

Rad-hard adjustable 2.5 V/5.5 V precision shunt V-ref

Datasheet - production data

Applications

- Space systems
- · Space data acquisition systems
- · Aerospace instrumentation
- ADC references

Description

The RHF1009A is a low-power adjustable 2.5 V voltage reference, specifically designed to sustain radiations in space applications.

Mounted in a Flat-10 ceramic package, the RHF1009A uses a dedicated architecture and design rules to provide the best immunity against heavy-ions.

A very low operating current and very good stability over a wide temperature range of -55 °C to +125 °C make the RHF1009A particularly suitable for precision and power saving.

Features

- Adjustable shunt, 2.5 V to 5.5 V
- High precision ±0.2% at 2.5 V at 25 °C
- Wide operating current: 60 µA to 12 mA
- 30 ppm/°C maximum temperature range at 2.5 V
- Stable on capacitive load
- ELDRS-free up to 300 krad
- 300 krad high/low dose rate
- SEL-free up to 120 MeV.cm²/mg
- SET characterized
- Mass = 0.50 g
- SMD: 5962F14222

RHF1009A

Contents

1	Abs	Absolute maximum ratings and operating conditions 3						
2	Electrical characteristics							
3	Radi	iation 6						
4	Desi	gn information						
	4.1	Introduction11						
	4.2	Average temperature coefficient11						
	4.3	Minimum and maximum cathode current						
		4.3.1 Minimum operating cathode current						
		4.3.2 Maximum operating cathode current (lkmax.)						
	4.4	Capacitive load considerations						
5	Package information							
	5.1	Ceramic Flat-10 package information						
6	Orde	ering information						
7	Othe	er information						
	7.1	Date code						
	7.2	Product documentation						
8	Revi	sion history						

1 Absolute maximum ratings and operating conditions

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
I _K	Reverse breakdown current	15	mA
I _F	Forward current	20	mA
V _{KA}	Reverse breakdown voltage in standby mode $(V_{Ref} = V_A)$	6	V
T _{stg}	Storage temperature	-65 to +150	°C
Tj	Maximum junction temperature	150	°C
R _{thja}	Thermal resistance junction (T_j) to ambient (T_{amb})	140	°C/W
R _{thjc}	Thermal resistance junction to case	40	°C/W
	HBM: human body model ⁽¹⁾	2	kV
ESD	MM: machine model ⁽²⁾	200	V
	CDM: charged device model ⁽³⁾	1.5	kV

^{1.} Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 k Ω resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are left floating.

Table 2. Operating conditions

Symbol	Parameter	Value	Unit
I _{Kmin}	Minimum operating current [V _K \geq V _K (I _K = 100 μ A, Ta = 25 °C) - 100 μ V] V _K = V _{Ref}	60	μΑ
V _{KA}	Reverse breakdown voltage in operating mode: in standby mode (V _{Ref} = V _A):	2.5 to 5.5 2.5 to 5.5	V
I _{Kmax}	Maximum operating current $[V_K \ge V_K \ (I_K = 100 \ \mu A, Ta = 25 \ ^{\circ}C) + 2 \ mV]$ $V_K = V_{Ref}$	12	mA
T _{oper}	Operating ambient temperature range	-55 to +125	°C

DS9897 Rev 6 3/19

This is a minimum value.
 Machine model: a 200 pF capacitor is charged to the specified voltage, then discharged directly between two pins of the device with no external series resistor (internal resistor < 5 Ω). This is done for all couples of connected pin combinations while the other pins are left floating.</p>

^{3.} Charged device model: all pins and package are charged together to the specified voltage and then discharged directly to ground through only one pin.

Electrical characteristics RHF1009A

2 Electrical characteristics

Parameters tested before radiation are shown in Table 3.

Table 3. Anode is connected to Gnd (0 V), V_K is in reference to anode voltage. C_K (between anode and cathode) = 100 nF, R_1 = 0 and R_2 not connected unless otherwise specified

Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit	
DC performance								
V_{Ref}	Reference input voltage	I _K = 100 μA V _K = V _{Ref}	+25 °C		2.5		٧	
ΔV_{Ref}	Reference input voltage tolerance	I _K = 100 μA V _K = V _{Ref}	+25 °C	-5		+5	mV	
I _{Kmin}	Minimum operating current	$[V_K \ge V_K (I_K = 100 \mu A, Ta = 25^{\circ}C) - 100 \mu V]$ $V_K = V_{Ref}$	-55 °C +25 °C +125 °C			60 60 60	μА	
I _{Koff}	Off state cathode current	V _{Ref} = V _A V _{KA} = 2.5V	-55 °C +25 °C +125 °C			1 1 1	μА	
I _{Ref}	Reference input current	I_K = 100 μA to 10 mA V_K = V_{Ref} on R_1 = 10 $k\Omega$	-55 °C +25 °C +125 °C			1 1 1	μΑ	
AV /AT	Average temperature coefficient $\frac{\text{VRefmax} - \text{VRefmin}}{180^{\circ}\text{C} \times \text{VRef}(25^{\circ}\text{C})} \times 10^{6}$	I _K = 100 μA V _K = V _{Ref}	-55 °C to +125 °C			30	ppm/ °C	
ΔV _{Ref} /ΔT		I _K = 10 mA V _K = V _{Ref}	-55 °C to +125 °C			30		
A)/ /A)/	Reference voltage versus cathode voltage variation	I_K = 100 μA V_{KA} = 2.5 V to 5.5 V R_1 = 10 kΩ, R_2 Variable	-55 °C to +125 °C		1.5	2.5	m\//\/	
$\Delta V_{Ref} / \Delta V_{KA}$		I_K = 10 mA V_{KA} = 2.5 V to 5.5 V R_1 = 10 kΩ, R_2 Variable	-55 °C to +125 °C		1.5	2.5	mV/V	
AV /AI	Reference voltage versus	$I_{Kmin} \le I_{K} \le 1 \text{ mA}$ $V_{K} = V_{Ref}$	-55 °C +25 °C +125 °C		0.075 0.08 0.15	0.15 0.16 0.3	- mV	
$\Delta V_{Ref} / \Delta I_{K}$	cathode current variation	$1 \text{ mA} \le I_{K} \le 12 \text{ mA}$ $V_{K} = V_{Ref}$	-55 °C +25 °C +125 °C		0.65 0.7 1	1.3 1.4 2		
R _{KA}	Reverse static impedance	$\Delta I_K = I_{Kmin}$ to 10 mA $V_K = V_{Ref}$	-55 °C +25 °C +125 °C		0.05 0.06 0.1	0.1 0.12 0.2	Ω	
Z _{KA}	Reverse dynamic impedance	I_K = 1 mA to 1.1 mA V_K = V_{Ref} , $F \le$ 1 kHz No capacitive load	-55 °C +25 °C +125 °C		0.4 0.4 0.5		Ω	

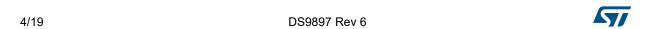


Table 3. Anode is connected to Gnd (0 V), V_K is in reference to anode voltage. C_K (between anode and cathode) = 100 nF, R_1 = 0 and R_2 not connected unless otherwise specified (continued)

Symbol	Parameter	Test conditions	Temp.	Min.	Тур.	Max.	Unit
Kvh ⁽¹⁾	Long-term stability $\frac{ Vk(0hr) - Vk(1000hrs) }{Vk(0hr)} \times 10^6$	I _K = 100 μA V _K = V _{Ref} t = 1000 hrs	-55 °C +25 °C +125 °C		100 100 100		ppm
Kvhd	$\frac{ Vk(0rad) - Vk(300krad) }{Vk(0rad)} \times 10^6$	I _K = 100 μA V _K = V _{Ref} Total dose = 300 krad Dose rate = 0.01 rad/s	-55 °C +25 °C +125 °C		1000 1000 1000		ppm
en	Voltage noise	I _K = 100 μA V _K = V _{Ref} F= 1 kHz	-55 °C +25 °C +125 °C		760 880 980		nV/ √ Hz

^{1.} Reliability verified with a cathode current setting $I_K = 10 \text{ mA}$

DS9897 Rev 6 5/19

Radiation RHF1009A

3 Radiation

Total ionizing dose (MIL-STD-883 TM 1019)

The products guaranteed for radiation within the RHA QML-V system fully comply with the MIL-STD-883 TM 1019 specification.

The RHF1009A is RHA QML-V, tested and characterized in full compliance with the MIL-STD-883 specification, both below 10 mrad/s and between 50 and 300 rad/s, as follows:

- All tests are performed in accordance with MIL-PRF-38535 and the test method 1019 of MIL-STD-883 for total ionizing dose (TID).
- The ELDRS characterization is performed in qualification only on both biased and unbiased parts, on a sample of ten units from two different wafer lots.
- Each wafer lot is tested at high-dose rate only, in the worst bias case condition, based on the results obtained during the initial qualification.

Heavy-ions

The behavior of the product when submitted to heavy-ions is not tested in production. Heavy- ion trials are performed on qualification lots only.

Table 4. Radiations

Туре	Characteristics	Value	Unit
	180 krad/h high-dose rate (50 rad/s) up to:	300	
TID	ELDRS-free up to:	300	krad
	36 rad/h low-dose rate (0.01 rad/s) up to:	300	
Heavy-ions	SEL immunity up to: (at 125 °C, with a particle angle of 60 °)	120	- MeV.cm²/mg
	SEL immunity up to: (at 125 °C, with a particle angle of 0 °)	60	· Mev.cm-/mg
	SET (at 25 °C)	Characterized	İ

RHF1009A Radiation

Note: In Figure 1 to 24, temp. = temperature, freq. = frequency, and resp. = response.

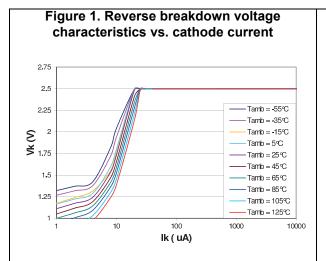


Figure 2. Zoom of reverse breakdown voltage characteristics vs. cathode current 2.501 2,5 Tamb = -55℃ -Tamb = -35℃ 2.499 -Tamb = -15℃ €^{2.498} Tamb = 5℃ -Tamb = 25℃ ¥ 2.497 -Tamb=45℃ Tamb = 65°C Tamb = 85℃ 2.496 Tamb = 105°C 2.495 -Tamb = 125℃ 6000 8000 10000 12000 lk(μA)

Figure 3. Reverse breakdown voltage characteristics vs. ambient temp. 2.501 12mA 8mA 2.5 2mA -400uA 2.499 -60uA €^{2,498} **Š** 2.497 2.496 2.495 2.494 -55 -35 -15 25 45 85 105 125 Temperature (°C)

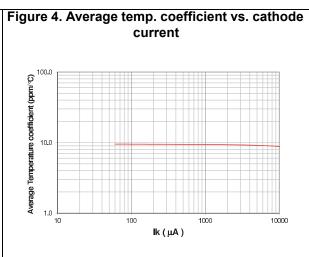
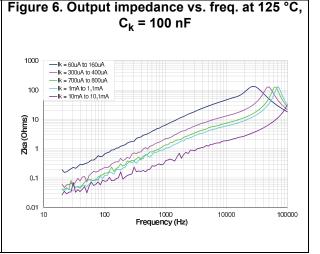
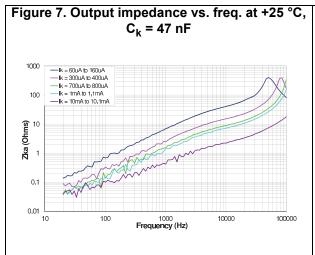




Figure 5. Output impedance vs. freq. at +125 °C, C_k = 47 nF

RHF1009A Radiation

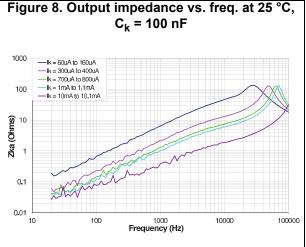
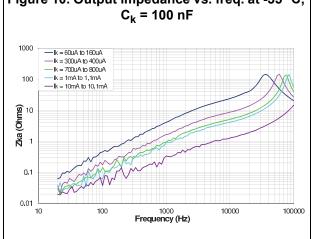
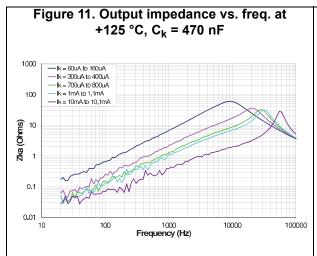
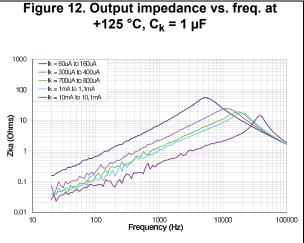





Figure 9. Output impedance vs. freq. at -55 °C, | Figure 10. Output impedance vs. freq. at -55 °C, $C_{k} = 47 \text{ nF}$ 1000 -lk = 60uA to 160uA --- lk = 300uA to 400uA -- lk = 700uA to 800uA -- lk = 1mA to 1.1mA --- lk = 10mA to 10,1mA Zka (Ohms) 10 0.1 0.01 1000 Frequency (Hz) 10000 100000

RHF1009A Radiation

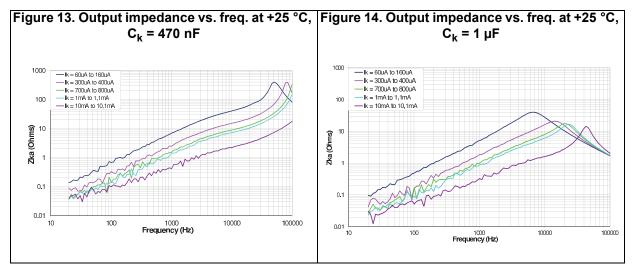
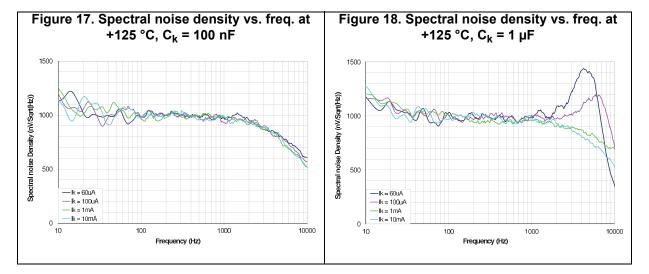
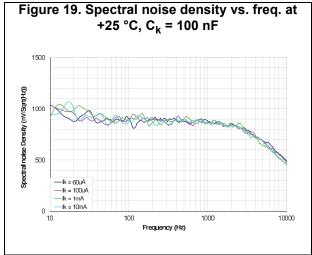




Figure 15. Output impedance vs. freq. at -55 °C, | Figure 16. Output impedance vs. freq. at -55 °C, $C_k = 470 \text{ nF}$ $C_k = 1 \mu F$ 1000 -lk = 60uA to 160uA --- lk = 300uA to 400uA -lk = 700uA to 800uA 100 -lk = 1mA to 1.1mA -lk = 1mA to 1.1mA -lk = 10mA to 10,1mA -lk = 10mA to 10,1mA **Zka (Ohms)** 10 Zka (Ohms) 0.1 0.01 1000 Frequency (Hz) 100 10000 100000 100 Frequency (Hz) 10000 100000

Radiation RHF1009A

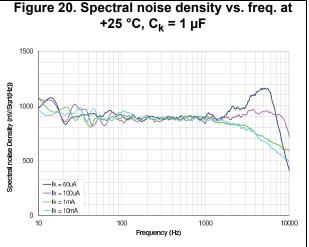
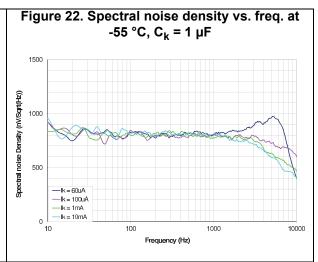
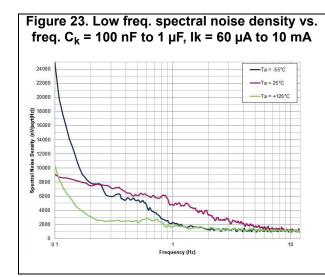
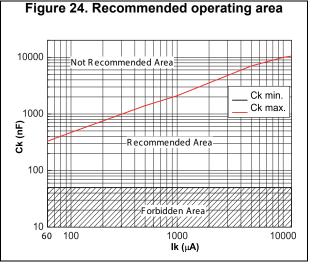





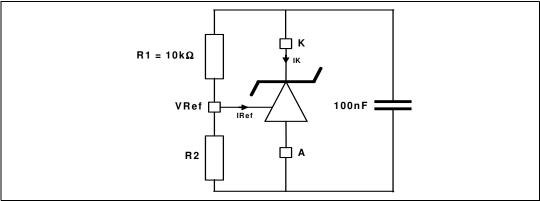
Figure 21. Spectral noise density vs. freq. at -55 °C, C_k = 100 nF

577

10/19

RHF1009A Design information

4 Design information


4.1 Introduction

The RHF1009A is a programmable voltage reference. It can be set from 2.5 V to 5.5 V by a bridge of 2 resistors (see *Figure 25*).

From -55 °C to +125 °C, the cathode current capability of the RHF1009A ranges from 60 μA up to 12 mA.

Internal double bonding allows the RHF1009A to have an equivalent output resistance as low as 110 m Ω . Consequently, the RHF1009A has very good load regulation.

Figure 25. Electrical implementation

$$V_{KA} = V_{Ref} \times \left(1 + \frac{R_1}{R_2}\right) + R_1 \times I_{Ref}$$

4.2 Average temperature coefficient

The RHF1009A is designed with a second order compensation in temperature. This gives an S-shaped curve for the V_k variation over the temperature range.

For the RHF1009A, the average temperature coefficient is calculated as shown in *Equation* 1.

Equation 1

Average temperature coefficient =
$$\frac{V_{kmax} - V_{kmin}}{(T_{max} - T_{min}) \times v_k(25^{\circ}C)} \times 10^6$$

where
$$T_{max}$$
 = +125 °C and T_{min} = -55 °C.

DS9897 Rev 6 11/19

Design information RHF1009A

For each sample, use *Equation 1* and the procedure below:

- Set a cathode current (I_k)
- Measure V_k at I_k with an ambient temperature of 25 °C
- Measure V_k at I_k with the following ambient temperatures: -55 °C, -15 °C, +75 °C, and +125 °C.
- For the above five temperature measurements, find the V_k maximum and minimum
- Apply Equation 1

The average temperature coefficient is evaluated during product qualification on the above five temperature measurements and is guaranteed on production tests with three temperature measurements: -55 °C, +25 °C, and +125 °C.

4.3 Minimum and maximum cathode current

4.3.1 Minimum operating cathode current

The minimum operating cathode current ($I_{kmin.}$) is a combination of parameters (such as reference voltage, stability, noise, and process drift) that are taken over the ambient temperature range. For the RHF1009A, $I_{kmin.}$ is 60 μ A.

I_{kmin.} is guaranteed over the ambient temperature range by *Equation 2*.

Equation 2:
$$V_k(I_k = 60 \mu A) \ge V_k(I_k = 100 \mu A, 25 ^{\circ}C) - 100 \mu V$$

4.3.2 Maximum operating cathode current (I_{kmax.})

The maximum operating cathode current (I_{kmax}) is limited by the output ballast current capabilities and process drift. For the RHF1009A, I_{kmax} is 12 mA.

 $I_{kmax.}$ is guaranteed by the ΔV_k vs. ΔI_k parameter (see *Table 3*) and by *Equation 3* (at T_{amb} = 25 °C).

Equation 3:
$$V_k(I_k = 12 \text{ mA}) \le V_k(I_k = 100 \mu\text{A}, 25 ^{\circ}\text{C}) + 3 \text{ mV}$$

4.4 Capacitive load considerations

The RHF1009A can oscillate for a small I_k and no C_k . This is why we recommend a minimum capacitive load of 47 nF. The RHF1009A is designed to be stable with a capacitive load (C_k) over the cathode current range (60 μ A to 12 mA) and ambient temperature range (-55 °C to +125 °C).

If an oscillation amplitude less than 2 mVrms is acceptable, this device can be considered usable with any capacitive load given in *Figure 24: Recommended operating area*.

Figure 17 to 22 show spectral noise density measurements vs. frequency with a capacitive load of 100 nF and 1 μF. With a capacitive load of 100 nF, all cathode currents are in the "Recommended Area" of Figure 24 and there is no noise peak in the measured spectral noise density. With a capacitive load of 1 μF, the 60 μA and 100 μA cathode currents are above C_k max in the "Not Recommended Area" of Figure 24 and there is a noise peak in the measured spectral noise density for these I_k . For example, with a capacitive load of 1 μF and I_k = 60 μA, there is a noise peak at about 5000 Hz. For the reverse breakdown voltage (V_k) , this peaking corresponds to a micro-oscillation, with jitter, centered at 5000 Hz.

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

DS9897 Rev 6 13/19

Package information RHF1009A

5.1 Ceramic Flat-10 package information

E3 E2 E3 Q

N Places

N Places

A places

L places

Figure 26. Ceramic Flat-10 package outline

Table 5. Ceramic Flat-10 mechanical data

			Dimer	nsions		
Ref.	Millimeters					
	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	2.26	2.44	2.62	0.089	0.096	0.103
b	0.38	0.43	0.48	0.015	0.017	0.019
С	0.102	0.127	0.152	0.004	0.005	0.006
D	6.35	6.48	6.60	0.250	0.255	0.260
Е	6.35	6.48	6.60	0.250	0.255	0.260
E2	4.32	4.45	4.58	0.170	0.175	0.180
E3	0.88	1.01	1.14	0.035	0.040	0.045
е		1.27			0.050	
L	6.35		9.40	0.250		0.370
Q	0.66	0.79	0.92	0.026	0.031	0.036
S1	0.16	0.485	0.81	0.006	0.019	0.032
N	10 10					

Note: The upper metallic lid is not electrically connected to any pins, nor to the IC die inside the package.

6 Ordering information

Table 6. Order code

Order code	SMD (1)	Qualification level	Package	Lead finish	Marking ⁽²⁾	Packing
RHF1009AK1	-	Engineering Model		Gold	RHF1009AK1	Conductive
RHF1009AK01V	5962F14222	QML-V Flight	Flat-10	Gold	5962F1422201VXC	strip pack
RHF1009AK02V	5962F14222	QML-V Flight		Solder Dip	5962F1422201VXA	

^{1.} Standard micro circuit drawing.

^{2.} Specific marking only. Complete marking includes the following:

⁻ ST logo

⁻ Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)

⁻ Country of origin (FR = France)

Other information RHF1009A

7 Other information

7.1 Date code

The date code (date the package was sealed) is structured as follows:

Engineering model: 3yywwz

Flight model: yywwz

Where: yy = last two digits of the year, ww = week digits, z = lot index of the week

RHF1009A Other information

7.2 Product documentation

Each product shipment includes a set of associated documentation within the shipment box. This documentation depends on the quality level of the products, as detailed in the table below.

The certificate of conformance is provided on paper whatever the quality level. For QML parts, complete documentation, including the certificate of conformance, is provided on a CDROM

Table 7. Product documentation

Quality level	Item
	Certificate of conformance including:
	Customer name
	Customer purchase order number
	ST sales order number and item
Engineering model	ST part number
Lingineering model	Quantity delivered
	Date code
	Reference to ST datasheet
	Reference to TN1181 on engineering models
	ST Rennes assembly lot ID
	Certificate of conformance including:
	Customer name
	Customer purchase order number
	ST sales order number and item
	ST part number
	Quantity delivered
	Date code
	Serial numbers
	Group C reference
QML-V Flight	Group D reference
	Reference to the applicable SMD
	ST Rennes assembly lot ID
	Quality control inspection (groups A, B, C, D, E)
	Screening electrical data in/out summary
	Precap report
	PIND (particle impact noise detection) test
	SEM (scanning electronic microscope) inspection report
	X-ray plates

Revision history RHF1009A

8 Revision history

Table 8. Document revision history

Date	Revision	Changes
18-Jun-2014	1	Initial release
08-Jul-2015	2	Features: updated Vref. accuracy Table 3: Operating conditions: modified VKA Corrected Figure 20: Spectral noise density vs. freq. at +25 °C, Ck = 1 μ F and Figure 21: Spectral noise density vs. freq. at -55 °C, Ck = 100 nF. Added Figure 23: Low freq. spectral noise density vs. freq. Ck = 100 nF to 1 μ F, Ik = 60 μ A to 10 mA. Changed layout of Figure 24: Recommended operating area
09-Apr-2018	3	Updated the Description, Table 1: Device summary in cover page, Table 7: Order code and Table 8: Product documentation.
17-Nov-2023	4	Updated Section 4.4: Capacitive load considerations.
28-Jan-2025	5	Updated figure and features on the cover page, Section 6: Ordering information and Section 7: Other information.
12-Sep-2025	6	Added pin connections figure and new SMD: 5962F14222 feature on the cover page.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST

products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and

ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and

conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of

the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market

segment, the purchasers shall contact ST for more information..

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

DS9897 Rev 6 19/19