TEMP_CL0_6	TEMP_CL0_5	TEMP_CL0_4
Reserved	Reserved	Temperature central cluster bit 9	Temperature central cluster bit 8	Temperature central cluster bit 7	Temperature central cluster bit 6	Temperature central cluster bit 5	Temperature central cluster bit 4

Table 271. DSR9 (0x29) description

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	TEMP_CL0_9	Temperature cluster 0: Central cluster Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	TEMP_CL0_8	
11	TEMP_CL0_7	
10	TEMP_CL0_6	
9	TEMP_CL0_5	
8	TEMP_CL0_4	

Table 272. DSR9 (0x29) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TEMP_CL0_3	TEMP_CL0_2	TEMP_CL0_1	TEMP_CL0_0	CRC3	CRC2	CRC1	CRC0

DS14964 - Rev 1 page 198/239

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Temperature central cluster bit	Cyclic redundancy	Cyclic redundancy	Cyclic redundancy	Cyclic redundancy			
3	2	1	0	checking bit 3	checking bit 2	checking bit 1	checking bit 0

Table 273. DSR9 (0x29) LSB description

Bit	Name	Description
7	TEMP_CL0_3	
6	TEMP_CL0_2	
5	TEMP_CL0_1	
4	TEMP_CL0_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 274. DSR10 (0x2A) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 275. DSR10 (0x2A) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 276. DSR10 (0x2A)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	TEMP_CL1_9	TEMP_CL1_8	TEMP_CL1_7	TEMP_CL1_6	TEMP_CL1_5	TEMP_CL1_4
Reserved	Reserved	Temperature cluster 1 bit 9	Temperature cluster 1 bit 8	Temperature cluster 1 bit 7	Temperature cluster 1 bit 6	Temperature cluster 1 bit 5	Temperature cluster 1 bit 4

Table 277. DSR10 (0x2A) description

Bit	Name	Description
15	RES	Reserved

DS14964 - Rev 1 page 199/239

Bit	Name	Description
14	RES	Reserved
		Temperature cluster 1
13	TEMP_CL1_9	Bits cannot be cleared
		(a clear command generates a SPI_UNDEF_ADD flag)
12	TEMP_CL1_8	
11	TEMP_CL1_7	
10	TEMP_CL1_6	
9	TEMP_CL1_5	
8	TEMP_CL1_4	

Table 278. DSR10 (0x2A) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TEMP_CL1_3	TEMP_CL1_2	TEMP_CL1_1	TEMP_CL1_0	CRC3	CRC2	CRC1	CRC0
Temperature cluster 1 bit 3	Temperature cluster 1 bit 2	Temperature cluster 1 bit 1	Temperature cluster 1 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 279. DSR10 (0x2A) LSB description

Bit	Name	Description
7	TEMP_CL1_3	
6	TEMP_CL1_2	
5	TEMP_CL1_1	
4	TEMP_CL1_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 280. DSR11 (0x2B) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 281. DSR11 (0x2B) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved

DS14964 - Rev 1 page 200/239

Bit	Name	Description
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 282. DSR11 (0x2B)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	TEMP_CL2_9	TEMP_CL2_8	TEMP_CL2_7	TEMP_CL2_6	TEMP_CL2_5	TEMP_CL2_4
Reserved	Reserved	Temperature cluster 2 bit 9	Temperature cluster 2 bit 8	Temperature cluster 2 bit 7	Temperature cluster 2 bit 6	Temperature cluster 2 bit 5	Temperature cluster 2 bit 4

Table 283. DSR11 (0x2B) description

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	TEMP_CL2_9	Temperature cluster 2 Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	TEMP_CL2_8	
11	TEMP_CL2_7	
10	TEMP_CL2_6	
9	TEMP_CL2_5	
8	TEMP_CL2_4	

Table 284. DSR11 (0x2B) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TEMP_CL2_3	TEMP_CL2_2	TEMP_CL2_1	TEMP_CL2_0	CRC3	CRC2	CRC1	CRC0
Temperature cluster 2 bit 3	Temperature cluster 2 bit 2	Temperature cluster 2 bit 1	Temperature cluster 2 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 285. DSR11 (0x2B) LSB description

Bit	Name	Description
7	TEMP_CL2_3	
6	TEMP_CL2_2	
5	TEMP_CL2_1	
4	TEMP_CL2_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

DS14964 - Rev 1 page 201/239

Table 286. DSR12 (0x2C) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 287. DSR12 (0x2C) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 288. DSR12 (0x2C)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	TEMP_CL3_9	TEMP_CL3_8	TEMP_CL3_7	TEMP_CL3_6	TEMP_CL3_5	TEMP_CL3_4
Reserved	Reserved	Temperature cluster 3 bit 9	Temperature cluster 3 bit 8	Temperature cluster 3 bit 7	Temperature cluster 3 bit 6	Temperature cluster 3 bit 5	Temperature cluster 3 bit 4

Table 289. DSR12 (0x2C) description

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	TEMP_CL3_9	Temperature cluster 3 Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	TEMP_CL3_8	
11	TEMP_CL3_7	
10	TEMP_CL3_6	
9	TEMP_CL3_5	
8	TEMP_CL3_4	

Table 290. DSR12 (0x2C) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TEMP_CL3_3	TEMP_CL3_2	TEMP_CL3_1	TEMP_CL3_0	CRC3	CRC2	CRC1	CRC0

DS14964 - Rev 1 page 202/239

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Temperature cluster 3 bit 3	Temperature cluster 3 bit 2	Temperature cluster 3 bit 1	Temperature cluster 3 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 291. DSR12 (0x2C) LSB description

Bit	Name	Description
7	TEMP_CL3_3	
6	TEMP_CL3_2	
5	TEMP_CL3_1	
4	TEMP_CL3_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 292. DSR13 (0x2D) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 293. DSR13 (0x2D) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 294. DSR13 (0x2D)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	TEMP_CL4_9	TEMP_CL4_8	TEMP_CL4_7	TEMP_CL4_6	TEMP_CL4_5	TEMP_CL4_4
Reserved	Reserved	Temperature cluster 4 bit 9	Temperature cluster 4 bit 8	Temperature cluster 4 bit 7	Temperature cluster 4 bit 6	Temperature cluster 4 bit 5	Temperature cluster 4 bit 4

Table 295. DSR13 (0x2D) description

Bit	Name	Description
15	RES	Reserved

DS14964 - Rev 1 page 203/239

Bit	Name	Description
14	RES	Reserved
		Temperature cluster 4
13	TEMP_CL4_9	Bits cannot be cleared
		(a clear command generates a SPI_UNDEF_ADD flag)
12	TEMP_CL4_8	
11	TEMP_CL4_7	
10	TEMP_CL4_6	
9	TEMP_CL4_5	
8	TEMP_CL4_4	

Table 296. DSR13 (0x2D) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
TEMP_CL4_3	TEMP_CL4_2	TEMP_CL4_1	TEMP_CL4_0	CRC3	CRC2	CRC1	CRC0
Temperature cluster 4 bit 3	Temperature cluster 4 bit 2	Temperature cluster 4 bit 1	Temperature cluster 4 bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 297. DSR13 (0x2D) LSB description

Bit	Name	Description
7	TEMP_CL4_3	
6	TEMP_CL4_2	
5	TEMP_CL4_1	
4	TEMP_CL4_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 298. DSR14 (0x2E) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 299. DSR14 (0x2E) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved

DS14964 - Rev 1 page 204/239

Bit	Name	Description
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 300. DSR14 (0x2E)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)
RES	RES	VS_9	VS_8	VS_7	VS_6	VS_5	VS_4
Reserved	Reserved	VS voltage Level bit 9	VS voltage Level bit 8	VS voltage Level bit 7	VS voltage Level bit 6	VS voltage Level bit 5	VS voltage Level bit 4

Table 301. DSR14 (0x2E)

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	VS_9	Voltage level on VS pin Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	VS_8	
11	VS_7	
10	VS_6	
9	VS_5	
8	VS_4	

Table 302. DSR14 (0x2E) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
VS_3	VS_2	VS_1	VS_0	CRC3	CRC2	CRC1	CRC0
VS voltage Level bit 3	VS voltage Level bit 2	VS voltage Level bit 1	VS voltage Level bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 303. DSR14 (0x2E) LSB description

Bit	Name	Description
7	VS_3	
6	VS_2	
5	VS_1	
4	VS_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

DS14964 - Rev 1 page 205/239

Table 304. DSR15 (0x2F) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 305. DSR15 (0x2F) MSB

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 306. DSR15 (0x2F)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	WU_9	WU_8	WU_7	WU_6	WU_5	WU_4
Reserved	Reserved	Wake-up voltage level bit 9	Wake-up voltage level bit 8	Wake-up voltage level bit 7	Wake-up voltage level bit 6	Wake-up voltage level bit 5	Wake-up voltage level bit 4

Table 307. DSR15 (0x2F) description

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	WU_9	Voltage level on WU pin Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	WU_8	
11	WU_7	
10	WU_6	
9	WU_5	
8	WU_4	

Table 308. DSR15 (0x2F) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
WU_3	WU_2	WU_1	WU_0	CRC3	CRC2	CRC1	CRC0

DS14964 - Rev 1 page 206/239

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Wake-up voltage level bit 3	Wake-up voltage level bit 2	Wake-up voltage level bit 1	Wake-up voltage level bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 309. DSR15 (0x2F) LSB description

Bit	Name	Description
7	WU_3	
6	WU_2	
5	WU_1	
4	WU_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 310. DSR16 (0x30) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 311. DSR16 (0x30) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 312. DSR16 (0x30)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	IGN_9	IGN_8	IGN_7	IGN_6	IGN_5	IGN_4
Reserved	Reserved	IGN voltage level bit 9	IGN voltage level bit 8	IGN voltage level bit 7	IGN voltage level bit 6	IGN voltage level bit 5	IGN voltage level bit 4

Table 313. DSR16 (0x30) description

Bit	Name	Description
15	RES	Reserved

DS14964 - Rev 1 page 207/239

Bit	Name	Description
14	RES	Reserved
13	IGN_9	Voltage level on IGN pin Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	IGN_8	(a clear command generates a SFI_ONDELI_ADD liag)
11	IGN_7	
10	IGN_6	
9	IGN_5	
8	IGN_4	

Table 314. DSR16 (0x30) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
IGN_3	IGN_2	IGN_1	IGN_0	CRC3	CRC2	CRC1	CRC0
IGN voltage level bit 3	IGN voltage level bit 2	IGN voltage level bit 1	IGN voltage level bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 315. DSR16 (0x30) LSB description

Bit	Name	Description
7	IGN_3	
6	IGN_2	
5	IGN_1	
4	IGN_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 316. DSR17 (0x31) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)							
RES							
Reserved							

Table 317. DSR17 (0x31) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	RES	Reserved
19	RES	Reserved

DS14964 - Rev 1 page 208/239

Bit	Name	Description
18	RES	Reserved
17	RES	Reserved
16	RES	Reserved

Table 318. DSR17 (0x31)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)	- (R0)	0 (R)					
RES	RES	FBB_9	FBB_8	FBB_7	FBB_6	FBB_5	FBB_4
Reserved	Reserved	FBB voltage level bit 9	FBB voltage level bit 8	FBB voltage level bit 7	FBB voltage level bit 6	FBB voltage level bit 5	FBB voltage level bit 4

Table 319. DSR17 (0x31) description

Bit	Name	Description
15	RES	Reserved
14	RES	Reserved
13	FBB_9	Voltage level on FBB pin Bits cannot be cleared (a clear command generates a SPI_UNDEF_ADD flag)
12	FBB_8	
11	FBB_7	
10	FBB_6	
9	FBB_5	
8	FBB_4	

Table 320. DSR17 (0x31) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
FBB_3	FBB_2	FBB_1	FBB_0	CRC3	CRC2	CRC1	CRC0
FBB voltage Level bit 3	FBB voltage Level bit 2	FBB voltage Level bit 1	FBB voltage Level bit 0	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 321. DSR17 (0x31) LSB description

Bit	Name	Description
7	FBB_3	
6	FBB_2	
5	FBB_1	
4	FBB_0	
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

DS14964 - Rev 1 page 209/239

Table 322. DSR18 (0x32) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)
RES	RES	RES	BUCK2_FBLOSS	BUCK1_FBLOSS	NVM_COMPARE_ENA_STATUS	WD_TIME_STATUS_3	WD_TIME_STATUS_2
Reserved	Reserved	Reserved	BUCK2 feedback loss bit	BUCK1 feedback loss bit	NVM compare enable status bit	Watchdog time status bit 3	Watchdog time status bit 2

Table 323. DSR18 (0x32) MSB description

Bit	Name	Description
23	RES	Reserved
22	RES	Reserved
21	RES	Reserved
20	BUCK2 FBLOSS	1: BUCK2 FB pin detection
20	BOCKZ_I BLOSS	0: No error
19	BUCK1 FBLOSS	1: BUCK1 FB pin detection
10	BOOKI_I BEOOG	0: No error
18	NVM_COMPARE_ENA_STATUS	1: Status bit from ST_NVM to NVM_COMPARE_DISABLE inverted bit for user read
17	WD_TIME_STATUS_3	Live bit
16	WD_TIME_STATUS_2	Live bit

Table 324. DSR18 (0x32)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)	0 (R)
WD_TIME_STATUS_1	WD_TIME_STATUS_0	VBUCK3_ENA_STATUS	VBUCK2_ENA_STATUS	VBUCK1_ENA_STATUS	LDO1_ENA_STATUS	OUTHS_ENA_STATUS	LOW_STATUS
Watchdog time status bit 1	Watchdog time status bit 0	VBUCK3 enable status bit	VBUCK2 enable status bit	VBUCK1 enable status bit	LDO1 enable status bit	OUTHS enable status bit	LOW status bit

Table 325. DSR18 (0x32) description

Bit	Name	Description
15	WD_TIME_STATUS_1	Live bit
14	WD_TIME_STATUS_0	Live bit
13	VBUCK3_ENA_STATUS	Live bit
12	VBUCK2_ENA_STATUS	Live bit
11	VBUCK1_ENA_STATUS	Live bit
10	LDO1_ENA_STATUS	Live bit
9	OUTHS_ENA_STATUS	Live bit
		Live bit
8	LOW_STATUS	1: Watchdog is counting in LOW. Current window is LOW_SET
		0: Watchdog is not counting in LOW. Current window is WD_TIME_STATUS

Table 326. DSR18 (0x32) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
BOOST_ENA_STATUS	FCCU_ENA_STATUS	RES	RES	CRC3	CRC2	CRC1	CRC0

DS14964 - Rev 1 page 210/239

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Boost enable status bit	FCCU enable status bit	Reserved bit	Reserved bit	Cyclic redundancy checking bit 3	Cyclic redundancy checking bit 2	Cyclic redundancy checking bit 1	Cyclic redundancy checking bit 0

Table 327. DSR18 (0x32) LSB description

Bit	Name	Description
7	BOOST_ENA_STATUS	Live bit
6	FCCU_ENA_STATUS	Live bit
5	RES	Reserved
4	RES	Reserved
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 328. DSR19 (0x33) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	0 (R)				
RES	LDT_TIMER_VALUE_23	LDT_TIMER_VALUE_22	LDT_TIMER_VALUE_21	LDT_TIMER_VALUE_20	LDT_TIMER_VALUE_19	LDT_TIMER_VALUE_18	LDT_TIMER_VALUE_17
reserved	Long Duration Timer value Bit 23	Long Duration Timer value Bit 22	Long Duration Timer value Bit 21	Long Duration Timer value Bit 20	Long Duration Timer value Bit 19	Long Duration Timer value Bit 18	Long Duration Timer value Bit 17

Table 329. DSR19 (0x33) MSB description

Bit	Name	Description
23	RES	reserved
22	LDT_TIMER_VALUE_23	Live bit
21	LDT_TIMER_VALUE_22	Live bit
20	LDT_TIMER_VALUE_21	Live bit
19	LDT_TIMER_VALUE_20	Live bit
18	LDT_TIMER_VALUE_19	Live bit
17	LDT_TIMER_VALUE_18	Live bit
16	LDT_TIMER_VALUE_17	Live bit

Table 330. DSR19 (0x33)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
0 (R)	0 (R)						
LDT_TIMER_VALUE_16	LDT_TIMER_VALUE_15	LDT_TIMER_VALUE_14	LDT_TIMER_VALUE_13	LDT_TIMER_VALUE_12	LDT_TIMER_VALUE_11	LDT_TIMER_VALUE_10	LDT_TIMER_VALUE_9
Long Duration Timer value Bit 16	Long Duration Timer value Bit 15	Long Duration Timer value Bit 14	Long Duration Timer value Bit 13	Long Duration Timer value Bit 12	Long Duration Timer value Bit 11	Long Duration Timer value Bit 10	Long Duration Timer value Bit 9

Table 331. DSR19 (0x33) description

Bit	Name	Description
15	LDT_TIMER_VALUE_16	Live bit
14	LDT_TIMER_VALUE_15	Live bit

DS14964 - Rev 1 page 211/239

Bit	Name	Description
13	LDT_TIMER_VALUE_14	Live bit
12	LDT_TIMER_VALUE_13	Live bit
11	LDT_TIMER_VALUE_12	Live bit
10	LDT_TIMER_VALUE_11	Live bit
9	LDT_TIMER_VALUE_10	Live bit
8	LDT_TIMER_VALUE_9	Live bit

Table 332. DSR19 (0x33) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0 (R)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
LDT_TIMER_VALUE_8	LDT_TIMER_VALUE_7	LDT_TIMER_VALUE_6	LDT_TIMER_VALUE_5	CRC3	CRC2	CRC1	CRC0
Long Duration Timer value Bit 8	Long Duration Timer value Bit 7	Long Duration Timer value Bit 6	Long Duration Timer value Bit 5	Cyclic Redundancy Checking Bit 3	Cyclic Redundancy Checking Bit 2	Cyclic Redundancy Checking Bit 1	Cyclic Redundancy Checking Bit 0

Table 333. DSR19 (0x33) LSB description

Bit	Name	Description
7	LDT_TIMER_VALUE_8	Live Bit
6	LDT_TIMER_VALUE_7	Live Bit
5	LDT_TIMER_VALUE_6	Live Bit
4	LDT_TIMER_VALUE_5	Live Bit
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

Table 334. DSR20 (0x34) MSB

Bit 23	Bit 22	Bit 21	Bit 20	Bit 19	Bit 18	Bit 17	Bit 16
- (R0)	- (R0)	- (R0)	0 (R)	0 (R)	0 (R)	0 (RC1L)	0 (R)
RES	LDT_TIMER_VALUE_4	LDT_TIMER_VALUE_3	LDT_TIMER_VALUE_2	LDT_TIMER_VALUE_1	LDT_TIMER_VALUE_0	LDT_WAKE	LDT_RUNNING
reserved	Long Duration Timer value Bit 4	Long Duration Timer value Bit 3	Long Duration Timer value Bit 2	Long Duration Timer value Bit 1	Long Duration Timer value Bit 0	Long Duration Wake up Bit	Long Duration Trunning Bit

Table 335. DSR20 (0x34) MSB description

Bit	Name	Description
23	RES	reserved
22	LDT_TIMER_VALUE_4	Live bit
21	LDT_TIMER_VALUE_3	Live bit
20	LDT_TIMER_VALUE_2	Live bit
19	LDT_TIMER_VALUE_1	Live bit
18	LDT_TIMER_VALUE_0	Live bit
17	LDT_WAKE	Long Duration wake up bit
16	LDT RUNNING	Long Duration status bit

DS14964 - Rev 1 page 212/239

Bit	Name	Description
		Live bit

Table 336. DSR20 (0x34)

Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8
- (R0)							
RES							
reserved							

Table 337. DSR20 (0x34) description

Bit	Name	Description
15	RES	reserved
14	RES	reserved
13	RES	reserved
12	RES	reserved
11	RES	reserved
10	RES	reserved
9	RES	reserved
8	RES	reserved

Table 338. DSR20 (0x34) LSB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
- (R0)	- (R0)	- (R0)	- (R0)	0 (RC1L)	0 (RC1L)	0 (RC1L)	0 (RC1L)
RES	RES	RES	RES	CRC3	CRC2	CRC1	CRC0
reserved	reserved	reserved	reserved	Cyclic Redundancy Checking Bit 3	Cyclic Redundancy Checking Bit 2	Cyclic Redundancy Checking Bit 1	Cyclic Redundancy Checking Bit 0

Table 339. DSR20 (0x34) LSB description

Bit	Name	Description
7	RES	reserved
6	RES	reserved
5	RES	reserved
4	RES	reserved
3	CRC 3	
2	CRC 2	
1	CRC 1	
0	CRC 0	

9.8 Status register that must be cleared to enter ACTIVE - FP mode

Table 340. Status register list to be cleared for ACTIVE - FP mode

Register	
abist_boost_ignored	

DS14964 - Rev 1 page 213/239

Register
abist_complete
boost_in_lp
boost_vdsmon_error
buck1_int_fail
buck1_oc
buck1_ov
buck1_pg_ok
buck1_pg_timeout
buck1_uv
buck2_int_fail
buck2_oc
buck2_ov
buck2_pg_ok
buck2_pg_timeout
buck2_uv
buck3_int_fail
buck3_oc
buck3_ov
buck3_pg_ok
buck3_pg_timeout
buck3_uv
bypass_vdsmon_error
current_mismatch
fbb_ov
fbb_uv
fccu_ena_echo_error
fccufail
forced_sleep_powup
fp_ready
fsm_comp_error
fsm_to_rec2
gndloss
ign_wake
int_reg_ov
int_reg_uv
irq_echo_error
irq_sent
lbist_complete
lbist_stopped
ldo1_pg_ok
ldo1_pg_timeout

DS14964 - Rev 1 page 214/239

Register
ldo1_uv
ldo2_ov
ldo2_pg_ok
ldo2_pg_timeout
ldo2_uv
lp_ready
nvm_comp_error
nvm_crc_error
osc_error
ouths_oc
ouths_ol
nrst_echo_error
spi_all_wakeup_disable
spi_clk_cnt
spi_crc_error
spi_csn_timeout
spi_reg_comp_error
spi_sdi_stuck_high
spi_sdi_stuck_low
spi_lbisted
spi_status_wrt
spi_undef_add
timer_wake
tsd_cl0
tsd_cl1
tsd_cl2
tsd_cl3
tsd_cl4
vio_uv
vpor
wdfail
wu_wake
forced_sleep_regfail

DS14964 - Rev 1 page 215/239

10 PCB layout recommendation

In designing devices embedding high frequency switching converters, PCB layout is very important because it affects noise pickup and can cause a good design to perform with results that are below expectations.

As a general rule, the connections for the power components should be on the top layer with wide, copper-filled areas or shapes. Moreover, it is desirable to make proper use of power planes and polygons for power distribution and heat dissipation.

Output capacitors, inductors and the SPSB100G itself should be as close to each other as possible. This helps to reduce the EMI radiated by the power traces due to the high switching currents through them and avoid inserting any other additional components necessary to put in place a suitable filtering action.

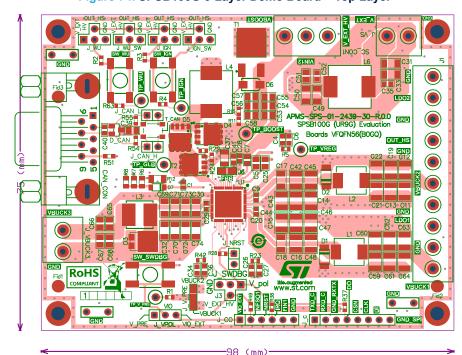
Place the input capacitors directly at the VIN12 and VIN3 pins of the SPSB100G. The feedback parts of the system should be kept away from the inductors and other noise sources.

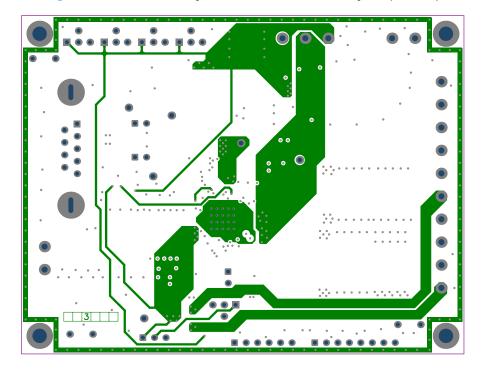
The critical bypass components such as capacitors for VINx and VREG should be close to their respective pins. It is important to place the feedback components including feedback resistors and compensation components close to the FBx and COMPx pins.

In a multilayer PCB, use at least one layer as a power ground plane, as it is not always necessary to have a dedicated signal ground plane. In any case, it is good practice to have sensitive analog signals referenced to a quiet ground location, in order to avoid any interference with the high current loop. The QFN is a thermally enhanced package. To effectively remove heat from the device, the exposed pad should be connected to the ground plane using via holes. Figures below illustrate the implementation of the layout guidelines outlined above, on the 4-layer and 6-layer demo boards.

As shown in the PCB layout:

- Allow enough copper for VIN, GND and PHx
- All bypass capacitors are placed as close as possible to their connecting pins
- Components for loop compensation are placed as close as possible to the COMP pin
- SGND as well as CANGND are connected to the inner PGND plane through via holes
- PHx nodes copper should only be routed on the top layer to minimize switching noises
- FBx trace routing is kept away from the SW node
- Thermal via holes are placed on VINx and PGND pads to improve thermal dissipation




Figure 74. SPSB100G 6-Layer Demo Board - Top Layer

DS14964 - Rev 1 page 216/239

Figure 75. SPSB100G 6-Layer Demo Board – Bottom Layer

DS14964 - Rev 1 page 217/239

Figure 77. SPSB100G 6-Layer Demo Board – Middle Layer 2 (Ground & Signal)

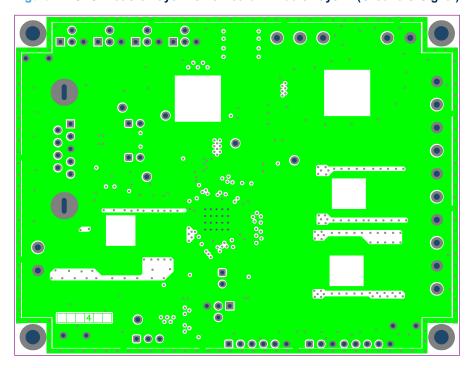
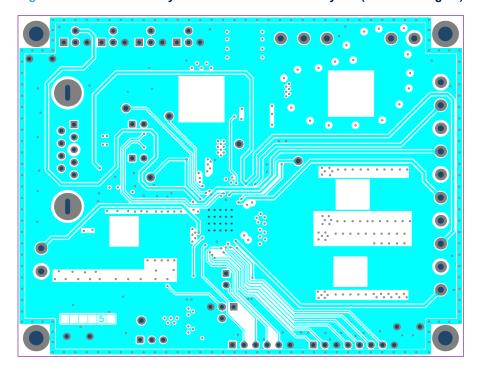



Figure 78. SPSB100G 6-Layer Demo Board – Middle Layer 3 (Ground & Signal)

DS14964 - Rev 1 page 218/239

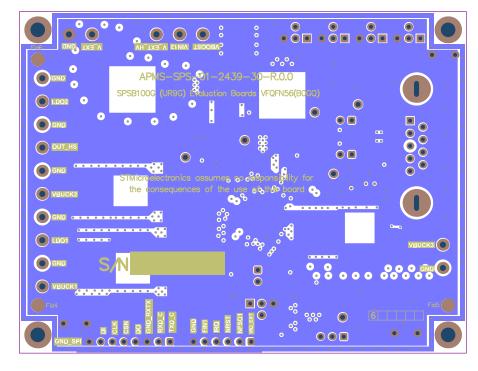


Figure 79. SPSB100G 6-Layer Demo Board - Middle Layer 4 (Ground)

10.1 PCB metal and component placement

Evaluation has shown that the best overall performance is achieved using the substrate/PCB layout. QFN devices should be placed to an accuracy of 0.050 mm on both X and Y axes. Self-centering behavior is highly dependent on solders and processes, and experiments should be run to confirm the limits of self-centering on specific processes.

10.2 Solder mask

We recommend that larger power or land area pads are Solder Mask Defined (SMD). This allows the underlying copper traces to be as large as possible, which helps in terms of current-carrying capability and device-cooling capability. When using SMD pads, the underlying copper traces should be at least 0.05 mm larger (on each edge) than the openings in the solder mask. This allows for layers to be misaligned by up to 0.1 mm on both axes. Ensure that the solder resist in-between the smaller signal lead areas is at least 0.15 mm wide, due to the high x/y aspect ratio of the solder mask strip.

DS14964 - Rev 1 page 219/239

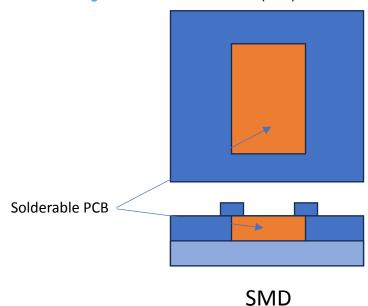


Figure 80. Solder mask defined (SMD)

10.3 Stencil design

Stencils for QFN packages can be used with a thicknesses of 0.100 - 0.250 mm (0.004-0.010"). Stencils thinner than 0.100 mm are unsuitable, as they deposit insufficient solder paste to make good solder joints with the ground pad. High reductions sometimes create similar problems. Stencils in the range of 0.125 mm - 0.200 mm (0.005 - 0.008"), with suitable reductions, yield the best results. This design is for a stencil thickness of 0.127 mm (0.005"). The reduction should be adjusted for stencils of other thicknesses.

DS14964 - Rev 1 page 220/239

11 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

11.1 QFN56L + 4 (8 x 8 mm) with wettable flank (half cut leads) package information

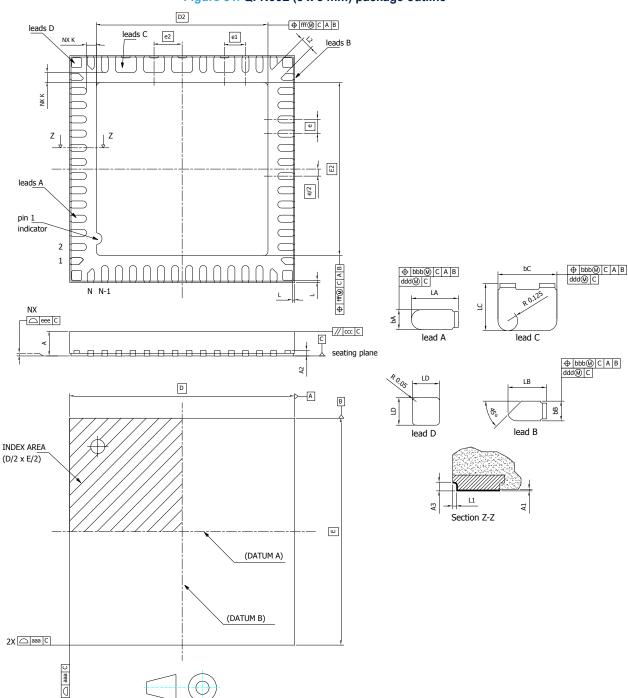
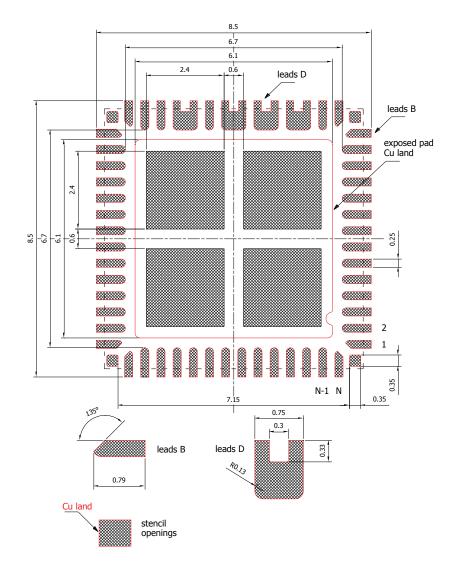


Figure 81. QFN56L (8 x 8 mm) package outline

DS14964 - Rev 1 page 221/239

Table 341. QFN56L (8 x 8 mm) mechanical data

Div	mm		
Dim.	Min.	Тур.	Max.
А	0.80	0.90	1.00
A1	0.00	-	0.05
A2		0.2 REF	'
A3	0.10		
D		8.00 BSC	
Е		8.00 BSC	
D1		VARIATION	
E1		VARIATION	
е		0.50 BSC	
e1		0.75 BSC	
e2		1.00 BSC	
L1		0.05 REF	
L2	0.38	0.43	0.48
LA	0.55	0.60	0.65
bA	0.20	0.25	0.30
LB	0.44	0.49	0.54
L1B	0.27	0.32	0.37
L2B	0.33	0.38	0.43
bB	0.20	0.25	0.30
LC	0.55	0.60	0.65
bC	0.70	0.75	0.80
LD	0.30	0.36	0.40
bD	0.30	0.36	0.40
Ф		45°	
R1		0.125	
k	0.20		
N		56+4	
	TOLERANCE OF FO	ORM AND POSITION	
aaa		0.15	
bbb		0.10	
ccc		0.10	
ddd		0.05	
eee		0.08	
fff		0.10	
NOTE		1,12	
REF			


EXPOSED PAD	VARIATION	
D1	E1	

DS14964 - Rev 1 page 222/239

EXPOSED PAD VARIATION							
VARIATION							
Α	6.00	6.10	6.20	6.00	6.10	6.20	10, 12
В							
С							

Figure 82. QFN56L (8 x 8 mm) recommended footprint - dimensions are in mm

DS14964 - Rev 1 page 223/239

12 Ordering information

Table 342. Order code

Order code	Phy	Package	Packing	NVM configuration	
SPSB100GTR	CAN-FD	QFN 8 x 8 56L + 4 WF	Tape and reel	System supply configuration 1	
SPSB100GBTR	N/A	QFN 6 X 6 30L + 4 WF	Tape and Teel	System supply configuration 1	

DS14964 - Rev 1 page 224/239

Revision history

Table 343. Document revision history

Date	Version	Changes
19-Nov-2025	1	Initial release.

DS14964 - Rev 1 page 225/239

Contents

1	Bloc	k diagr	rams	3
	1.1	Pin de	escription	5
2	Maxi	imum r	atings	9
	2.1	Opera	iting range	9
		2.1.1	Supply voltage ranges	9
	2.2	Absolu	ute maximum ratings	9
	2.3	ESD r	obustness	11
	2.4	Tempe	erature ranges and thermal data	11
3	Fund	ctional	description	14
	3.1	Supply	y configurations	14
		3.1.1	System supply configuration 1	
		3.1.2	Digital interface supply: VIO	
	3.2	Boost	controller	15
		3.2.1	Power-up/down and voltage drop behavior	16
		3.2.2	Boost modes	18
	3.3	Buck o	converters	20
		3.3.1	Buck1 converter	20
		3.3.2	Buck2 converter	21
		3.3.3	Buck3 converter	23
	3.4	Linear	voltage regulators	24
		3.4.1	LDO1	24
		3.4.2	LDO2	24
	3.5	Opera	ating modes	25
		3.5.1	Wake-up from DEEP-SLEEP to ACTIVE state	26
		3.5.2	Wake-up events in ACTIVE mode	27
	3.6	Functi	ional overview - state machine	27
		3.6.1	State machine without fault transitions	27
		3.6.2	State machine focusing on fault transitions	28
		3.6.3	States and transitions description	33
	3.7	Power	r-up and power-down sequence	38
		3.7.1	Power-up sequence	38
		3.7.2	Power-down sequence	39
	3.8	User N	NVM modification procedure	39
		3.8.1	Start-up with valid NVM data and NVM faults management	40
		3.8.2	USER-NVM emulation procedure	40

	3.8.3	USER-NVM programming procedure	40
	3.8.4	Loading USER-NVM data into RAM image	41
3.9	Wake-u	up inputs: IGN and WU	41
	3.9.1	Standard wake-up functionality	41
	3.9.2	Extended wake-up functionality	42
3.10	Configu	urable time-out window watchdog	42
3.11	FIN1 in	put	44
	3.11.1	Static protocol	44
	3.11.2	Dynamic protocol	44
	3.11.3	Reaction on error	45
3.12	High-si	de output OUT_HS	45
3.13	Fail-sat	fe output - NFSO1	45
3.14	Interrup	ot - IRQ	47
3.15	Reset of	output - NRST	49
3.16	CAN FI	D bus transceiver (only for SPSB100G)	49
	3.16.1	Features	49
	3.16.2	CAN transceiver operating modes	50
	3.16.3	CAN error handling	50
	3.16.4	Wake-up by CAN	51
	3.16.5	CAN looping mode	52
	3.16.6	Complete disabling of CAN transceiver	52
3.17	10-bit A	ADC	52
3.18	SW-De	bug mode	53
3.19	VREG		53
3.20	Long d	uration timer (LDT)	54
Prote	ection, o	diagnosis and monitoring signals	55
4.1	Supply	monitoring	55
	4.1.1	VS pin	55
	4.1.2	FBB pin	55
	4.1.3	VIO pin	55
4.2	Regula	tors output voltage protection	55
4.3	Boost a	and bypass V _{ds} monitoring	55
4.4	Boost a	activity monitoring	56
4.5	WU an	d IGN monitoring	56
4.6		I pin monitoring	
4.7		rature monitoring	
4.8	•	v-level monitors	

4

	4.9	Communication interface	59
	4.10	IRQ pin monitoring	59
	4.11	NRST pin monitoring	59
	4.12	NFSO1 pin monitoring	59
	4.13	Watchdog block monitoring	60
	4.14	FCCU block monitoring	60
	4.15	Analog BIST	60
	4.16	Logic BIST	60
	4.17	Safety checks	61
	4.18	NVM integrity monitor	61
5	Seria	al peripheral interface (SPI)	62
	5.1	ST SPI	62
		5.1.1 Physical Layer	62
	5.2	Signal description	63
		5.2.1 Clock and data characteristics	63
		5.2.2 Communication protocol	63
		5.2.3 Address definition	66
6	Fund	ctional safety concept	70
	6.1	Safety requirements	70
		6.1.1 SPSB100G in active high-power mode	70
		6.1.2 SPSB100G in active low-power mode	71
		6.1.3 MCU independent mode, CAN behavior	72
	6.2	Safety mechanisms	73
7	Elect	trical characteristics	74
	7.1	Supply monitoring	74
	7.2	Power ground loss monitoring	75
	7.3	Oscillator	75
	7.4	Power-on reset	76
	7.5	LDO1 voltage regulator	76
	7.6	LDO2 voltage regulator	77
	7.7	Boost controller	77
	7.8	BUCK1 converter	82
	7.9	BUCK2 converter	85
	7.10	BUCK3 converter	93
	7.11	Watchdog	98
	7.12	High-side output OUT_HS	. 100

	7.13	NFSO1 fail-safe output	.101
	7.14	Wake-up inputs (WU, IGN)	. 102
	7.15	CAN FD transceiver (only for SPSB100G)	. 103
	7.16	SPI	. 109
	7.17	SWDBG input	. 114
	7.18	ADC characteristics	. 115
	7.19	IRQ interrupt	. 115
	7.20	FIN1 input	. 116
	7.21	Timer	. 116
	7.22	Reset output (NRST)	. 117
	7.23	VREG voltage regulator	. 117
	7.24	BIST timing	. 118
	7.25	Long duration timer	. 118
8	Appli	ication circuit	119
	8.1	External recommended components	. 119
	8.2	External components calculation	. 122
		8.2.1 Buck1 and Buck2 inductor	. 122
		8.2.2 Buck3 inductor	. 122
9	SPI r	egisters	124
	9.1	Global Status Byte GSB	. 124
	9.2	Control register overview	. 127
	9.3	U_NVM register overview	. 129
	9.4	Status register overview	. 137
	9.5	Control registers	. 139
	9.6	U_NVM registers	. 157
	9.7	Status registers	. 183
	9.8	Status register that must be cleared to enter ACTIVE - FP mode	.213
10	PCB	layout recommendation	216
	10.1	PCB metal and component placement	.219
	10.2	Solder mask	.219
	10.3	Stencil design	.220
11	Pack	age information	221
	11.1	QFN56L + 4 (8 x 8 mm) with wettable flank (half cut leads) package information	.221
12	Orde	ring information	224
Rev	ision h	nistory	225

Table 1.	Pin configuration	
Table 2.	Operating conditions	
Table 3.	Absolute maximum ratings	
Table 4.	ESD protection	
Table 5.	Temperature ranges and thermal data	
Table 6.	Voltage regulators configuration	
Table 7.	Regulators and functions availability by operating modes	. 26
Table 8.	Wake up events description	. 27
Table 9.	IRQ events	
Table 10.	Thermal cluster definition	. 57
Table 11.	Operation codes	
Table 12.	Global status byte	. 65
Table 13.	RAM and ROM address range	. 66
Table 14.	RAM address	. 66
Table 15.	ROM address	. 66
Table 16.	Information registers map	. 67
Table 17.	SPI mode register	. 68
Table 18.	WD type/timing	. 68
Table 19.	WD bit position	. 69
Table 20.	Relation between MCU and SPSB100G modes	. 70
Table 21.	Safety requirement list while SPSB100G in active high-power mode	. 71
Table 22.	Safety requirement list while SPSB100G in active low-power mode	
Table 23.	Safety requirement list independent of MCU mode	
Table 24.	Supply and supply monitoring	
Table 25.	Power ground loss monitoring	. 75
Table 26.	Oscillator	
Table 27.	Power-on reset	. 76
Table 28.	LDO1	. 76
Table 29.	LDO2	
Table 30.	Boost controller	. 77
Table 31.	Buck 1 converter	. 82
Table 32.	Buck2 converter	
Table 33.	BUCK3 converter.	
Table 34.	Watchdog	. 98
Table 35.	High side Output OUT HS	
Table 36.	Low side outputs	
Table 37.	Wake-up Inputs	
Table 38.	CAN communication operating range	
Table 39.	CAN transmit data input: TxD C pin	
Table 40.	CAN Receive Data Output: Pin RxD C	
Table 41.	CAN transmitter dominant output characteristics	
Table 42.	CAN transmitter recessive output characteristics, normal and LP mode bias active	
Table 43.	CAN transmitter recessive output characteristics, LP mode bias inactive	
Table 44.	CAN receiver input characteristics during CAN normal and LP mode bias active	
Table 45.	CAN receiver input characteristics during CAN LOW-POWER mode, biasing inactive	
Table 46.	CAN receiver input resistance and capacitance	
Table 47.	CAN Transceiver delay	
Table 48.	Maximum leakage currents on CANH and CANL, unpowered	
Table 49.	Biasing control timings	
Table 50.	Input: CSN	
Table 51.	Inputs: CLK, SDI	
Table 52.	SDI, CLK and CSN timing	
Table 53.	Output: SDO	

DS14964 - Rev 1

Table 54.	CDO timing (and Figure CO CDI input timing)	444
	SDO timing (see Figure 69 SPI input timing)	
Table 55.	CSN timing (see Figure 71 SPI CSN - Output Timing)	
Table 56.	SWDBG input	
Table 57.	ADC characteristics	
Table 58.	Interrupt output	
Table 59.	FIN1 input	
Table 60.	Timer values	
Table 61.	Reset output	
Table 62.	VREG	
Table 63.	BIST timing	
Table 64.	Timer values	
Table 65.	External components (referred to pictures in the related sections)	
Table 66.	Global Status Byte GSB	
Table 67.	U_NVM Register Overview	
Table 68.	USER_NVM setting used for configuration1	
Table 69.	DCR1 (0x01) MSB	
Table 70.	DCR1 (0x01) MSB description	
Table 71.	DCR1 (0x01)	
Table 72.	DCR1 (0x01) description.	
Table 73.	DCR1 (0x01) LSB	
Table 74.	DCR1 (0x01) LSB description	
Table 75.	DCR2 (0x02) MSB	
Table 76.	DCR2 (0x02) MSB description	
Table 77.	DCR2 (0x02)	
Table 78.	DCR2 (0x02) description.	
Table 79.	DCR2 (0x02) LSB	
Table 80.	DCR2 (0x02) LSB description	
Table 81.	DCR3 (0x03) MSB	
Table 82.	DCR3 (0x03) MSB description	
Table 83.	DCR3 (0x03)	
Table 84.	DCR3 (0x03) description.	
Table 85.	DCR3 (0x03) LSB	
Table 86.	DCR3 (0x03) LSB description	
Table 87.	DCR4 (0x04) MSB	145
Table 88.	DCR4 (0x04) MSB description	
Table 89.	DCR4 (0x04)	145
Table 90.	DCR4 (0x04) description	146
Table 91.	DCR4 (0x04) LSB	146
Table 92.	DCR4 (0x04) LSB description	146
Table 93.	DCR5 (0x05) MSB	147
Table 94.	DCR5 (0x05) MSB description	147
Table 95.	DCR5 (0x05)	147
Table 96.	DCR5 (0x05) description	148
Table 97.	DCR5 (0x05) LSB	148
Table 98.	DCR5 (0x05) LSB description	148
Table 99.	DCR6 (0x06) MSB	149
Table 100.	DCR6 (0x06) MSB description	149
Table 101.	DCR6 (0x06)	149
Table 102.	DCR6 (0x06) description	150
Table 103.	DCR6 (0x06) LSB	150
	DCR6 (0x06) LSB description	
	DCR7 (0x07) MSB	
	DCR7 (0x07) MSB description	
Table 107.	DCR7 (0x07)	152
	DCR7 (0x07) description	

	DCR7 (0x07) LSB	
	DCR7 (0x07) LSB description	
	DCR8 (0x08) MSB	
	DCR8 (0x08) MSB description	
	DCR8 (0x08)	
	DCR8 (0x08) description.	
	DCR8 (0x08) LSB	
	DCR9 (0x09) MSB	
	DCR9 (0x09) MSB description	
	DCR9 (0x09)	
	DCR9 (0x09) description.	
	DCR9 (0x09) LSB	
	DCR9 (0x09) LSB description	
	DCR10 (0x0A) MSB	
	DCR10 (0x0A) MSB description	
	DCR10 (0x0A)	
	DCR10 (0x0A) description	
Table 127.	DCR10 (0x0A) LSB	158
Table 128.	DCR10 (0x0A) LSB description	158
Table 129.	DCR11 (0x0B) MSB	159
Table 130.	DCR11 (0x0B) MSB description	159
Table 131.	DCR11 (0x0B)	159
Table 132.	DCR11 (0x0B) description	159
	DCR11 (0x0B) LSB	
	DCR11 (0x0B) LSB description	
	DCR12 (0x0C) MSB	
	DCR12 (0x0C) MSB description.	
	DCR12 (0x0C)	
	DCR12 (0x0C) description	
	DCR12 (0x0C) LSB	
	DCR12 (0x0C) LSB description	
	DCR13 (0x0D) MSB	
	DCR13 (0x0D) MSB description	
	DCR13 (0x0D).	
	DCR13 (0x0D) LSB	164
	DCR13 (0x0D) LSB description	
	DCR14 (0x0E) MSB	
	DCR14 (0x0E) MSB description	
	DCR14 (0x0E)	
	DCR14 (0x0E) description	
	DCR14 (0x0E) LSB	
	DCR14 (0x0E) LSB description	
	DCR15 (0x0F) MSB	
Table 154.	DCR15 (0x0F) MSB description	166
	DCR15 (0x0F)	
Table 156.	DCR15 (0x0F) description	167
	DCR15 (0x0F) LSB	
	DCR15 (0x0F) LSB description	
	DCR16 (0x10) MSB	
	DCR16 (0x10) MSB description	
	DCR16 (0x10)	
	DCR16 (0x10) description	
Table 163.	DCR16 (0x10) LSB	169

	DCR16 (0x10) LSB description	
	DCR17 (0x11) MSB	
	DCR17 (0x11) MSB description	
	DCR17 (0x11)	
	DCR17 (0x11) description	
	DCR17 (0x11) LSB	
	DCR17 (0x11) LSB description	
	DCR18 (0x12) MSB	
	DCR18 (0x12) MSB description	
	DCR18 (0x12)	
	DCR18 (0x12) description	
	DCR18 (0x12) LSB	
	DCR18 (0x12) LSB description	
	DCR19 (0x13) MSB	
Table 178.	DCR19 (0x13) MSB description	173
	DCR19 (0x13)	
Table 180.	DCR19 (0x13) description	174
Table 181.	DCR19 (0x13) LSB	174
Table 182.	DCR19 (0x13) LSB description	174
Table 183.	DCR20 (0x14) MSB	174
Table 184.	DCR20 (0x14) MSB description	174
Table 185.	DCR20 (0x14)	175
Table 186.	DCR20 (0x14) description	175
Table 187.	DCR20 (0x14) LSB	176
Table 188.	DCR20 (0x14) LSB description	176
Table 189.	DCR21 (0x15) MSB	176
Table 190.	DCR21 (0x15) MSB description	177
Table 191.	DCR21 (0x15)	177
Table 192.	DCR21 (0x15) description	177
Table 193.	DCR21 (0x15) LSB	177
Table 194.	DCR21 (0x15) LSB description	177
Table 195.	DCR22 (0x16) MSB	178
Table 196.	DCR22 (0x16) MSB description	178
Table 197.	DCR22 (0x16)	178
Table 198.	DCR22 (0x16) description	178
Table 199.	DCR22 (0x16) LSB	179
Table 200.	DCR22 (0x16) LSB description	179
Table 201.	DCR23 (0x17) MSB	179
Table 202.	DCR23 (0x17) MSB description	179
Table 203.	DCR23 (0x17)	180
Table 204.	DCR23 (0x17) description	180
Table 205.	DCR23 (0x17) LSB	180
Table 206.	DCR23 (0x17) LSB	180
Table 207.	DCR24 (0x18) MSB	180
	DCR24 (0x18) MSB description	
	DCR24 (0x18)	
Table 210.	DCR24 (0x18) description	181
Table 211.	DCR24 (0x18) LSB	181
	DCR24 (0x18) LSB description	
	DCR25 (0x19) MSB	
	DCR25 (0x19) MSB description	
	DCR25 (0x19)	
	DCR25 (0x19)	
	DCR25 (0x19) LSB	
	DCR25 (0x19) LSB description	

	DSR1 (0x21) MSB	
	DSR1 (0x21) MSB description	
	DSR1 (0x21)	
	DSR1 (0x21) description	
	DSR1 (0x21) LSB	
	DSR1 (0x21) LSB description	
	DSR2 (0x22) MSB	
	DSR2 (0x22) MSB description	
	DSR2 (0x22)	
	DSR2 (0x22) description	
	DSR2 (0x22) LSB	
	DSR2 (0x22) LSB description	
	DSR3 (0x23) MSB	
	DSR3 (0x23) MSB description	
	DSR3 (0x23)	
	DSR3 (0x23) description	
	DSR3 (0x33) LSB	
	DSR3 (0x33) LSB description	
	DSR4 (0x24) MSB	
	DSR4 (0x24) MSB description	
	DSR4 (0x24)	
	DSR4 (0x24) description.	
	DSR4 (0x24) LSB	
	DSR4 (0x24) LSB description	
	DSR5 (0x25) MSB	
	DSR5 (0x25) MSB description	
	DSR5 (0x25)	
	DSR5 (0x25) description.	
	DEV_STATE binary code for state machine states/modes	
	DSR5 (0x25) LSB	
	DSR5 (0x25) LSB description	
	DSR6 (0x26) MSB	
	DSR6 (0x26) MSB description	
	DSR6 (0x26)	
	DSR6 (0x26) description.	193
Table 254.	DSR6 (0x26) LSB	194
Table 255.	DSR6 (0x26) LSB description	194
	DSR7 (0x27) MSB	
Table 257.	DSR7 (0x27) MSB description	195
	DSR7 (0x27)	
	DSR7 (0x27) description	
	DSR7 (0x27) LSB	
	DSR7 (0x27) LSB description	
	DSR8 (0x28) MSB	
	DSR8 (0x28) MSB description	
	DSR8 (0x28)	
	DSR8 (0x28) description	
	DSR8 (0x28) LSB	
	DSR8 (0x28) LSB description	
	DSR9 (0x29) MSB	
	DSR9 (0x29) MSB description	
	DSR9 (0x29)	
	DSR9 (0x29) description	
	DSR9 (0x29) LSB	
Table 273.	DSR9 (0x29) LSB description	199

	DSR10 (0x2A) MSB	
	DSR10 (0x2A) MSB description	
	DSR10 (0x2A)	
	DSR10 (0x2A) description.	
	DSR10 (0x2A) LSB	
	DSR10 (0x2A) LSB description	
	DSR11 (0x2B) MSB	
	DSR11 (0x2B) MSB description	
	DSR11 (0x2B)	
	DSR11 (0x2B) description	
Table 284.	DSR11 (0x2B) LSB	201
Table 285.	DSR11 (0x2B) LSB description	201
Table 286.	DSR12 (0x2C) MSB	202
Table 287.	DSR12 (0x2C) MSB description	202
Table 288.	DSR12 (0x2C)	202
Table 289.	DSR12 (0x2C) description	202
Table 290.	DSR12 (0x2C) LSB	202
Table 291.	DSR12 (0x2C) LSB description	203
Table 292.	DSR13 (0x2D) MSB	203
Table 293.	DSR13 (0x2D) MSB description	203
Table 294.	DSR13 (0x2D)	203
Table 295.	DSR13 (0x2D) description	203
Table 296.	DSR13 (0x2D) LSB	204
	DSR13 (0x2D) LSB description	
Table 298.	DSR14 (0x2E) MSB	204
	DSR14 (0x2E) MSB description	
Table 300.	DSR14 (0x2E)	205
	DSR14 (0x2E)	
	DSR14 (0x2E) LSB	
	DSR14 (0x2E) LSB description	
	DSR15 (0x2F) MSB	
	DSR15 (0x2F) MSB	
	DSR15 (0x2F)	
	DSR15 (0x2F) description	
	DSR15 (0x2F) LSB	
	DSR15 (0x2F) LSB description	207
Table 310.	DSR16 (0x30) MSB	207
	DSR16 (0x30) MSB description	
	DSR16 (0x30)	
	DSR16 (0x30) description	
	DSR16 (0x30) LSB	
	DSR16 (0x30) LSB description	
	DSR17 (0x31) MSB	
	DSR17 (0x31) MSB description	
	DSR17 (0x31)	
	DSR17 (0x31) description	
	DSR17 (0x31) LSB.	
	DSR17 (0x31) LSB description	
	DSR18 (0x32) MSB	
	DSR18 (0x32) MSB description	
	DSR18 (0x32)	
	DSR18 (0x32) description	
	DSR18 (0x32) LSB	
	DSR18 (0x32) LSB description	
	DSR19 (0x33) MSB	
.abie 320.	2011 (0,000) MIOD	١١ ڪ.

SPSB100G

Table 329.	DSR19 (0x33) MSB description	.211
Table 330.	DSR19 (0x33)	.211
Table 331.	DSR19 (0x33) description	.211
Table 332.	DSR19 (0x33) LSB	212
Table 333.	DSR19 (0x33) LSB description	212
Table 334.	DSR20 (0x34) MSB	212
Table 335.	DSR20 (0x34) MSB description	212
Table 336.	DSR20 (0x34)	213
Table 337.	DSR20 (0x34) description	213
	DSR20 (0x34) LSB	
Table 339.	DSR20 (0x34) LSB description	213
Table 340.	Status register list to be cleared for ACTIVE - FP mode	213
	QFN56L (8 x 8 mm) mechanical data	
Table 342.	Order code	224
Table 343.	Document revision history	225

List of figures

Figure 1.	SPSB100G block diagram	
Figure 2.	SPSB100GB block diagram	
Figure 3.	SPSB100G pin connection (top view)	
Figure 4.	SPSB100GB pin connection (top view)	6
Figure 5.	VFQFN56+4L printed circuit board, 4 layers - top layer	
Figure 6.	Cases A and B power dissipation management vs. ambient temperature with Buck1 and Buck2 at 400 kHz and 2.4 MHz.	d . 13
Figure 7.	SPSB100G direct supply of the microcontroller core	. 14
Figure 8.	SPSB100GB direct supply of the microcontroller core	. 14
Figure 9.	Boost controller block diagram	. 15
Figure 10.	Boost controller disabled block diagram	. 16
Figure 11.	Battery plug/unplug behavior	. 17
Figure 12.	Battery drop behavior	. 17
Figure 13.	Behavior on battery over voltage	. 18
Figure 14.	Boost Cranking mode	. 19
Figure 15.	Boost Normal mode	. 20
Figure 16.	Boost Normal mode - pulses with high/medium load	. 20
Figure 17.	State machine without fault transitions	. 27
Figure 18.	State machine details with WD trig and FCCU monitor fault management	. 28
Figure 19.	State machine details on power-up fault (1)	. 29
Figure 20.	State machine details on power-up fault (2)	. 30
Figure 21.	State machine details on TSDC fault	. 31
Figure 22.	Regulator fault reaction with REGFAIL_GO_REC = 1	. 32
Figure 23.	Regulator fault reaction with REGFAIL_GO_REC = 0	. 32
Figure 24.	FBB pin voltage fault reaction	. 33
Figure 25.	VS pin voltage fault reaction	. 33
Figure 26.	State machine	. 34
Figure 27.	Power-up sequence	. 38
Figure 28.	Power-down sequence	. 39
Figure 29.	NVM programming procedure	. 40
Figure 30.	Wake-up functionality	. 42
Figure 31.	NFSO1 implementation details	. 46
Figure 32.	NFSO1 output pin behavior at battery plug	. 46
Figure 33.	NFSO1 output pin behavior after a failure is detected	. 47
Figure 34.	Transceiver state diagram	. 50
Figure 35.	CAN wake-up capabilities	. 52
Figure 36.	Boost and bypass V _{ds} monitoring (extracted by application scheme)	. 56
Figure 37.	Thermal cluster identification	. 57
Figure 38.	SPSB100G HW low-level monitors	. 58
Figure 39.	Logic BIST	. 61
Figure 40.	SPI pin description	. 62
Figure 41.	SPI signal description	. 63
Figure 42.	SDI frame	. 64
Figure 43.	SDO frame	. 65
Figure 44.	CRC check	. 68
Figure 45.	Window watchdog operation	. 69
Figure 46.	PMIC is in active full-power mode	. 70
Figure 47.	PMIC is in active low-power mode	. 71
Figure 48.	PMIC + MCU independent of MCU mode, behavior on CAN	. 72
Figure 49.	Efficiency @ 400 kHz VIN 14.00 V	. 87
Figure 50.	BUCK1&2 Efficiency @ 2.4 MHz VIN 14.00 V	. 88
Figure 51.	I _{LOAD} transient 0.05 A to 1.5 A in 50 μs	. 89
Figure 52.	Buck1&2 @ 400 kHz	. 89

DS14964 - Rev 1

SPSB100G

List of figures

Figure 53.	Buck1&2 @ 2.4 MHz	89
Figure 54.	Line transient 8 V to 16 V in 200 µs	90
Figure 55.	Buck1&2 @ 400 kHz	90
Figure 56.	Buck1&2 @ 2.4 MHz	90
Figure 57.	Current limitation curves of Buck1, 2 for V _{out} 3.3 V	91
Figure 58.	Current limitation curves of Buck1, 2 for V _{out} 5 V	91
Figure 59.	Current limitation curves of Buck1, 2 for V _{out} 6.5 V	92
Figure 60.	Buck3 efficiency VIN 5.00 V	95
Figure 61.	Buck3 efficiency VIN 3.30 V	95
Figure 62.	I_{LOAD} transient 0.05 A to 3.0 A in 50 μs	96
Figure 63.	Buck3	96
Figure 64.	Line transient 8 V to 16 V in 200 µs	97
Figure 65.	Buck3	97
Figure 66.	Watchdog early, late and safe windows	99
Figure 67.	Watchdog timing	100
Figure 68.	SPI - Transfer timing diagram	.112
Figure 69.	SPI - Input timing	112
Figure 70.	SPI - Output timing	113
Figure 71.	SPI CSN - Output timing	114
Figure 72.	SPI - CSN low-to-high transition and global status bit access	114
Figure 73.	Typical application circuit for SPSB100G	119
Figure 74.	SPSB100G 6-Layer Demo Board – Top Layer	216
Figure 75.	SPSB100G 6-Layer Demo Board – Bottom Layer	217
Figure 76.	SPSB100G 6-Layer Demo Board – Middle Layer 1 (Ground)	217
Figure 77.	SPSB100G 6-Layer Demo Board – Middle Layer 2 (Ground & Signal)	218
Figure 78.	SPSB100G 6-Layer Demo Board – Middle Layer 3 (Ground & Signal)	218
Figure 79.	SPSB100G 6-Layer Demo Board – Middle Layer 4 (Ground)	219
Figure 80.	Solder mask defined (SMD)	
Figure 81.	QFN56L (8 x 8 mm) package outline	221
Figure 82.	QFN56L (8 x 8 mm) recommended footprint - dimensions are in mm	223

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

DS14964 - Rev 1 page 239/239