

# Automotive quad and dual half-bridge pre-driver



VFQFN32+4L WF



VFQFN48L WF exposed pad down

# Product status link L99MH94 L99MH92

| Product summary                      |                                |               |  |  |  |  |
|--------------------------------------|--------------------------------|---------------|--|--|--|--|
| Order code                           | Package                        | Packing       |  |  |  |  |
| L99MH92Q5-<br>TR<br>L99MH94Q5-<br>TR | VFQFN32+4L<br>WF<br>5x5x0.9 mm | Tape and reel |  |  |  |  |
| L99MH94Q7-<br>TR                     | VFQFN48L WF<br>7x7x0.9 mm      | Tape and reel |  |  |  |  |

#### **Features**



- ISO26262 compliant, covering ASIL-B safety integrity level
- Quad (L99MH94) and dual (L99MH92) half-bridge, or dual (L99MH94) and single (L99MH92) H-Bridge, pre-driver
- Independent channel driver up to 4 (L99MH94) and 2 (L99MH92) high-side or 4 (L99MH94) and 2 (L99MH92) low-side
- Driving logic permits any H-bridge configuration, pairing different half-bridges, using the internal gate drivers (GHx/SHx/GLx can be associated to any GHy/SHy/GLy)
- Support logic level and standard level MOSFETs
- Control of reverse battery protection MOSFET
- Fully configurable half-bridge driver in case of fault occurrence
- · Generator mode for power trunk/tailgate applications
- Supporting indirect current measurement of external MOSFETs
- SPI configurable overvoltage threshold
- Adaptive MOSFET gate control
  - Three steps gate control of external HS/LS
  - Improved electromagnetic emission
  - Programmable gate current up to 120 mA
  - Reduced switching losses in PWM mode
- V<sub>ds</sub> monitoring
- Low IQ (1.05 μA) in reset mode
- · High-side and low-side capable of protection and diagnosis
- Two external diodes control, needed for assisting calibration of indirect current measurement, can be used for steady - temperature monitoring
- Drain-source monitoring for short circuit detection
- · Overtemperature warning and shutdown
- Timeout watchdog for MCU control
- Detailed off-state diagnostic (open load, short circuit to battery or short circuit to GND) via SPI
- Three PWM inputs
  - High-side and low-side PWM capable
  - Active freewheeling
  - Up to 50 kHz PWM frequency
- Out-of-frame serial peripheral interface (SPI), 24 bits
- QFN package with wettable flanks
- Green product (RoHS compliant)

# **Applications**

- Seat control
- Steering column adjustment, gas pedal adjustment



- · Sunroof, sliding doors, window lift, seat-belt pre-tensioners, cargo cover, washer pump
- Engine vibrations compensation system
- Power lift gate
- Central door lock

## **Description**

The L99MH94 and L99MH92 integrate respectively a quad and a dual half-bridge pre-driver dedicated to control up to eight and four N-channel MOSFETs.

It is intended for DC motor control applications such as automotive power seat control or other applications.

A 24-bit serial peripheral interface (SPI) is used for configuring and controlling the eight half-bridges or four H-bridge. SPI status registers provide high-level diagnostic information such as supply voltage monitoring, the charge pump voltage monitoring, temperature warning and overtemperature shutdown.

Each gate driver monitors independently its external MOSFET drain-source voltage for fault conditions.

The L99MH94 / L99MH92 support indirect current measurement on external MOSFETs, allowing cost saving and lower system complexity, avoiding the usage of shunt resistors.

A more efficient gate current control of the external MOSFETs, called "three stages gate current", decreases and optimizes electromagnetic interference (EMI).

Protection features (drain-source monitoring for short circuit detection, overtemperature warning and shutdown, timeout watchdog for MCU control, detailed off-state diagnostic via SPI) ensure the ASIL-B achievement according to ISO 26262 standard.

The L99MH94 is housed in VFQFN48L and VFQFN32L packages with an exposed pad, the L99MH92 is housed in a VFQFN32L package with exposed pad. These packages have wettable flanks for easy visual inspection of the solder joint.

DS15025 - Rev 1 page 2/130



# Block diagram and pin description

# 1.1 Block diagram

CP2P CP CSN, SPI interface Charge CP1N CLK Pump CP1P DI 🖥 watchdog CP2N DO GH1/2 SH1/2 GL1/2 VDD СРФ Driver Interface, **GH3/4** Logic & **Diagnostics** SH3/4 GL3/4 DIAGN | PWM1 **PWMx** controller PWM2 Current DIODE1

generator

ADC

DIODE2

SL

Figure 1. L99MH94 block diagram

DS15025 - Rev 1 page 3/130

Muxer

Sample & Hold

CSO1



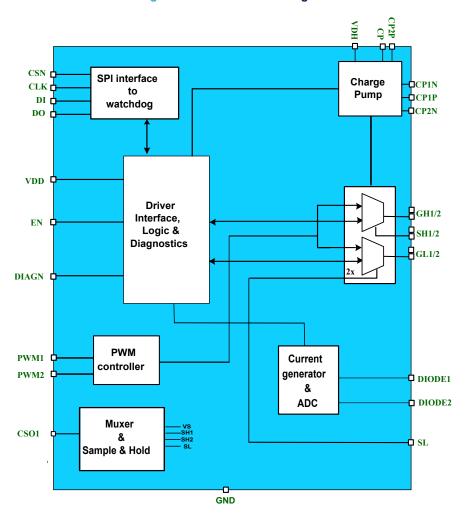



Figure 2. L99MH92 block diagram

DS15025 - Rev 1 page 4/130



# 1.2 Pin description

Figure 3. L99MH94 pin connection - VFQFN32 (top view)

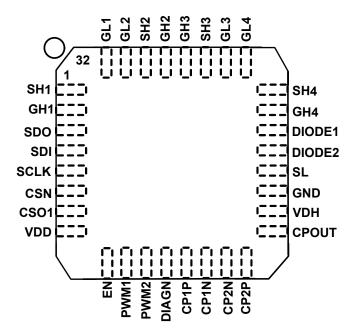
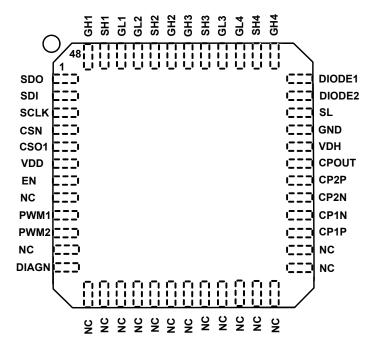




Figure 4. L99MH94 pin connection - VFQFN48 (top view)



DS15025 - Rev 1 page 5/130



Figure 5. L99MH92 pin connection (top view)

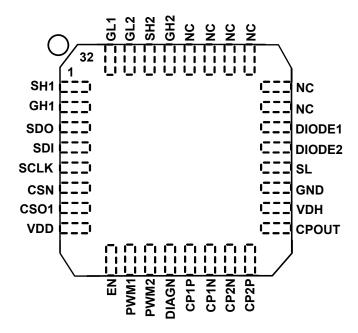



Table 1. Pin function - VFQFN32

| Pin | L99MH94 | L99MH92         | Function                                                                                                    |
|-----|---------|-----------------|-------------------------------------------------------------------------------------------------------------|
| 1   | SH      | H1              | SH1 Source high-side 1: Connection to source of high-side MOSFET 1                                          |
| 2   | GH1     |                 | GH1 Gate high-side 1: Analog output pin to turn on/off high-side MOSFET 1. Connect to the gate of high side |
| 3   | SE      | 00              | SDO Serial Data Output                                                                                      |
| 4   | SI      | DI              | SDI Serial Data Input with internal pull-down                                                               |
| 5   | SC      | CLK             | SCLK Serial Clock Input with internal pull-down                                                             |
| 6   | CS      | SN              | CSN Chip Select Not with internal pull-up                                                                   |
| 7   | CS      | O1              | CSO1 Current Sense Amplifier Output1                                                                        |
| 8   | VE      | DD              | VDD Logic supply                                                                                            |
| 9   | Е       | N               | EN Enable input with internal pull-down                                                                     |
| 10  | PW      | /M1             | PWM1: PWM input 1                                                                                           |
| 11  | PW      | /M2             | PWM2: PWM input 2                                                                                           |
| 12  | DIA     | \GN             | Diagnostic output NOT (Active Low)                                                                          |
| 13  | CP1P    |                 | NC: Not Connected                                                                                           |
|     | OI .    |                 | CP1P: Positive connection to Charge Pump Capacitor 1                                                        |
| 14  | CP      | 21N             | NC: Not Connected                                                                                           |
|     | 0.      |                 | CP1N: Negative connection to Charge Pump Capacitor 1                                                        |
| 15  | CP      | <sup>2</sup> 2N | NC: Not Connected                                                                                           |
|     | OI ZIN  |                 | CP2N: Negative connection to Charge Pump Capacitor 2                                                        |
| 16  | 6 CP2P  |                 | NC: Not Connected                                                                                           |
|     |         |                 | CP2P: Positive connection to Charge Pump Capacitor 2                                                        |
| 17  | CPC     | DUT             | CP: Charge Pump Output                                                                                      |

DS15025 - Rev 1 page 6/130



| Pin | L99MH94                                                       | L99MH92 | Function                                                                                                    |  |  |  |  |
|-----|---------------------------------------------------------------|---------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 18  | VDH                                                           |         | VDH input pin                                                                                               |  |  |  |  |
| 19  | GND                                                           |         | GND Ground connection                                                                                       |  |  |  |  |
| 20  | S                                                             | L       | SL Source low-side: Common connection to the source of the low-side MOSFETs.                                |  |  |  |  |
| 21  | DIO                                                           | DE2     | External diode control 2                                                                                    |  |  |  |  |
| 22  | DIO                                                           | DE1     | External diode control 1                                                                                    |  |  |  |  |
| 23  | GH4                                                           | NC      | GH4 Gate high-side 4: Analog output pin to turn on/off high-side MOSFET 4. Connect to the gate of high side |  |  |  |  |
|     |                                                               |         | NC: Not Connected                                                                                           |  |  |  |  |
| 24  | SH4                                                           | NC      | SH4 Source high-side 4: Connection to source of high-side MOSFET 4                                          |  |  |  |  |
|     | 0114                                                          | 140     | NC: Not Connected                                                                                           |  |  |  |  |
| 25  | GL4                                                           | NC      | GL4 Gate low-side 4: Analog output pin to turn on/off low-side MOSFET 4. Connect to the gate of low side    |  |  |  |  |
|     |                                                               |         | NC: Not Connected                                                                                           |  |  |  |  |
| 26  | GL3                                                           | NC      | GL3 Gate low-side 3: Analog output pin to turn on/off low-side MOSFET 3. Connect to the gate of low side    |  |  |  |  |
|     |                                                               |         | NC: Not Connected                                                                                           |  |  |  |  |
| 27  | SH3                                                           | NC      | SH3 Source high-side 3: Connection to source of high-side MOSFET 3                                          |  |  |  |  |
| 21  | 3113                                                          | NO      | NC: Not Connected                                                                                           |  |  |  |  |
| 28  | GH3                                                           | NC      | GH3 Gate high-side 3: Analog output pin to turn on/off high-side MOSFET 3. Connect to the gate of high side |  |  |  |  |
|     |                                                               |         | NC: Not Connected                                                                                           |  |  |  |  |
| 29  | GH2                                                           |         | GH2 Gate high-side 2: Analog output pin to turn on/off high-side MOSFET 2. Connect to the gate of high side |  |  |  |  |
| 30  | SH2                                                           |         | SH2 Source high-side 2: Connection to source of high-side MOSFET 2                                          |  |  |  |  |
| 31  | I GL2                                                         |         | GL2 Gate low-side 2: Analog output pin to turn on/off low-side MOSFET 2. Connect to the gate of low side    |  |  |  |  |
| 32  | 2 GL1                                                         |         | GL1 Gate low-side 1: Analog output pin to turn on/off low-side MOSFET 1. Connect to the gate of low side    |  |  |  |  |
|     | E.P. Exposed pad connected to ground on the application board |         |                                                                                                             |  |  |  |  |

Table 2. Pin function - VFQFN48

| #                                                                      | Name | Function                                        |
|------------------------------------------------------------------------|------|-------------------------------------------------|
| 1                                                                      | SDO  | SDO serial data output                          |
| 2                                                                      | SDI  | SDI serial data input with internal pull-down   |
| 3                                                                      | SCLK | SCLK serial clock input with internal pull-down |
| 4                                                                      | CSN  | CSN chip select not with internal pull-up       |
| 5                                                                      | CSO1 | CSO1 current sense amplifier output1            |
| 6                                                                      | VDD  | VDD logic supply                                |
| 7                                                                      | EN   | EN enable input with internal pull-down         |
| 8, 11, 13, 14,<br>15, 16, 17, 18,<br>19, 20, 21, 22,<br>23, 24, 25, 26 | NC   | Not Connected                                   |
| 9                                                                      | PWM1 | PWM1: PWM input 1                               |
| 10                                                                     | PWM2 | PWM2: PWM input 2                               |

DS15025 - Rev 1 page 7/130



| #  | Name   | Function                                                                                                        |
|----|--------|-----------------------------------------------------------------------------------------------------------------|
| 12 | DIAGN  | DIAGN: Diagnostic output NOT (active low)                                                                       |
| 27 | CP1P   | CP1P:positive connection to charge pump capacitor 1                                                             |
| 28 | CP1N   | CP1N: negative connection to charge pump capacitor 1                                                            |
| 29 | CP2N   | CP2N: negative connection to charge pump capacitor 2                                                            |
| 30 | CP2P   | CP2P: Positive connection to charge pump capacitor 2                                                            |
| 31 | CPOUT  | CPOUT: Charge pump output                                                                                       |
| 32 | VDH    | VDH input pin                                                                                                   |
| 33 | GND    | GND Ground connection                                                                                           |
| 34 | SL     | SL source low-side: common connection to the source of the low-side MOSFETs                                     |
| 35 | DIODE2 | External diode control 2                                                                                        |
| 36 | DIODE1 | External diode control 1                                                                                        |
| 37 | GH4    | GH4 gate high-side 4: analog output pin to turn on/off high-side MOSFET 4. Connect to the gate of the high side |
| 38 | SH4    | SH4 source high-side 4: connection to source of high-side MOSFET 4                                              |
| 39 | GL4    | GL4 gate low-side 4: analog output pin to turn on/off low-side MOSFET 4. Connect to the gate of the low side    |
| 40 | GL3    | GL3 gate low-side 3: analog output pin to turn on/off low-side MOSFET 3. Connect to the gate of the low side    |
| 41 | SH3    | SH3 source high-side 3: connection to source of high-side MOSFET 3                                              |
| 42 | GH3    | GH3 gate high-side 3: analog output pin to turn on/off high-side MOSFET 3. Connect to the gate of the high side |
| 43 | GH2    | GH2 gate high-side 2: analog output pin to turn on/off high-side MOSFET 2. Connect to the gate of the high side |
| 44 | SH2    | SH2 source high-side 2: connection to source of high-side MOSFET 2                                              |
| 45 | GL2    | GL2 gate low-side 2:analog output pin to turn on/off low-side MOSFET 2. Connect to the gate of the low side     |
| 46 | GL1    | GL1 gate low-side 1: analog output pin to turn on/off low-side MOSFET 1. Connect to the gate of the low side    |
| 47 | SH1    | SH1 source high-side 1: connection to source of high-side MOSFET 1                                              |
| 48 | GH1    | GH1 gate high-side 1: analog output pin to turn on/off high-side MOSFET 1. Connect to the gate of the high side |
| -  | E.P.   | Exposed pad connected to ground on the application board                                                        |

DS15025 - Rev 1 page 8/130



# 2 Electrical specifications

Stressing the device above the rating listed in the Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

# 2.1 Absolute maximum ratings

Table 3. Absolute maximum ratings

| Symbol                 | Parameter                                         | Min       | Тур | Max       | Unit |
|------------------------|---------------------------------------------------|-----------|-----|-----------|------|
| $V_{DH}$               | Power supply voltage                              | -0.3      | -   | 28        | V    |
| $V_{DH}$               | Single pulse tmax < 400 ms                        | -         | -   | 40        | V    |
| V <sub>PWM1</sub>      | PWM input voltages (PWMx)                         | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>PWM2</sub>      | PWM input voltages (PWMx)                         | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>SDI</sub>       | SDI logic input voltages                          | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>SCLK</sub>      | SCLK logic input voltages                         | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>CSN</sub>       | CSN logic input voltages                          | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>EN</sub>        | EN logic input voltages                           | -0.3      | -   | 20        | V    |
| V <sub>SDO/DIAGN</sub> | Voltage range at SDO/DIAGN                        | -0.3      | -   | VDD + 0.3 | V    |
| V <sub>SL</sub>        | Voltage range at SL                               | -6.0      | -   | 6         | V    |
| V <sub>SH</sub>        | Voltage range at SHx                              | -6.0      | -   | VDH       | V    |
| $V_{GH}$               | Voltage range at GHx, V <sub>CPOUT</sub> = +0.3 V | Sxy - 0.3 | -   | Sxy + 13  | V    |
| $V_{GL}$               | Voltage range at GLx, V <sub>CPOUT</sub> = +0.3 V | Sxy - 0.3 | -   | Sxy + 13  | V    |
| V <sub>GS_LS</sub>     | Voltage difference between GLx and SL             | -0.3      | -   | 13        | V    |
| V <sub>GS_HS</sub>     | Voltage difference between GHx and SHx            | -0.3      | -   | 13        | V    |
| V <sub>CP1</sub> -     | CP1 minus                                         | -0.3      | -   | VDH       | V    |
| V <sub>CP2</sub> -     | CP2 minus                                         | -0.3      | -   | VDH       | V    |
| V <sub>CP1+</sub>      | CP1 plus                                          | VDH - 0.3 | -   | VDH + 13  | V    |
| V <sub>CP2+</sub>      | CP2 plus                                          | VDH - 0.6 | -   | VDH + 13  | V    |
| V <sub>CPOUT</sub>     | CP out                                            | VDH - 0.6 | -   | VDH + 13  | V    |
| V <sub>DIODE</sub>     | Voltage at Vdiode pins                            | -0.3      | -   | 40        | V    |
| $V_{DD}$               | Logic supply voltage                              | -0.3      | -   | 18        | V    |
| V <sub>CSO1</sub>      | Voltage at CSO1                                   | -0.3      | -   | VDD + 0.3 | V    |

Note:

- All maximum ratings are absolute ratings. Leaving the limitation of any of these values may cause an irreversible damage of the integrated circuit.
- Loss of ground or ground shift with externally grounded loads: ESD structures are configured for nominal currents only. If external loads are connected to different grounds, the current load must be limited to this nominal current.

DS15025 - Rev 1 page 9/130



# 2.2 ESD protection

Table 4. ESD protection

| Symbol                                                                                                 | Parameter | Min  | Тур | Max  | Unit |
|--------------------------------------------------------------------------------------------------------|-----------|------|-----|------|------|
| Electrostatic discharge test (AEC-Q100-002-E) all pins (HBM)                                           | -         | -2   | -   | +2   | kV   |
| Electrostatic discharge test (AEC-Q100-002-E) output pins SHx $(X = 18)$ and $V_{DH}$ versus GND (HBM) | -         | -4   | -   | +4   | kV   |
| Charge device model (CDM-AEC-Q100-011) all pins                                                        | -         | -500 | -   | +500 | V    |
| Charged device model (CDM-AEC-Q100-011) corner pins                                                    | -         | -750 | -   | +750 | V    |

#### 2.3 Thermal data

Table 5. Operation junction temperature

| Symbol           | Parameter                      | Min | Тур | Max | Unit |
|------------------|--------------------------------|-----|-----|-----|------|
| T <sub>j</sub>   | Operating junction temperature | -40 | -   | 150 | °C   |
| T <sub>stg</sub> | Storage temperature            | -55 | -   | 150 | °C   |

All parameters are guaranteed in the temperature range -40 to 150 °C (unless otherwise specified); the device is still operative and functional at higher temperatures (up to 165 °C).

Note:

- Parameters limits at higher temperatures than 150 °C may change with respect to what is specified as per the standard temperature range.
- Device functionality at high temperature is guaranteed by characterization.

Table 6. Temperature warning and thermal shutdown

| Symbol                 | Parameter                                       | Test condition            | Min | Тур | Max | Unit |
|------------------------|-------------------------------------------------|---------------------------|-----|-----|-----|------|
| T <sub>jTW_ON</sub>    | Junction temperature thermal warning threshold  | T <sub>j</sub> increasing | 140 | 150 | 160 | °C   |
| T <sub>jSD_ON</sub>    | Junction temperature thermal shutdown threshold | T <sub>j</sub> increasing | 170 | 180 | 190 | °C   |
| T <sub>jSD_OFF</sub>   | Junction temperature thermal shutdown threshold | T <sub>j</sub> decreasing | 160 | 170 | 180 | °C   |
| t <sub>fTjTW/TSD</sub> | Temperature warning/shutdown filtering time     | Tested by scan            | 24  | -   | 43  | μs   |

Note: Those parameters are guaranteed at hot only.

#### 2.3.1 Packages thermal data

Table 7. Packages thermal resistance

| Symbol                               | Parameter                                             | Test condition | Value | Unit |
|--------------------------------------|-------------------------------------------------------|----------------|-------|------|
| R <sub>thj-amb</sub> <sup>(1)</sup>  | VFQFN32 thermal resistance junction to ambient (max.) |                | 28.6  | °C/W |
| R <sub>thj-amb</sub> <sup>(1)</sup>  | VFQFN48 thermal resistance junction to ambient (max.) |                | 26    | °C/W |
| R <sub>thj-case</sub> <sup>(2)</sup> | VFQFN32 thermal resistance junction to case (max.)    |                | 7.6   | °C/W |
| R <sub>thj-case</sub> <sup>(2)</sup> | VFQFN48 thermal resistance junction to case (max.)    |                | 4.5   | °C/W |

- 1. The parameter is retrieved according to JEDEC 51.2. Device mounted on a four-layer 2s2p PCB.
- 2. The  $R_{thi-case}$  is retrieved according to MIL-STD-883E referring to thermal testing method.

DS15025 - Rev 1 page 10/130



# 2.4 Electrical characteristics

# 2.4.1 Supply, supply monitoring and current consumption

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 8. Supply, supply monitoring and current consumption

| Symbol                  | Parameter                                                | Test condition                                                                | Min  | Тур  | Max  | Unit |
|-------------------------|----------------------------------------------------------|-------------------------------------------------------------------------------|------|------|------|------|
| $V_{DH}$                | High-side drain voltage                                  |                                                                               | 6    | -    | 28   | V    |
| V <sub>SL</sub>         | SL operative voltage range                               |                                                                               | -0.3 | -    | 0.5  | V    |
| V <sub>SH</sub>         | SH operative voltage range                               |                                                                               | -0.3 | -    | VDH  | V    |
| V <sub>DH_ext</sub>     | High-side drain voltage extended range <sup>(1)</sup>    |                                                                               | 5    | -    | 6    | V    |
| $V_{DD}$                | I/O supply voltage                                       |                                                                               | 3    | -    | 5.5  | V    |
| I <sub>DD</sub>         | V <sub>DD</sub> DC supply current                        | $V_{DH} = 13.5 V$ $V_{DD} = 5 V$ Active mode                                  | 3.5  | -    | 7.5  | mA   |
| I <sub>DD_SDN</sub>     | V <sub>DD</sub> quiescent supply current                 | V <sub>DD</sub> = 5 V<br>Reset mode                                           | -    | -    | 0.5  | μA   |
| I <sub>DH</sub>         | V <sub>DH</sub> current consumption in active mode       | $V_{DH} = 13 \text{ V}$ $V_{DD} = 5 \text{ V}$ Active mode Outputs floating   | -    | 40   | 50   | mA   |
| I <sub>DH</sub>         | V <sub>DH</sub> current consumption in active mode       | $V_{DH}$ = 6 V to 28 V<br>$V_{DD}$ = 5.0 V<br>Active mode<br>Outputs floating | -    | 48   | 60   | mA   |
| I <sub>DH_SDN</sub>     | V <sub>DH</sub> quiescent supply current                 | $V_{DH} = 13 \text{ V}$ $V_{DD} = 0 \text{ V}$ Reset mode Outputs floating    | -    | -    | 0.55 | μА   |
| V <sub>DHUV</sub>       | V <sub>DH</sub> undervoltage threshold                   | V <sub>DH</sub> increasing/decreasing                                         | 4    | -    | 4.5  | V    |
| V <sub>DHUV_hyst</sub>  | V <sub>DH</sub> undervoltage hysteresis                  |                                                                               | 0.04 | -    | 0.2  | V    |
| V <sub>DHOVT1_LH</sub>  | V <sub>DH</sub> overvoltage threshold 1 LH               | V <sub>DH</sub> increasing                                                    | 19   | -    | 21   | V    |
| V <sub>DHOVT1_HL</sub>  | V <sub>DH</sub> overvoltage threshold 1 HL               | V <sub>DH</sub> decreasing                                                    | 18.4 | -    | 20.4 | V    |
| V <sub>DHOVT2_LH</sub>  | V <sub>DH</sub> overvoltage threshold 2 LH               | V <sub>DH</sub> increasing                                                    | 29   | -    | 33   | V    |
| V <sub>DHOVT2_HL</sub>  | V <sub>DH</sub> overvoltage threshold 2 HL               | V <sub>DH</sub> decreasing                                                    | 28.5 | -    | 32.5 | V    |
| V <sub>DHOV2_hyst</sub> | V <sub>DH</sub> overvoltage threshold 2 hysteresis       | Guaranteed by design                                                          | -    | 0.8  | -    | V    |
| V <sub>DHOV1_hyst</sub> | V <sub>DH</sub> overvoltage threshold 1 hysteresis       | Guaranteed by design                                                          | -    | 0.65 | -    | V    |
| t <sub>UV_FILT</sub>    | V <sub>DH</sub> undervoltage filter time                 |                                                                               | 7    | 10   | 13   | μs   |
| t <sub>OV_FILT</sub>    | V <sub>DH</sub> /V <sub>DD</sub> overvoltage filter time |                                                                               | 7    | 10   | 13   | μs   |
| V <sub>DDOVT_LH</sub>   | V <sub>DD</sub> overvoltage threshold LH                 |                                                                               | 5.4  | -    | 5.9  | V    |
| V <sub>DDOVT_HL</sub>   | V <sub>DD</sub> overvoltage threshold HL                 |                                                                               | 5.3  | -    | 5.8  | V    |
| V <sub>DDhyst_OV</sub>  | V <sub>DD</sub> overvoltage hysteresis                   |                                                                               | 0.07 | -    | 0.2  | V    |
| V <sub>DDPOR_OFF</sub>  | V <sub>DD</sub> power-on-reset                           | V <sub>DD</sub> increasing                                                    | 2.40 | 2.60 | 2.80 | V    |

DS15025 - Rev 1 page 11/130



| Symbol                | Parameter                       | Test condition             | Min  | Тур  | Max  | Unit |
|-----------------------|---------------------------------|----------------------------|------|------|------|------|
| V <sub>DDPOR_ON</sub> | V <sub>DD</sub> power-off-reset | V <sub>DD</sub> decreasing | 2.30 | 2.50 | 2.70 | V    |

<sup>1.</sup> Only functionality guaranteed.

# 2.4.2 Logic inputs PWMx, EN

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 9. PWMx, EN

| Symbol                 | Parameter                | Test condition                                                                                                              | Min  | Тур | Max   | Unit |
|------------------------|--------------------------|-----------------------------------------------------------------------------------------------------------------------------|------|-----|-------|------|
| V <sub>ENH</sub>       | EN high voltage          |                                                                                                                             | 0.9  | -   | 2     | V    |
| V <sub>ENL</sub>       | EN low voltage           |                                                                                                                             | 0.4  | -   | 0.95  | V    |
| V <sub>ENHY</sub>      | EN hysteresis            | (1)                                                                                                                         | 0.45 | -   | 0.95  | V    |
| R <sub>PD_OFF_EN</sub> | EN pull-down resistor    | EN pin below EN threshold                                                                                                   | 150  | 200 | 250.5 | kΩ   |
| I <sub>PD_ON_EN</sub>  | EN pull-down current     | EN pin above EN threshold, additional current, pull down resistor still present.  Expected 80 µA + 25 µA with 5 V at EN pin | 8.5  | 15  | 25    | μA   |
| V <sub>PWMH</sub>      | PWMx high voltage        | (2)                                                                                                                         | 1    | -   | 2     | V    |
| V <sub>PWML</sub>      | PWMx low voltage         | (3)                                                                                                                         | 0.75 | -   | 1.65  | V    |
| V <sub>PWMHY</sub>     | PWMx hysteresis          | (1)                                                                                                                         | 0.1  | -   | 0.5   | V    |
| R <sub>PD_PWMx</sub>   | PWMx pull-down resistor  |                                                                                                                             | 20   | 30  | 40    | kΩ   |
| fрwмн                  | PWMH switching frequency | VDH = 13.5 V, VSLx = 0 V<br>RG = 0 Ω, CG = 2.7 nF<br>PWMH-duty-cycle = 50%                                                  | -    | -   | 50    | kHz  |

- 1. Not subject to production test, specified by design.
- 2. High level guaranteed above max voltage.
- 3. Low level guaranteed below min voltage.

#### 2.4.3 Diagnostic not output (DIAGN)

The voltages are referred to ground and currents are assumed positive when the current flows into the pin. 6 V  $\leq$  V<sub>DH</sub>  $\leq$  18 V; T<sub>i</sub> = -40 °C to 150 °C, unless otherwise specified.

Table 10. DIAGN outputs

| Symbol          | Parameter                 | Test condition          | Min       | Тур | Max | Unit |
|-----------------|---------------------------|-------------------------|-----------|-----|-----|------|
| V <sub>OL</sub> | Low-level output voltage  | I <sub>out</sub> = 1 mA | -         | -   | 0.4 | V    |
| V <sub>OH</sub> | High-level output voltage | I <sub>out</sub> = 1 mA | VDD - 0.4 | -   | -   | V    |

DS15025 - Rev 1 page 12/130



#### 2.4.4 Charge pump

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C, all voltages with respect to ground, positive current flowing into pin (unless otherwise specified).

Symbol **Test condition Parameter** Min Тур Max Unit (1)  $f_{CP}$ Charge Pump frequency 325 400 475 kHz V<sub>DH</sub> ≥ 8 V  $V_{DH} + 8.2$ V<sub>DH</sub> + 11.2 V<sub>DH</sub> + 13  $V_{\mathsf{CP}}$ Charge pump output voltage ٧  $I_{CP} \ge -10 \text{ mA}^{(2)}$  $V_{DH} = 6 V$ Charge pump output voltage  $V_{DH} + 6.2$  $V_{DH} + 7$  $V_{CP\_vbmin}$  $I_{CP} = -5 \text{ mA}^{(2)}$  $V_{CP\_low}$ Charge pump low threshold voltage  $V_{DH} + 4.5$  $V_{DH} + 5$  $V_{DH} + 5.5$ V V<sub>CP</sub>= V<sub>DH</sub> = 13.5 V -36 I<sub>CP lim</sub> Charge pump output current limitation(3) mA  $t_{CP}$ Charge pump low filter time Tested by scan 8 10 12 μs Charge pump startup blanking time Tested by scan 500 800 t<sub>CP blank</sub> μs

Table 11. Charge pump

#### 2.4.5 Gate driver

The electrical characteristics related to the gate driver are valid for  $V_{CP} > V_{DH} + 8.5 \text{ V}$ .

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages with respect to ground, positive current flowing into pin except for  $I_{GLx}$  and  $I_{GHx}$  (unless otherwise specified).

The gate source and sink current level can be affected in case of high SHx/GHx slew rate due to capacitive current injected into the GATE pin from an external MOS miller capacitor. This behavior is described in a dedicated application note.

Table 12. Gate driver

| Symbol            | Parameter                                                             | Test condition                                             | Min  | Тур   | Max  | Unit |
|-------------------|-----------------------------------------------------------------------|------------------------------------------------------------|------|-------|------|------|
| I <sub>onx</sub>  | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 0000                         | -50% | -0.72 | +50% | mA   |
| I <sub>offx</sub> | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0000                     | -50% | 0.88  | +50% | mA   |
| I <sub>onx</sub>  | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 0001<br>ISTEP3_CONFx = 0000  | -50% | -1.58 | +50% | mA   |
| I <sub>offx</sub> | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0001 ISTEP3_CONFx = 0000 | -50% | 1.77  | +50% | mA   |
| I <sub>onx</sub>  | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 0010                         | -50% | -2.6  | +50% | mA   |
| I <sub>offx</sub> | Gate Sink Current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFX = ISTEP2_OFF_CONFx = 0010                     | -50% | 2.6   | +50% | mA   |
| I <sub>onx</sub>  | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 0011<br>ISTEP3_CONFx = 0001  | -45% | -3.3  | +45% | mA   |
| I <sub>offx</sub> | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0011 ISTEP3_CONFx = 0001 | -45% | 3.5   | +45% | mA   |

DS15025 - Rev 1 page 13/130

<sup>1.</sup> Not subject to production test, specified by design.

<sup>2.</sup>  $C_{CPC1} = C_{CPC2} = 100 \text{ nF}, C_{CP} = 220 \text{ nF}.$ 

<sup>3.</sup> In case of short to battery. This pin is not protected from short to ground.





| Symbol             | Parameter                                                             | Test condition                                             | Min  | Тур | Max  | Unit |
|--------------------|-----------------------------------------------------------------------|------------------------------------------------------------|------|-----|------|------|
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 0100                         | -45% | -6  | +45% | mA   |
| I <sub>offx</sub>  | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0100                     | -45% | 6   | +45% | mA   |
| I <sub>onx</sub>   | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 0101<br>ISTEP3_CONFx = 0010  | -35% | -8  | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0101 ISTEP3_CONFx = 0010 | -35% | 8   | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 0110                         | -35% | -10 | 35%  | mA   |
| I <sub>offx</sub>  | Gate Sink Current, only ISTEP1x and ISTEP2x                           | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0110                     | -35% | 10  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 0111<br>ISTEP3_CONFx = 0011  | -35% | -12 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 0111 ISTEP3_CONFx = 0011 | -35% | 12  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 1000                         | -35% | -16 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1000                     | -35% | 16  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 1001<br>ISTEP3_CONFx = 0100  | -35% | -20 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1001 ISTEP3_CONFx = 0100 | -35% | 20  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 1010                         | -35% | -24 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1010                     | -35% | 24  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 1011<br>ISTEP3_CONFx = 0101  | -35% | -28 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1011 ISTEP3_CONFx = 0101 | -35% | 28  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 1100                         | -35% | -32 | 35%  | mA   |
| I <sub>offx</sub>  | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub>   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1100                     | -35% | 32  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current                                                   | ISTEP1_CONFx = ISTEP2_CONFx = 1101<br>ISTEP3_CONFx = 0110  | -35% | -36 | 35%  | mA   |
| I <sub>Toffx</sub> | Gate sink current                                                     | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1101 ISTEP3_CONFx = 0110 | -35% | 36  | 35%  | mA   |
| I <sub>onx</sub>   | Gate source current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_CONFx = 1110                         | -35% | -40 | 35%  | mA   |

DS15025 - Rev 1 page 14/130



| Symbol            | Parameter                                                           | Test condition                                                                          | Min      | Тур    | Max    | Unit |
|-------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------|--------|--------|------|
| I <sub>offx</sub> | Gate sink current, only I <sub>STEP1x</sub> and I <sub>STEP2x</sub> | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1110                                                  | -35%     | 40     | 35%    | mA   |
| I <sub>onx</sub>  | Gate source current                                                 | ISTEP1_CONFx = ISTEP2_CONFx = 1111<br>ISTEP3_CONFx = 0111                               | -25%     | -42    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current                                                   | ISTEP1_CONFx = ISTEP2_OFF_CONFx = 1111 ISTEP3_CONFx = 0111                              | -25%     | 37     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only ISTEP3x                                    | ISTEP3_CONFx = 1000                                                                     | -25%     | -52    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only I <sub>STEP3x</sub>                          | ISTEP3_CONFx = 1000                                                                     | -25%     | 52     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only ISTEP3x                                    | ISTEP3_CONFx = 1001                                                                     | -25%     | -60    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only ISTEP3x                                      | ISTEP3_CONFx = 1001                                                                     | -25%     | 60     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only I <sub>STEP3x</sub>                        | ISTEP3_CONFx = 1010                                                                     | -25%     | -68    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only ISTEP3x                                      | ISTEP3_CONFx = 1010                                                                     | -25%     | 68     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only ISTEP3x                                    | ISTEP3_CONFx = 1011                                                                     | -25%     | -76    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only I <sub>STEP3x</sub>                          | ISTEP3_CONFx = 1011                                                                     | -25%     | 76     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only I <sub>STEP3x</sub>                        | ISTEP3_CONFx = 1100                                                                     | -25%     | -84    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only ISTEP3x                                      | ISTEP3_CONFx = 1100                                                                     | -25%     | 84     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only ISTEP3x                                    | ISTEP3_CONFx = 1101                                                                     | -25%     | -92    | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only I <sub>STEP3x</sub>                          | ISTEP3_CONFx = 1101                                                                     | -25%     | 92     | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only ISTEP3x                                    | ISTEP3_CONFx = 1110                                                                     | -25%     | -104   | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only ISTEP3x                                      | ISTEP3_CONFx = 1110                                                                     | -25%     | 104    | +25%   | mA   |
| I <sub>onx</sub>  | Gate source current only I <sub>STEP3x</sub>                        | ISTEP3_CONFx = 1111                                                                     | -25%     | -120   | +25%   | mA   |
| I <sub>offx</sub> | Gate sink current only ISTEP3x                                      | ISTEP3_CONFx = 1111                                                                     | -25%     | 120    | +25%   | mA   |
| V <sub>GSHx</sub> | Gate-on voltage                                                     | VDH = VSH = 6 V<br>ICP = -5 mA, DC measure GH-SH                                        | VSHx +   | -      | -      | V    |
| V <sub>GSHx</sub> | Gate-on voltage                                                     | VDH = VSH >= 8 V                                                                        | VSHx +-  | VSHx + | VSHx + | V    |
| R <sub>GHx</sub>  | Passive gate-pull-down resistance                                   | ICP = -10 mA, DC measure GH-SH  Resistance between gate HS and ground when device is ON | -        | 1      | -      | ΜΩ   |
| R <sub>SHx</sub>  | Passive source-pull-down resistance                                 | Resistance between source HS and ground when device is ON                               | -        | 1      | -      | ΜΩ   |
| V <sub>GLx</sub>  | Gate-on voltage                                                     | VSL = 0 V, VDH = 6 V                                                                    | VSLx + 6 | _      | _      | V    |

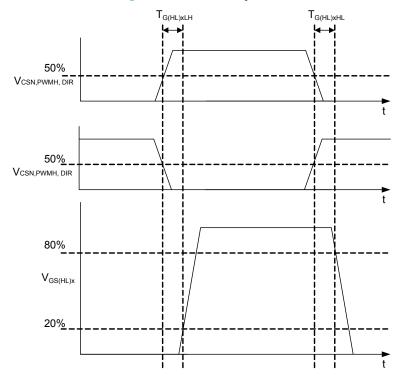
DS15025 - Rev 1 page 15/130

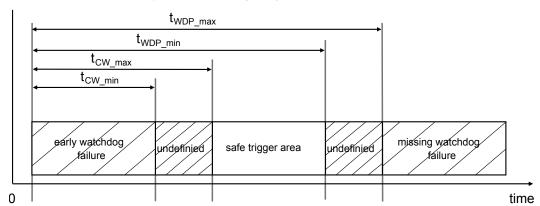


| Symbol               | Parameter                            | Test condition                                            | Min      | Тур    | Max          | Unit     |  |
|----------------------|--------------------------------------|-----------------------------------------------------------|----------|--------|--------------|----------|--|
|                      |                                      | ICP = -5 mA, DC measure GL-SL                             |          |        |              |          |  |
|                      |                                      | VSL = 0 V, VDH ≥ 8 V                                      |          | VSLx + | VSLx +       |          |  |
| $V_{GLx}$            | Gate-on voltage                      | ICP = -10 mA, DC measure GL-SL                            | VSLx + 8 | 10     | 12           | V        |  |
| R <sub>GLx</sub>     | Passive gate-pull-down resistance    | Resistance between gate LS and ground when device is ON   | -        | 1      | -            | ΜΩ       |  |
| R <sub>SL</sub>      | Passive source-pull-down resistance  | Resistance between source LS and ground when device is ON | -        | 125    | -            | ΚΩ       |  |
| .,                   | Step voltage1 for x channel          | VSTEP1_CONFx = 00/01                                      |          |        | ,            | ļ        |  |
| V <sub>step1xl</sub> | x = 18                               | Switch ON, command = 1                                    | -55%     | 1.1    | +55%         | V        |  |
| \ /                  | Step voltage1 for x channel          | VSTEP1_CONFx = 00/01                                      | 4-04     |        | 4-0/         | .,       |  |
| V <sub>step1xh</sub> | x = 18                               | Switch OFF command = 0                                    | -47%     | 1.3    | +47%         | V        |  |
| .,                   | Step voltage1 for x channel          | VSTEP1_CONFx = 10/11                                      |          |        |              |          |  |
| V <sub>step1xl</sub> | x = 18                               | Switch ON, command = 1                                    | -35%     | 2.2    | +35%         | V        |  |
|                      | Step voltage1 for x channel          | VSTEP1_CONFx = 10/11                                      |          |        |              |          |  |
| V <sub>step1xh</sub> | x = 18                               | Switch OFF command = 0                                    | -35%     | 2.6    | +35%         | V        |  |
|                      | Step voltage2 for x channel          | VSTEP2_CONFx = 00                                         |          |        |              |          |  |
| V <sub>step2xl</sub> | x = 18                               | Switch ON, command = 1                                    | -31%     | 2.67   | +31%         | V        |  |
|                      | Step voltage2 for x channel          | VSTEP2_CONFx = 00                                         |          |        |              |          |  |
| V <sub>step2xh</sub> | x = 18                               | Switch OFF command = 0                                    | -28%     | 3.33   | +28%         | V        |  |
|                      | Stan voltage? for v channel          | VSTEP2_CONFx = 01                                         |          |        |              |          |  |
| V <sub>step2x</sub>  | Step voltage2 for x channel $x = 18$ | Switch ON, command = 1                                    | -27%     | 3.56   | +27%         | V        |  |
|                      | Otan walta as 2 fan walta anal       | VSTEP2_CONFx = 01                                         |          |        |              |          |  |
| V <sub>step2xh</sub> | Step voltage2 for x channel $x = 18$ | Switch OFF command = 0                                    | -25%     | 4.44   | +25%         | V        |  |
|                      | Otan walta as 2 fan walta anal       | VSTEP2_CONFx = 10                                         |          |        | +24%         |          |  |
| V <sub>step2xl</sub> | Step voltage2 for x channel $x = 18$ | Switch ON, command = 1                                    | -24%     | 4.45   |              | V        |  |
|                      | Otan calle as O face of the same     | VSTEP2_CONFx = 10                                         |          |        |              |          |  |
| V <sub>step2xh</sub> | Step voltage2 for x channel $x = 18$ | Switch OFF command = 0                                    | -24%     | 5.55   | +24%         | V        |  |
|                      | 0, 1, 0, 1, 1                        | VSTEP2_CONFx = 11                                         |          |        |              |          |  |
| V <sub>step2xl</sub> | Step voltage2 for x channel $x = 18$ | Switch ON, command = 1                                    | -24%     | 5.34   | +24%         | V        |  |
|                      |                                      |                                                           |          |        |              |          |  |
| V <sub>step2xh</sub> | Step voltage2 for x channel $x = 18$ | VSTEP2_CONFx = 11 Switch OFF command = 0                  | -24%     | 6.66   | +24%         | V        |  |
|                      |                                      |                                                           |          |        |              |          |  |
|                      |                                      | Gate drivers dynamic parameters                           |          |        |              |          |  |
| $t_{GLxr}$           | Rise time LS                         | VDH = 13.5 V; VSLx = 0 V                                  | -        | -      | 2.1          | μs       |  |
|                      |                                      | RG = 0 Ω; CG = 10 nF                                      |          |        |              |          |  |
| t <sub>GHxr</sub>    | Rise time HS                         | VDH = 13.5 V; VSLx = 0 V                                  | _        | -      | 2.1          | μs       |  |
|                      |                                      | RG = 0 Ω; CG = 10 nF                                      |          |        |              |          |  |
| $t_{GLxf}$           | Fall time LS                         | VDH = 13.5 V; VSLx = 0 V                                  | _        | _      | 2.1          | μs       |  |
|                      |                                      | RG = 0 Ω; CG = 10 nF                                      |          |        |              |          |  |
| t <sub>GHxf</sub>    | Fall time HS                         | VDH = 13.5 V; VSLx = 0 V                                  | _        | _      | 2.1          | μs       |  |
| //                   |                                      | RG = 0 Ω; CG = 10 nF                                      |          |        |              | <u>'</u> |  |
| $V_{GSHx}$           | Gate-on voltage HS                   | Maximum VGH-VSH in turn-on condition                      | -        | -      | VSHx +<br>13 | V        |  |
| V <sub>GSLx</sub>    | Gate-on voltage LS                   | Maximum VGL-VSL in turn-on condition                      | _        | _      | VSLx +       | V        |  |

DS15025 - Rev 1 page 16/130







Figure 6. H-driver delay times

# 2.4.6 Watchdog

Table 13. Watchdog

| Symbol               | Parameter        | Test condition     | Min | Тур | Max | Unit |
|----------------------|------------------|--------------------|-----|-----|-----|------|
| t <sub>LOW</sub>     | Long open window | Guaranteed by scan | 52  | -   | 87  | ms   |
| t <sub>CW</sub>      | Closed window    | Guaranteed by scan | 11  | -   | 20  | ms   |
| t <sub>WDP</sub>     | Watchdog period  | Guaranteed by scan | 32  | -   | 54  | ms   |
| t <sub>timeout</sub> | Timeout period   | Guaranteed by scan | 90  | -   | 110 | ms   |

Figure 7. Watchdog early, late and safe window



DS15025 - Rev 1 page 17/130



## 2.4.7 Open-load monitoring external

The voltages are referred to power ground and currents are assumed positive when the current flows into the pin.  $6 \text{ V} \le \text{V}_{DH} \le 28 \text{ V}$ ;  $\text{T}_{j} = -40 \,^{\circ}\text{C}$  to 150  $^{\circ}\text{C}$ , unless otherwise specified.

Table 14. Open-load monitoring threshold

| Symbol              | Parameter                                                    | Test condition             | Min     | Тур | Max  | Unit |
|---------------------|--------------------------------------------------------------|----------------------------|---------|-----|------|------|
|                     |                                                              | VDH = 13.5 V               |         |     |      |      |
| V <sub>ODLS</sub>   | Low-side drain-source monitor off state-threshold voltage    | VDS_CONFx = 1xxx           | 1.5     | 1.8 | 2.1  | V    |
| VODES               | Low-side drain-source monitor on state-timeshold voltage     | or                         | 1.0     | 1.0 | 2.1  |      |
|                     |                                                              | (HB_MODEx = 00, OUTEx = 1) |         |     |      |      |
|                     |                                                              | VDH = 13.5 V               |         |     |      |      |
| V <sub>ODHS</sub>   | High-side drain-source monitor off state-threshold voltage   | VDS_CONFx = 1xxx           | 1.5     | 1.8 | 2.1  | V    |
| ODHS                | riigii side didiii sedice monitoi on state tiresnota voitage | or                         | 1.0     | 1.0 | 2.1  |      |
|                     |                                                              | (HB_MODEx = 00, OUTEx = 1) |         |     |      |      |
| V <sub>SHx_OL</sub> | Output voltage of selected SHx in open-load test mode        | VSLx = 0 V; VDH = 13.5 V   | 2.1     | 3   | 3.9  | V    |
| I <sub>shx PU</sub> | Pull-up current in DIAG OFF                                  | VSHx = 0 V; VDH = 13.5 V   | 0.5     | 0.9 | 1.25 | mA   |
| 'snx_PU             | Full-up current in DIAG OFF                                  | DIAGOFF_CURR_SEL = 0       | 0.5     | 0.9 | 1.23 | IIIA |
| I <sub>shx PU</sub> | Pull-up current in DIAG OFF                                  | VSHx = 0 V; VDH = 13.5 V   | 1.2     | 1.6 | 2.4  | mA   |
| 'SNX_PU             | Tull-up current in DIAC Of T                                 | DIAGOFF_CURR_SEL = 1       | 1.2     | 1.0 | 2.4  | ША   |
| Lu. pp              | Pull-down current in DIAG OFF                                | VSHx = 3 V; VDH = 13.5 V   | 200     | 300 | 400  | μA   |
| I <sub>shx_PD</sub> | Tull-down current in DIAC OTT                                | DIAGOFF_CURR_SEL = 0       | 200     | 300 | 400  | μΛ   |
| later DD            | Pull-down current in DIAG OFF                                | VSHx = 3 V; VDH = 13.5 V   | 400     | 600 | 800  | μA   |
| I <sub>shx_PD</sub> | T diredown current in DIAC Of I                              | DIAGOFF_CURR_SEL = 1       | 400 600 | 000 | 000  | μΛ   |
| t <sub>diag</sub>   | DIAG OFF time                                                |                            | 130     | 200 | 270  | μs   |

# 2.4.8 Drain-source monitoring threshold

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 15. Drain-Source monitoring threshold

| Symbol            | Parameter                         | Test condition   | Min   | Тур  | Max   | Unit |
|-------------------|-----------------------------------|------------------|-------|------|-------|------|
| V <sub>SCd0</sub> | Drain-source monitoring threshold | VDS_CONFx = 0000 | 0.045 | 0.08 | 0.095 | V    |
| V <sub>SCd1</sub> | Drain-source monitoring threshold | VDS_CONFx = 0001 | 0.12  | 0.16 | 0.18  | V    |
| V <sub>SCd2</sub> | Drain-source monitoring threshold | VDS_CONFx = 0010 | 0.16  | 0.20 | 0.24  | V    |
| V <sub>SCd3</sub> | Drain-source monitoring threshold | VDS_CONFx = 0011 | 0.20  | 0.25 | 0.30  | V    |
| V <sub>SCd4</sub> | Drain-source monitoring threshold | VDS_CONFx = 0100 | 0.24  | 0.30 | 0.36  | V    |
| V <sub>SCd5</sub> | Drain-source monitoring threshold | VDS_CONFx = 0101 | 0.32  | 0.40 | 0.48  | V    |
| V <sub>SCd6</sub> | Drain-source monitoring threshold | VDS_CONFx = 0110 | 0.40  | 0.50 | 0.62  | V    |
| V <sub>SCd7</sub> | Drain-source monitoring threshold | VDS_CONFx = 0111 | 0.48  | 0.60 | 0.72  | V    |

DS15025 - Rev 1 page 18/130

#### 2.4.9 Drain source monitoring blanking time

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 16. Drain source monitoring external H-bridge

| Symbol             | Parameter                                 | Test condition                                                                                                                               | Min | Тур   | Max  | Unit |
|--------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|------|------|
| t <sub>B0000</sub> | DS monitoring blank time                  | VDS_BLANKx = 0000                                                                                                                            | 0.5 | 0.625 | 0.85 | μs   |
| t <sub>B0001</sub> | DS monitoring blank time                  | VDS_BLANKx = 0001                                                                                                                            | 0.8 | 1     | 1.2  | μs   |
| t <sub>B0010</sub> | DS monitoring blank time                  | VDS_BLANKx = 0010                                                                                                                            | 1   | 1.25  | 1.5  | μs   |
| t <sub>B0011</sub> | DS monitoring blank time                  | VDS_BLANKx = 0011                                                                                                                            | 1.2 | 1.5   | 1.8  | μs   |
| t <sub>B0100</sub> | DS monitoring blank time                  | VDS_BLANKx = 0100                                                                                                                            | 1.6 | 2     | 2.4  | μs   |
| t <sub>B0101</sub> | DS monitoring blank time                  | VDS_BLANKx = 0101                                                                                                                            | 2.4 | 3     | 3.6  | μs   |
| t <sub>B0110</sub> | DS monitoring blank time                  | VDS_BLANKx = 0110                                                                                                                            | 3.2 | 4     | 4.8  | μs   |
| t <sub>B0111</sub> | DS monitoring blank time                  | VDS_BLANKx = 0111                                                                                                                            | 4   | 5     | 6    | μs   |
| t <sub>B1000</sub> | DS monitoring blank time                  | VDS_BLANKx = 1000                                                                                                                            | 4.8 | 6     | 7.2  | μs   |
| t <sub>B1001</sub> | DS monitoring blank time                  | VDS_BLANKx = 1001                                                                                                                            | 5.6 | 7     | 8.4  | μs   |
| t <sub>B1010</sub> | DS monitoring blank time                  | VDS_BLANKx = 1010                                                                                                                            | 6.4 | 8     | 9.6  | μs   |
| tscs               | Drain-source comparator propagation delay | VDH = 14 V VDS jump from 10 mV to 1 V, time from filter time end to VGS external FET under threshold without external MOSFETs <sup>(1)</sup> |     | -     | 1    | μs   |

<sup>1.</sup> Not subject to production test, specified by design.

Note: For the VDS\_BLANKx = 1x11 the default value (VDS\_BLANKx = 0000) will be set.

## 2.4.10 Drain source monitoring filter time

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 17. Drain source monitoring filter time

| Symbol             | Parameter                                | Test condition  | Min | Тур | Max  | Unit |
|--------------------|------------------------------------------|-----------------|-----|-----|------|------|
| t <sub>FT000</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 000 | 0.4 | 0.5 | 0.85 | μs   |
| t <sub>FT001</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 001 | 0.8 | 1   | 1.4  | μs   |
| t <sub>FT010</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 010 | 1.6 | 2   | 2.4  | μs   |
| t <sub>FT011</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 011 | 2.4 | 3   | 3.6  | μs   |
| t <sub>FT100</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 100 | 3.2 | 4   | 4.8  | μs   |
| t <sub>FT101</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 101 | 4   | 5   | 6    | μs   |
| t <sub>FT110</sub> | DS monitoring filter time <sup>(1)</sup> | VDS_FILTx = 110 | 4.8 | 6   | 7.2  | μs   |

<sup>1.</sup> Not subject to production test, specified by design.

Note: If the VDS\_FILTx = 111 the default value (VDS\_FILTx = 000) will be set.

DS15025 - Rev 1 page 19/130



#### 2.4.11 Cross current protection time

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 18. Cross current protection time

| Symbol | Parameter                     | Test condition                             | Min  | Тур | Max  | Unit |
|--------|-------------------------------|--------------------------------------------|------|-----|------|------|
| tDT000 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 350  | 500 | 650  | ns   |
| tDT001 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 0.8  | 1   | 1.2  | μs   |
| tDT010 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 1.6  | 2   | 2.4  | μs   |
| tDT011 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 2.4  | 3   | 3.6  | μs   |
| tDT100 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 3.2  | 4   | 4.8  | μs   |
| tDT101 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 4    | 5   | 6    | μs   |
| tDT110 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 4.8  | 6   | 7.2  | μs   |
| tDT111 | Cross-current protection time | Tested by scan, DTP_REF = 0 <sup>(1)</sup> | 12.8 | 16  | 19.2 | μs   |

<sup>1.</sup> When DTP\_REF = 1 it is necessary to add 850 ns to the maximum value.

Note: Not subject to production test, specified by design.

#### 2.4.12 External temperature diode

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow out from the pin (unless otherwise specified).

Table 19. External temperature diode

| Symbol              | Parameter              | Test condition    | Min  | Тур  | Max  | Unit |
|---------------------|------------------------|-------------------|------|------|------|------|
| I <sub>DIODE</sub>  | Diode current          | IDIODE_CONFx = 00 | 200  | 250  | 300  | μΑ   |
| I <sub>DIODE</sub>  | Diode current          | IDIODE_CONFx = 01 | 400  | 500  | 600  | μΑ   |
| I <sub>DIODE</sub>  | Diode current          | IDIODE_CONFx = 10 | 600  | 750  | 900  | μA   |
| I <sub>DIODE</sub>  | Diode current          | IDIODE_CONFx = 11 | 800  | 1000 | 1200 | μΑ   |
| V <sub>dioinc</sub> | Diode voltage range    |                   | 0.3  | -    | 2    | V    |
| -                   | ADC nbit               |                   | -    | 11   | -    | bit  |
| -                   | ADC offset error       |                   | -2   | -    | +2   | mV   |
| -                   | ADC gain error vs temp |                   | -    | -    | +1.5 | %    |
| -                   | ADC total gain error   |                   | -2.5 | -    | +2.5 | %    |

DS15025 - Rev 1 page 20/130



#### 2.4.13 SPI

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

Table 20. SPI parameters

| Symbol                         | Parameter                                                       | Test condition                                                   | Min       | Тур | Max  | Unit |
|--------------------------------|-----------------------------------------------------------------|------------------------------------------------------------------|-----------|-----|------|------|
| DC param                       | eters                                                           |                                                                  |           |     |      |      |
| $V_{IL}$                       | Low-level input voltage                                         |                                                                  | 0.75      | -   | 1.65 | V    |
| V <sub>IH</sub>                | High-level input voltage                                        |                                                                  | 0.85      | -   | 1.75 | V    |
| $V_{\text{ihyst}}$             | Input voltage hysteresis                                        |                                                                  | 0.1       | -   | 0.5  | V    |
| I <sub>CSN in</sub>            | CSN pull-up current input                                       | Probe current on force input pin at VHL voltage in DC conditions | 20        | 40  | 60   | uA   |
| I <sub>SDI in</sub>            | SCLK, SDI pull down current input                               | Probe current on force input pin at VIL voltage in DC conditions | 20        | 40  | 60   | μA   |
| V <sub>SDO low</sub>           | SDO output low voltage                                          | ISDO out = 1 mA                                                  | -         | -   | 0.4  | V    |
| V <sub>SDO high</sub>          | SDO output high voltage                                         | ISDO out = 1 mA<br>3.0 V ≤ VDD ≤ 5.5 V                           | VDD - 0.4 | -   | -    | V    |
| I <sub>SDO leak</sub>          | SDO tristate leakage current                                    | VCSN ≥ 2 V<br>0 V ≤ VSDO IN ≤ VDD                                | -10       | -   | 10   | μA   |
| AC param                       | neters                                                          |                                                                  |           |     |      |      |
| f <sub>CLK</sub>               | Clock frequency                                                 | CSDO = 50 pF                                                     | -         | -   | 6    | MHz  |
| t <sub>CLK</sub>               | Clock period                                                    | CSDO = 50 pF                                                     | 166       | -   | -    | ns   |
| t <sub>1</sub> <sup>(1)</sup>  | Clock high time                                                 |                                                                  | 75        | -   | -    | ns   |
| t <sub>2</sub> <sup>(1)</sup>  | Clock low time                                                  |                                                                  | 75        | -   | -    | ns   |
| t <sub>3</sub> <sup>(1)</sup>  | CLK low before CSN active                                       |                                                                  | 20        | -   | -    | ns   |
| t <sub>4</sub> <sup>(1)</sup>  | CLK active after CSN active                                     |                                                                  | 100       | -   | -    | ns   |
| t <sub>5</sub> <sup>(1)</sup>  | CLK passive before CSN passive                                  |                                                                  | 100       | -   | -    | ns   |
| t <sub>6</sub> <sup>(1)</sup>  | SDI setup time                                                  |                                                                  | 30        | -   | -    | ns   |
| t <sub>7</sub> <sup>(1)</sup>  | SDI hold time                                                   |                                                                  | 30        | -   | -    | ns   |
| t <sub>8</sub> <sup>(1)</sup>  | SDO active after CSN active                                     | CSDO = 50 pF                                                     | -         | -   | 100  | ns   |
| t <sub>9</sub> <sup>(1)</sup>  | SDO tristate after CSN passive                                  | CSDO = 50 pF                                                     | -         | -   | 100  | ns   |
| t <sub>10</sub> <sup>(1)</sup> | SDO valid time                                                  | CSDO = 50 pF                                                     | -         | -   | 70   | ns   |
| t <sub>11</sub> <sup>(1)</sup> | SDO hold time                                                   | CSDO = 50 pF                                                     | 10        | -   | -    | ns   |
| t <sub>12</sub> <sup>(1)</sup> | SDO rise time                                                   | CSDO = 50 pF                                                     | -         | -   | 50   | ns   |
| t <sub>13</sub> <sup>(1)</sup> | SDO fall time                                                   | CSDO = 50 pF                                                     | -         | -   | 50   | ns   |
| t <sub>14</sub> <sup>(1)</sup> | CSN passive time to next frame                                  |                                                                  | 600       | -   | -    | ns   |
| t <sub>15</sub> <sup>(1)</sup> | CLK passive time to next                                        |                                                                  | 100       | -   | -    | ns   |
| t <sub>16</sub> <sup>(1)</sup> | SDI data of next frame                                          |                                                                  | 20        | -   | -    | ns   |
| t <sub>CSN_fail</sub>          | CSN low timeout                                                 | Tested by scan                                                   | 20        | 35  | 50   | ms   |
| t <sub>START</sub>             | Time at the start up before a correct SPI frame can be received | Tested by scan                                                   | -         | -   | 300  | μs   |

<sup>1.</sup> See the Figure 1.

DS15025 - Rev 1 page 21/130



# 2.4.14 Indirect current sense output

 $V_{DH}$  = 6 V to 28 V;  $V_{DD}$  = 3.0 V to 5.5 V,  $T_j$  = -40 °C to 150 °C,  $V_{CP}$  >  $V_{DH}$  + 8.5 V, all voltages are referred to ground and currents are assumed positive when flow into the pin (unless otherwise specified).

**Table 21. CSO parameters** 

| Symbol                              | Parameter                                     | Test condition                                                                               | Min   | Тур | Max                   | Unit |
|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------------------------------------|-------|-----|-----------------------|------|
| CSO <sub>xTOT_error_CHx_50mV</sub>  | Total error 50 mV                             | VDS HS or LS forces 50 mV, gain selected 10x1.5 <sup>(1)</sup> validates also for gain 10x3  | -4.6  | -   | 4.6                   | mV   |
| CSO <sub>xTOT_error_CHx_50mV</sub>  | Total error 100 mV                            | VDS HS or LS forces 100 mV, gain selected 10x1.5 <sup>(1)</sup> validates also for gain 10x3 | -4.85 | -   | 4.85                  | mV   |
| CSO <sub>xTOT_error_CHx_150mV</sub> | Total error 150 mV                            | VDS HS or LS forces 150 mV, gain selected 2.5x3                                              | -10.5 | -   | 10.5                  | mV   |
| CSO <sub>xTOT_error_CHx_450mV</sub> | Total error 450 mV                            | VDS HS or LS forces 450 mV, gain selected 2.5x3                                              | -10.5 | -   | 10.5                  | mV   |
| CSO <sub>InR_A</sub>                | Indirect current sense input voltage Range A  |                                                                                              | 10    | -   | 140                   | mV   |
| CSO <sub>InR_B</sub>                | Indirect current sense input voltage Range B  |                                                                                              | 120   | -   | 450                   | mV   |
| CSO <sub>OutR_A</sub>               | Indirect current sense output voltage Range A | (1)                                                                                          | 0.1   | -   | V <sub>DD</sub> - 0.3 | V    |
| CSO <sub>OutR_B</sub>               | Indirect current sense output voltage Range B | (1)                                                                                          | 0.3   | -   | V <sub>DD</sub> - 0.3 | V    |
| CSO <sub>Setting</sub>              | Indirect current sense output setting time    | Out from 0.1 V to 2 V (C = 1 nF) <sup>(1)</sup>                                              | -     | -   | 10                    | μs   |

<sup>1.</sup> Not subject to production test, specified by design.

DS15025 - Rev 1 page 22/130



# 3 Functional description

# 3.1 Power supply

The device has two supply input pins. VDH is the supply input of the charge pump for the MOSFET gate drivers. It must be connected to the battery through a reverse battery protection. VDD is the supply input of the internal voltage regulator for the logic, of the I/Os and of the current sense amplifiers output stage. This voltage has to be the same as the application microcontroller supply (for example, 3.3 V or 5 V). When both VDD and VDH are provided to the device, the power supply for the internal regulators for logic is taken from the VDD power pin. None of the supply input pins are internally protected against negative voltage. The VDD supply input can withstand a short to battery up to VDD absolute maximum rating. The decoupling capacitors on the VDD and VDH pins must be placed in the PCB as close as possible.

#### 3.1.1 VDH overvoltage (VDHOV)

An overvoltage diagnostic is present in L99MH94 / L99MH92. The levels of the overvoltage diagnostic are described in the Supply, supply monitoring and current consumption. The overvoltage functionality is described in the Multi fail-safe mode.

#### 3.1.2 VDH undervoltage (VDHUV)

When the VDH supply input voltage falls below the undervoltage protection threshold ( $V_{DHUV}$ ) for a time longer than  $t_{UV\_FILT}$ , then the corresponding undervoltage flag (VDHUV) is set, and (in order to protect the external power stage) the external MOSFETs are switched off. In particular, the LS MOSFETs gate drivers are forced to switch off actively the LS MOSFETs with the maximum available current, regardless of the programmed gate discharge current, whereas the HS MOSFETs gate drivers are forced, as long as  $V_{CP} > V_{DH} + 3$  V, to switch off actively the HS MOSFETs with the maximum available current, after that the HS MOSFETs gate drivers will be disabled and the HS MOSFETs are passively switched off through the internal resistive connection between gate and source. The gate drivers come out of forced disabled mode, once the undervoltage flag VDHUV is cleared. The undervoltage flag VDHUV can be cleared by an SPI "read and clear" command only if the  $V_{DH}$  undervoltage condition is no longer present, namely if  $V_{DH} > V_{DHUV}$  for a time longer than the corresponding filtering time  $t_{OVUV}$  filt.

#### 3.1.3 VDD overvoltage (VDDOV)

When the  $V_{DD}$  exceeds the  $V_{DDOV}$  threshold for a time longer than  $t_{OV\_FILT}$ , then the corresponding overvoltage flag (VDDOV) is set, and (in order to protect the application) all the gate drivers are forced to switch off actively all the MOSFETs with the maximum available current, regardless of the programmed gate discharge current. The gate drivers come out of forced disabled mode, once the overvoltage flag VDDOV is cleared. The  $V_{DD}$  overvoltage protection aims at making the application robust against  $V_{DD}$  short to battery.

The overvoltage flag VDDOV can be cleared by an SPI "read and clear" command only if the  $V_{DD}$  overvoltage condition is no longer present, namely if  $V_{DD} < V_{DDOV}$  for a time longer than the corresponding filtering time  $t_{OV\ FILT}$ .

DS15025 - Rev 1 page 23/130



#### 3.2 Operation modes

EN = 0 | | POR = 0 POWERUP RESET (300us max) FN = 1 && POR = 1 CHARGE **PUMP ENABLING** CP\_READY && VDD OV || CP UV(after blank) || VDH\_OV || VDH\_UV || NO FAULT && NO FAULT ChargePump OFF THERM SD || WDG VDD OV 11 CP UV 11 OUTEx = 1 && HB\_MODEx = 00 VDH\_OV || VDH\_UV || THERM\_SD || WDG Drivers off except for VDH\_OV that the reaction is configurable according to GENMODE MULTI FAIL DIAGOFF ACTIVE SAFE ump off according to the faul Charge pump on OUTE and OUTEx contribits set to 1 Gate drivers working according to configuration HB\_MOI OUTEx = 0 || HB\_MODEx != 00 NO FAULT && VDD OV 11 CP UV 11 VDH\_OV || VDH\_UV || THERM\_SD || WDG

Figure 8. Main operating modes

### 3.2.1 Reset

The device gets out of reset mode to get into a power-up state as soon as the EN pin is high and the  $V_{DD}$  is above  $V_{DDPOR\_OFF}$  (increasing phase). If either the  $V_{DD}$  falls below  $V_{DDPOR\_ON}$  (decreasing phase) with the EN pin still high, the device experiences a power-on-reset and enters in reset mode.

Besides, the content of all the registers is reset to the default value. Once out of reset mode the global status RSTB bit will be set indicating that all the device registers have been reset to the default value. This bit will be automatically cleared by any valid SPI communication frame (after power-up state).

When the EN input pin is left floating, due of the internal pull-down resistor, the device enters (if not already done) in reset mode minimizing its current consumption. When the device is in reset mode, to have the minimum current drawn by  $V_{DH}$ , less than  $I_{DD\_SDN}$  for CSN = high (SDO in tristate), the EN input pin must be low. In reset mode the gate drivers together with the charge pump are switched off, all the MOSFETs are passively switched off by the internal resistive link between gate and source present at each MOSFET and all the registers are reset to default values.

#### 3.2.2 Power-up state and charge pump enabling

When L99MH94 / L99MH92 exits the reset state, before reaching the active state, the device passes through an intermediate state, called power-up state, with the aim of loading all the configurations necessary for the device to function. During this state it is not possible to guarantee the communication by SPI for a duration of  $t_{START}$ .

When the charge pump is out from the start up phase, the device will automatically exit from the charge pump enabling state to go to the active state. The start up phase duration is  $t_{CP\ start}$ .

#### 3.2.3 Active mode

In active mode the diagnostic device is available. In active mode, with no faults, the charge pump is enabled if VDH > VDHUV, the gate drivers are enabled if the OUTEx, x = 1...8, one for each half-bridge, control bits are set and the OUTE bit (one generic for all the gate drivers) is set. If the OUTEx control bits are reset, or the OUTE bit is reset, all the gate drivers are disabled and all the MOSFETs are switched off passively through the internal resistive connection between gate and source present at each MOSFET.

DS15025 - Rev 1 page 24/130



All the configurations shall be changed while the diagnosis/channel is not active to guarantee the correct value of the time selected and to apply the correct configuration. If the filter is changed during the actuation the value of the filter is not guaranteed.

#### 3.2.4 Multi fail-safe mode

The L99MH94 / L99MH92 integrates a so called "multi fail-safe mode", an automatic system that intervenes to switch off passively the gate driver/s to protect the device/application if a fault happens according to the registers settings.

In active mode, with no faults, the charge pump is enabled. The gate drivers outputs are driven according to the OUTEx control bit: when the OUTEx control bits are reset, all the gate drivers are low and the external MOSFETs are strongly shut off through the internal predriver pulldown. An additional passive pulldown connected between gate and GND and between source and GND of each MOSFET is present.

Once the OUTEx control bit is set, each HS and LS MOSFETs of the 4/2 half-bridges x, x = 1...4/2, can be:

- Deactivated
- Activated (statically, no PWM)
- Activated in PWM mode

The HB\_MODEx registers are used to control the functionality of the single half-bridge. x indicates the number of the half-bridge to work on, x = 1 to 4/2. It is a 2-bit register, see the Table 22 and Table 24.

| HB_MODEx, x = 14/2 | Setting                                                                        |
|--------------------|--------------------------------------------------------------------------------|
| 00                 | LS and HS of the half-bridge x are kept in DIAG OFF state (default)            |
| 01                 | LS of the half-bridge x is ON (static, no PWM), HS of the half-bridge x is OFF |
| 10                 | HS of the half-bridge x is ON (static, no PWM), LS of the half-bridge x is OFF |
| 11                 | LS or HS of the half-bridge x is ON according to the HB PWMx, x=14/2, register |

Table 22. HB\_MODEx register functionality

When a fault condition is detected, the behavior of the device is different depending on the cause of the fault itself.

When the VDH supply input voltage rises above the programmable overvoltage protection threshold ( $V_{DHOVT1}$  for OVTS = 0 or  $V_{DHOVT2}$  for OVTS = 1) for a time longer than  $t_{OV\_FILT}$ , the corresponding overvoltage flag (VDHOV) is set to protect the application.

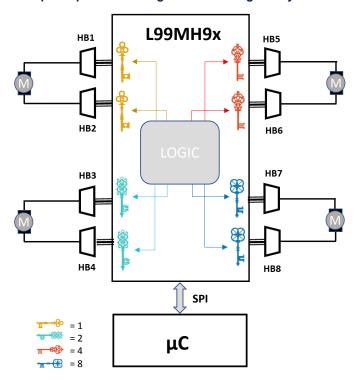
The overvoltage protection flag VDHOV can be cleared by an SPI "read and clear" command only if the VDH overvoltage condition is no longer present, namely if the foresaid condition that automatically enables the charge pump is fulfilled.

The following actions can be taken:

- The charge pump is left on. The external MOSFETs are switched off. In particular, the external HS and the LS MOSFETs are forced off actively with the maximum available current, regardless of the programmed gate discharge current. This working mode is obtained setting the GENMODEx = 0, x = 1...4/2
- In this second case, called GENERATOR MODE, the charge pump is left on. The HS external MOSFETs are switched off. The LS MOSFETs are switched on to lock the motor. This working mode is obtained setting the GENMODEx = 1, x = 1...4/2
- In this working mode the charge pump and the external MOSFETs are not switched off. L99MH94 / L99MH92 continues to work waiting for an interrupt from the microcontroller that will decide how to proceed. This working mode is obtained setting the GENMODEx = 2, x = 1...4/2

In the event of a fault due to  $V_{DD}$  overvoltage, thermal shutdown, watchdog event, the flag relating to the fault is set and the external MOSFETs, together with the charge pump are switched off to protect the device.

In case the VDD overvoltage condition is no longer present after the filtering time tOV\_FLT, the charge pump is switched on again, while the other functions are kept off until the VDDOV flag is cleared.


DS15025 - Rev 1 page 25/130



When a  $V_{ds}$  monitoring failure event occurs, the half-bridge in which the  $V_{ds}$  monitoring failure occurred is switched off. In addition to the half-bridge in which the failure occurred, all half-bridges that are connected to the one that failed are also turned off. L99MH94 / L99MH92 is able to turn off only the half-bridges connected to each other in accordance with what is written in the HB\_FAULTx, x = 1...4/2, register: at each half-bridge is assigned a key whose values can be 0, 1, 2, or 4, as shown in the Figure 9.

- 0 = the HBx is not connected to the other half-bridges;
- 1, 2, or 4 = the HBx relates to another HB with the same key.

Figure 9. Example of possible configuration to assign a key at each half-bridge



Note: The figure above relates to the L99MH98, L99MH94, and L99MH92 devices. The number of half-bridges available depends on the selected part number.

When a failure is detected in the half-bridge which has key x, all half-bridges that have key x will be turned off. All other half-bridges in which the failure is not detected, or which are connected to the half-bridge that fails, will remain switched on and will continue to work.

The Figure 10 shows an example of a possible configuration that associates different keys to different pairs of HB.

DS15025 - Rev 1 page 26/130



L99MH9x

HB1

HB2

HB6

HB7

HB7

HB8

HB8

Figure 10. Example of possible configuration where a key is associated to a different half-bridge

Note:

The figure above relates to the L99MH98, L99MH94, and L99MH92 devices. The number of half-bridges available depends on the selected part number.

The Figure 11 shows an example of a fault detected in HB1, connected with the same key to HB2, HB7 and HB8. The L99MH9x switches off HB1, HB2, HB7 and HB8 because linked with the same key.

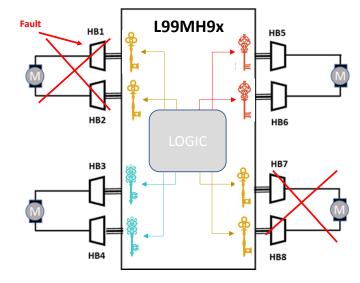



Figure 11. Example of fault on HB1

Note:

The figure above relates to the L99MH98, L99MH94, and L99MH92 devices. The number of half-bridges available depends on the selected part number.

In case all HB are configured with the same key (see the Figure 12), if a fault occurs on one HB, all HBx are switched off.

DS15025 - Rev 1 page 27/130



L99MH9x

HB1

HB2

HB4

HB4

HB6

HB7

HB8

Figure 12. Example of HBs configured with the same key

Note:

The figure above relates to the L99MH98, L99MH94, and L99MH92 devices. The number of half-bridges available depends on the selected part number.

DS15025 - Rev 1 page 28/130



#### 3.2.5 Operational matrix

The Table 23 summarizes which functions of L99MH94 / L99MH92 are turned off and which ones remain on as a function of the fault event that occurs.

Table 23. Reset matrix

| Functions/<br>faults or input                                     | Enable pin low | VDD under POR | VDD<br>overvoltage | VDH<br>overvoltage | VDH<br>undervoltage | Thermal<br>warning | Thermal<br>shutdown | Charge pump<br>over UV th at<br>power-up<br>(not ready) | Charge pump UV<br>(CP UV FAULT) | Watchdog         | VDSx<br>monitoring | SPI error |
|-------------------------------------------------------------------|----------------|---------------|--------------------|--------------------|---------------------|--------------------|---------------------|---------------------------------------------------------|---------------------------------|------------------|--------------------|-----------|
| SPI                                                               | Х              | Х             | X <sup>(1)</sup>   | 0                  | 0                   | 0                  | 0                   | 0                                                       | 0                               | 0                | 0                  | 0         |
| Watchdog                                                          | Х              | Х             | X <sup>(2)</sup>   | 0                  | 0                   | 0                  | 0                   | 0                                                       | 0                               | 0                | 0                  | 0         |
| Diagnostic logic                                                  | Х              | Х             | Х                  | 0                  | 0                   | 0                  | 0                   | 0                                                       | 0                               | 0                | 0                  | 0         |
| Register map                                                      | Х              | Х             | 0                  | 0                  | 0                   | 0                  | 0                   | 0                                                       | 0                               | O <sup>(3)</sup> | 0                  | 0         |
| PWM controller                                                    | Х              | Х             | Х                  | Х                  | Х                   | 0                  | Х                   | Х                                                       | Х                               | Х                | X                  | 0         |
| DIAGN                                                             | Х              | Х             | Α                  | Α                  | Α                   | Α                  | Α                   | А                                                       | Α                               | Α                | А                  | Α         |
| Indirect current measurement system                               | Х              | ×             | X                  | ×                  | ×                   | 0                  | Х                   | х                                                       | Х                               | х                | 0                  | 0         |
| Current<br>generator and<br>ADC for<br>temperature<br>measurement | Х              | X             | ×                  | X                  | X                   | 0                  | Х                   | X                                                       | Х                               | X                | 0                  | 0         |
| Gate drivers                                                      | Х              | Х             | Х                  | С                  | Х                   | 0                  | Х                   | Х                                                       | Х                               | Х                | X <sup>(4)</sup>   | 0         |
| Charge pump                                                       | Х              | Х             | X                  | 0                  | 0                   | 0                  | Х                   | X <sup>(5)</sup>                                        | 0                               | X                | 0                  | 0         |

- 1. SDO, DIAGN, and CSO1 outputs are low.
- 2. After a VDDOV event the watchdog restarts with a long open window and must be reprogrammed.
- 3. The OUTEx registers are reset.
- 4. The half bridge in which the failure occurred and all the half bridges that are connected to the one that failed are turned off.
- 5. In the case of a charge pump not ready the CP is in power-up phase.

Note:

- X = Power-off
- O = Normal operation
- A = Active
- C = All the MOSFETs are disabled if GENMODExx = 0
   All the HS MOSFETs are disabled. LS MOSFETs are ON to lock the motor if GENMODExx = 1
   All the MOSFETs are ON. The microcontroller decides how to proceed if GENMODExx = 2

#### 3.2.6 Power-up sequence

The power-up sequences that must be followed to turn on L99MH94 / L99MH92 are reported below.

The first case of a possible power-on sequence is shown in the Figure 13. In this case  $V_{DH}$  and  $V_{DD}$  are raised while the EN pin is kept low. After the  $V_{DH}$  and  $V_{DD}$  pins are high and stable, the EN pin is raised to turn on the device or lowered to turn it off. L99MH94 / L99MH92 turns on when the EN pin exceeds the rising  $V_{ENH}$  threshold and will turn off when it drops below the falling  $V_{ENL}$  threshold.

The fastest possible slew rate for  $V_{DD}$  is 100  $\mu s$  at 3.3 V.

DS15025 - Rev 1 page 29/130



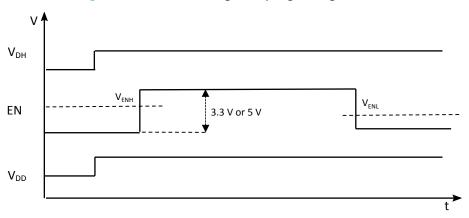



Figure 13. V<sub>DH</sub> and V<sub>DD</sub> high, EN pin goes high and low

The second case of a possible power-on sequence is shown in the Figure 14. In this case the  $V_{DD}$  is raised while the  $V_{DH}$  and EN pins are kept low. After the  $V_{DD}$  pin is high and stable, the EN pin is raised to turn on the logic of the device or lowered to turn it off. L99MH94 / L99MH92 turns on when the EN pin exceeds the rising  $V_{ENH}$  threshold and will turn off when it drops below the falling  $V_{ENL}$  threshold.

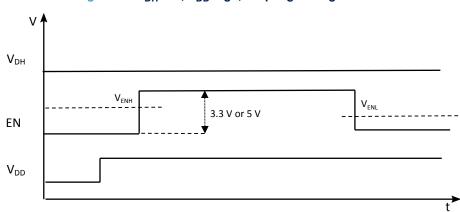



Figure 14. V<sub>DH</sub> low, V<sub>DD</sub> high, EN pin goes high and low

Another case of a possible power-on sequence of L99MH94 / L99MH92 is shown in the Figure 15. In this case  $V_{DD}$ ,  $V_{DH}$  and EN pins are raised at the same time with the same slew rate.

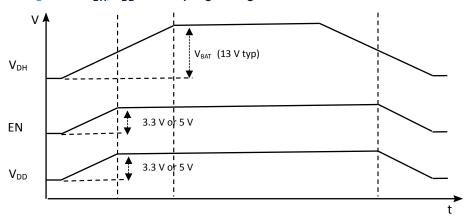



Figure 15. V<sub>DH</sub>, V<sub>DD</sub> and EN pin goes high and low with the same slew rate

DS15025 - Rev 1 page 30/130



The last possible power-on sequence of L99MH94 / L99MH92 is shown in the Figure 16. It is possible to raise the  $V_{DD}$  and EN pins of L99MH94 / L99MH92 at the same time and with the same slope while keeping the  $V_{DH}$  pin low. With the  $V_{DD}$  and  $V_{DH}$  pins high it is possible to raise the  $V_{DH}$  pin to the battery and then lower it to the ground.

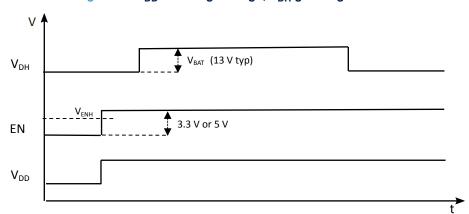


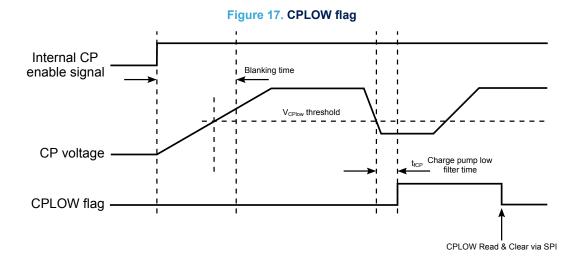

Figure 16.  $V_{DD}$  and EN goes high,  $V_{DH}$  goes high and low

# 3.3 Thermal warning and thermal shutdown (TW/TSD)

When the device junction temperature rises above the  $T_{jTW\_ON}$  threshold for a time longer than  $t_{fTjTW/TSD}$ , the temperature warning flag TW is set and no action is taken. The TW flag can be cleared by an SPI "read and clear" command only if the thermal warning condition is no longer present for a time longer than the corresponding filtering time  $t_{fTjTW/TSD}$ . When the junction temperature rises above the  $T_{jSD\_ON}$  threshold for a time longer than  $t_{fTjTW/TSD}$ , the thermal shutdown flag TSD is set and the external MOSFETs, together with the charge pump are switched off to protect the device. The LS gate drivers and the HS gate drivers remain disabled together with the charge pump until the TSD flag is cleared. The TSD flag can be cleared by an SPI "read and clear" command only if the thermal shut-down condition is no longer present, namely if  $T_j < T_{jSD\_OFF}$  for a time longer than the corresponding filtering time  $t_{fTiTW/TSD}$ .

# 3.4 Charge pump

The dual stage charge pump uses two external flying capacitors, which are switched at the frequency  $f_{CP}$ , and one output capacitor connected between the CPOUT pin and the VDH pin. The output of the charge pump has a current limitation. After charge pump command enable, and after a filter time  $t_{CP\_blank}$ , and without any fault, the charge pump is ready for gate driving functionality.


To enable the charge pump disabled by a thermal shut-down event detection, the TSD flag must be cleared. After the charge pump start-up, after the initial blanking time, if the charge pump output voltage falls below the charge pump output voltage low threshold  $V_{CP\_low}$  for a time longer than  $t_{CP}$ , the CPLOW flag is set and the external MOSFETs are switched off.

If the CP\_LOW\_CONFIG control bit is set to one, the CPLOW status flag becomes a status bit (set and reset automatically) and the gate drivers come out of forced disabled mode automatically upon recovery from the charge pump low voltage condition. In this case the status bit will be automatically cleared as soon as the charge pump output voltage is no longer below the low voltage threshold for a time longer than  $t_{CP}$ . If the CP\_LOW\_CONFIG control bit is set to zero, the gate drivers come out of forced disabled mode only once the charge pump low voltage flag CPLOW is cleared via SPI. The charge pump low voltage flag CPLOW can be cleared by a SPI "read and cear" command only if the charge pump low voltage condition is no longer present, namely if  $V_{CP} > V_{CP}$  LOW for a time longer than  $t_{CP}$ .

To reduce electromagnetic emissions, the charge pump frequency dithering is enabled by default. However, the dithering can be disabled through the control bit CPFDD.

DS15025 - Rev 1 page 31/130





DS15025 - Rev 1 page 32/130



#### 4 Gates driver

#### 4.1 Outputs driving signals

To work with each half-bridge the following registers need:

- 1. HB\_MODEx (half-bridge mode): this register is used to control the functionality of the single half-bridge. x indicates the number of the half-bridge to work on, x = 1 to 4/2. It is a 2-bit register (see the Table 24 and Table 25).
- 2. EN\_PWMy (enable PWM): this 1-bit register is used to enable/disable the PWM signal, y indicates the PWM pins that must be enabled/disabled, y = 1...2 (see the Table 25).
- 3. HB\_PWMx (Half bridge PWM): This 3-bit register is used to indicate which PWM signal is applied to the HS or LS of the x-th half-bridge, x = 1...4/2 (see the Table 25).

When a MOSFET of a half-bridge must be powered OFF or ON in the static mode the HB\_MODEx register must be used. As an example, if the HS of the half-bridge 3 and the LS of the half-bridge 4 must be powered ON the following registers must be written:

- HB MODE3 = 10
- HB MODE4 = 01

A maximum of three PWM signals can be applied to the L99MH94 / L99MH92. Each PWM signal can be provided to each HS or LS of each half-bridge, using the correct programming of the registers HB\_MODEx, EN\_PWMy and HB\_PWMx (see the Table 25).

As an example, an H-bridge is composed of half-bridge 2 and half-bridge 3, HS of 2 is always ON while PWM 2 is applied to the LS of half-bridge 3. In this case we have:

- HB MODE**2** = 10 → HS of the half-bridge 2 is ON in states mode
- EN PWM2 = 1 → PWM2 signal is activated
- HB\_PWM2 = 001 → PWM2 signal is mapped on the LS of the half-bridge 3
- HB MODE3 = 11 → enable the HB3 to work in PWM mode

Configuration of the PWM map is shown in the table below:

Table 24. PWM signal application to the half-bridges

| HB_PWMx | HB_MODEx | Setting                                                                        |
|---------|----------|--------------------------------------------------------------------------------|
| Х       | 00       | LS and HS of the half-bridge x are kept OFF (default).                         |
| Х       | 01       | LS of the half-bridge x is ON (static, no PWM), HS of the half-bridge x is OFF |
| Х       | 10       | HS of the half-bridge x is ON (static, no PWM), LS of the half-bridge x is OFF |
| 000     | 11       | Low-side of half-bridge x mapped on PWM1. EN_PWM1 must be set to 1             |
| 001     | 11       | Low-side of half-bridge x mapped on PWM2. EN_PWM2 must be set to 1             |
| 010     | 11       | No mapping                                                                     |
| 011     | 11       | High-side of half-bridge x mapped on PWM1. EN_PWM1 must be set to 1            |
| 100     | 11       | High-side of half-bridge x mapped on PWM2. EN_PWM2 must be set to 1            |
| 101     | 11       | No mapping                                                                     |
| 110     | XX       | No mapping, if used the LS and HS of the half-bridge x are kept OFF            |
| 111     | XX       | No mapping, if used the LS and HS of the half-bridge x are kept OFF            |

The PWMx input pins have an internal pull-down current in order to put the outputs in a well-known condition in case any of the pins will no longer be driven by the microcontroller.

Four different free-wheeling strategies are available in the L99MH94 / L99MH92: active or passive freewheeling on either high-side or low-side MOSFETs. To choose the correct free-wheeling method the HB\_WHEELx, x = 1...4/2, must be programmed according to the Table 25.

DS15025 - Rev 1 page 33/130



| Table 25. | Free-wheeli | ng mode |
|-----------|-------------|---------|
|-----------|-------------|---------|

| HB_WHEELx, x=14/2 | Setting                                         |
|-------------------|-------------------------------------------------|
| 00                | Passive free-wheeling                           |
| 01                | Active free-wheeling on HS of the half-bridge x |
| 10                | Active free-wheeling on LS of the half-bridge x |
| 11                | Passive free-wheeling                           |

In the active free-wheeling case, the MOSFET is actively switched off by the pre-driver. In active free-wheeling the current is fixed. It is possible to configure two different currents according to the STRONG\_ON\_WHEELx, x = 1...8, bit: 4 mA if the bit is set to 0, 30 mA if the bit is set to 1.

If the microcontroller, in a not correct way, should program a PWM and an active free-wheeling in a MOSFET at the same time, L99MH94 / L99MH92 assigns the PWM to the selected MOSFET.

#### 4.2 Indirect current measurement for external MOSFET

A new and innovative current sense method, different from the classical voltage drop on the shunt resistors, has been designed and here reported. The proposed method has the great advantage of not using external resistors, with the consequence of a lower cost of the application and no voltage drop on the sensing resistors.

The new current sense method is made up of 5 different phases:

- 1. CSO settings according to the used external MOSFETs;
- 2. Rds(on) and temperature calibration at application level;
- 3. Rds(on) prediction curve stored in the external µC;
- 4. Live temperature measurement for MOSFET Rds(on) prediction;
- 5. Real time V<sub>ds</sub> measurement via CSO1 pin and external MOSFET current calculation (done at μC level).

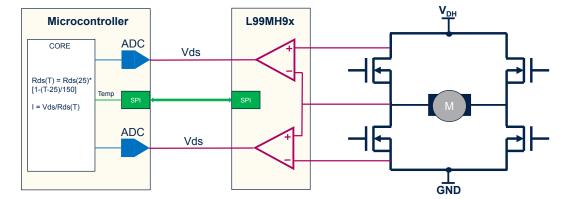



Figure 18. Overview of indirect current measurement

#### 4.2.1 Rds(on) calibration at application level

The first phase of current sensing is that of a correct measurement of the Rds(on) of each MOSFET of the 4 external H-bridges. This is because the Rds(on) of the MOSFETs have a large variability that can go up to ±25% of the typical value. Thus, to have a precise measurement of the current, a calibration must be performed during the manufacturing process. The Rds(on) calibration of each MOSFET must be done using the following strategy at room temperature:

- 1. Power on the MOSFET under measurement;
- 2. A fixed current, 1 A for instance, is sent in the drain pin. The V<sub>ds</sub> is measured by L99MH94 / L99MH92;
- 3. The microcontroller calculates the Rds(on) =  $V_{ds}/1$  A. This value is stored in the microcontroller memory. This value represents the Rds(on) of the MOSFET at room temperature;
- The curve of the variation of the Rds(on) as function of the temperature is stored in the microcontroller memory.

DS15025 - Rev 1 page 34/130



#### 4.2.2 V<sub>ds</sub> measurement

The L99MH94 / L99MH92 is able to reflect the drain to source voltage across each of the external MOSFETs with some gain on one of the CSO1 pin. This is done for both the low and high side MOSFETs using an analog multiplexer. This allows the user, through SPI, to select and monitor the drain to source voltage on any MOSFET for the purpose of load current estimation. The selected drain source voltage is reflected on the CSO1 pin when the MOSFET is fully on. To do this, the CSO1 pin are tri-stated when the selected MOSFET is OFF and enabled, after some dead time, when the MOSFET is ON. This allows a small capacitor on the CSO1 pin to sustain the amplified drain to source voltage for reliable conversion by the ADC of the microcontroller.

The CSO1 output can be enabled/disabled by the CSOEN register. In case of disable the output is in high impedance.

The  $V_{ds}$  of all 8/4 MOSFETs connected to L99MH94 / L99MH92 can be measured. To map one of the  $V_{ds}$  to the CSO1, the two CSOSIG and CSO registers must be used (see the Table 26).

To read the  $V_{ds}$  voltage the device uses internal current sense amplifiers circuits. In this way, the L99MH94 / L99MH92 can reflect the drain to source voltage across each of the external MOSFETs, with a gain on one of the CSO1 pin. This is possible for both low and high side MOSFETs using an analog multiplexer. The error of the selected gain is included in the total error parameter.

The total gain of the CSO is composed by the contribution of two different stages:

- The gain of the first stage is related to the drain-source monitoring thresholds of the used MOSFET (VDS\_CONFx bits). By setting the drain-source monitoring threshold to 75 mV (VDS\_CONFx = 0000) or 150 mV (VDS\_CONFx = 0001), the gain of the first stage will be set to 10 [V/V]. For drain-source monitoring thresholds from 200 mV (VDS\_CONFx = 0010) to 400 mV (VDS\_CONFx = 0101), however, the gain of the first stage is set to 2.5 V/V.
- The second stage gain, on the other hand, is controlled by a bit for each CSO channel, CSO\_GAIN\_SELx register. In this case the gain does not refer on how the single MOSFET is set, but it is a parameter related to the single CSO channel. When CSO\_GAIN\_SEL = 0 the gain set is 1.5 V/V, when CSO\_GAIN\_SEL = 1 is 3 V/V.

The total gain is, therefore, given by the product of the two selected gains.

The choice of the gains will be made according to the output voltage of the CSO. Since the validity of the output of the CSO is granted if its value is in the range between 0.1 V and VDD-0.3 V, the gains to choose must be set to obtain a compatible CSO output value (approximately in the middle of this range), starting from the considered input value of  $V_{ds}$ .

Table 26. V<sub>ds</sub> mapping on CSO1

| CSOSIG | CSOSH | Setting                                                                       |
|--------|-------|-------------------------------------------------------------------------------|
| 0      | 00    | V <sub>ds</sub> of the HS1 mapped on the CSO1                                 |
| 0      | 01    | V <sub>ds</sub> of the HS2 mapped on the CSO1                                 |
| 0      | 10    | L99MH94: V <sub>ds</sub> of the HS3 mapped on the CSO1<br>L99MH92: No mapping |
| 0      | 11    | L99MH94: V <sub>ds</sub> of the HS4 mapped on the CSO1 L99MH92: No mapping    |
| 1      | 00    | V <sub>ds</sub> of the LS1 mapped on the CSO1                                 |
| 1      | 01    | V <sub>ds</sub> of the LS2 mapped on the CSO1                                 |
| 1      | 10    | L99MH94: V <sub>ds</sub> of the LS3 mapped on the CSO1 L99MH92: No mapping    |
| 1      | 11    | L99MH94: V <sub>ds</sub> of the LS4 mapped on the CSO1 L99MH92: No mapping    |

DS15025 - Rev 1 page 35/130



L99MH94 DIODE2 VDS\_HS CSO<sub>1</sub> VDS\_LS1 SH1 SH2 VDS\_HS2 SH2 VDS\_LS GND **MUX** VDS HS4 VDS\_LS4 DIODE1 ADC DIODE2 L99MH92 VDH VDS\_HS1 CSO<sub>1</sub> SH1 VDS\_LS1 VDS\_HS2 VDS\_LS2 I GND MUX DIODE1 ADC

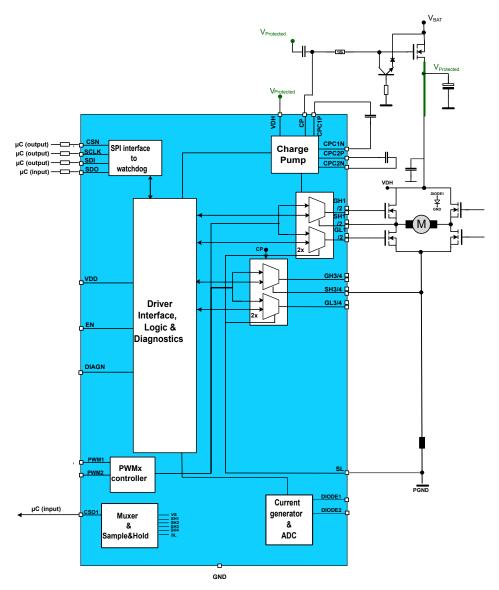
Figure 19. V<sub>ds</sub> measurement by CSO1

## 4.2.3 Temperature measurement for calibration and monitoring

To further improve indirect current measurement, a temperature control (via 4 external diodes/diode chain) is implemented inside the L99MH94 / L99MH92. Each diode/chain will be placed as close as possible to each H-bridge or to a relevant temperature hot-spot. The forward voltage,  $V_f$ , of the diode varies with temperature, therefore the diode's temperature coefficient is needed to get an accurate representation of the junction temperature. The control structure of the diodes is constituted by a current generator that injects a small current (programmable from 250  $\mu$ A to 1 mA) in the anode of the diode while the cathode will be connected to the ground pin of the L99MH94 / L99MH92.

DS15025 - Rev 1 page 36/130




The voltage across the diode will then be measured by an internal ADC which will make the value available to the microcontroller: 4 dedicated registers, DIODEx\_READ, x = 1...4, will report the read values to the microcontroller by SPI communication. The interval time between one temperature measurement and another is of 1 ms typ. If one or more diodes are not connected the information related to the connected diodes will always be available after 1 ms.

Reading the Vf( $x^{\circ}C$ ) at an unknown temperature, knowing the V<sub>f</sub> (25 °C) at 25 °C and knowing the temperature coefficient of the V<sub>f</sub>, the microcontroller calculates the working temperature by applying the following formula:

$$T[C] = T[25°C] + [V_f(x°C) - V_f(25°C)] / Tenperature Coefficient$$
 (1)

 $V_f$  (25 °C) varies slightly from device to device: to overcome this behavior, a calibration data during the manufacturing process can be applied: in this case the  $V_f$  (25 °C) can be measured in the manufacturing process and the value can be stored in the microcontroller memory.

Figure 20. L99MH94 application diagram for temperature measurement



DS15025 - Rev 1 page 37/130



If a more precise temperature measurement is required, two heat map methods can be adopted:

- 1. The first way is to measure the temperature difference between the H-bridge MOSFET and the point where the diode(s) is soldered through the thermal map of the application board. The temperature difference between the two points is then saved in the memory of the microcontroller as a corrective factor: each time the microcontroller carries out the temperature measurement through the diode it applies the previously stored correction factor to obtain a temperature measurement of the MOSFET closest to reality.
- 2. The second solution is to foresee places in the PCB where the diode(s) can be soldered in order to find the best spot to sense the temperature. By making a heat map of the application board the user will be able to discover the most suitable place where to put the thermal sensor. In this way the measurement made by the diode will be the closest to real MOSFET temperature. In any case, a corrective factor, as foreseen in point 1, can be considered. The thermal sensor(s) can also be used in the normal working mode for controlling the maximum PCB temperature.

The monitor of the external 4 diodes/chains allows to detect steady, not fast, temperature raising of specific PCB areas; a temperature control of the module can be also implemented via the external diodes.

### 4.2.4 H-bridge current calculation

After having known the temperature at which the H-bridge is working and having measured the  $V_{ds}$ , the microcontroller will be able to evaluate the working current. To do this, the microcontroller must follow two simple calculations:

- Calculate Rds(on) at working temperature. The microcontroller has in its memory the trend of the variation curve of the Rds(on) in temperature: knowing the temperature, it can estimate the value of the Rds(on) at the temperature in which the H bridge is working.
- Calculate the current. At this point the microcontroller has calculated the value of the Rds(on) and has
  acquired the measured value of the V<sub>ds</sub>: the current flowing in the bridge H is easily calculated as the ratio
  between V<sub>ds</sub>/Rds(on).

## 4.3 Power ON/OFF

#### 4.3.1 Three stages gate current

A tailored gate current strategy for the  $T_{on/off}$  of the external MOSFETs, called "three stages gate current", has been implemented in the L99MH94 / L99MH92. Behavior is showed in the Figure 21.

The new gate current strategy is implemented in the following three stages:

## Stage 1

The first stage occurs when  $V_{GS} < V_{step1xl}$ , x = 1...4 for L99MH94 and x = 1, 2 for L99MH92, in case of switch ON of the external MOSFETs or  $V_{GS} < V_{step1xh}$ , x = 1...4 / x = 1, 2, in case of switch OFF of the external MOSFETs. In the first stage the gate drive current will be  $I_{onx}$  (ISTEP1\_CONFx, x = 1...4 / x = 1, 2, register), x = 1...4 / x = 1, 2, in case of switch OFF of the external MOSFETs.

## • Stage 2

The second stage occurs when  $V_{step1xh} < V_{GS} < V_{step2xh}$ , x = 1...4 / x = 1, 2, in case of switch OFF of the external MOSFETs or  $V_{step1xl} < V_{GS} < V_{step2xl}$ , x = 1...4 / x = 1, 2, in case of switch ON of the external MOSFETs. In this second stage the gate drive current can be programmed differently in the switch ON and switch OFF phases. In case of switch ON, the  $I_{onx}$ , x = 1...4 / x = 1, 2, is set programming the ISTEP2\_CONFx, x = 1...4 / x = 1, 2, register. In case of switch OFF, the  $I_{offx}$ , x = 1...4 / x = 1, 2, is set programming the ISTEP2\_OFF\_CONFx, x = 1...4 / x = 1, 2, register.

#### Stage 3

The third stage occurs when  $V_{GS} > V_{step2xl}$ , x = 1...4 / x = 1, 2, in case of switch ON of the external MOSFETs or  $V_{GS} > V_{step2xh}$ , x = 1...4 / x = 1, 2, in case of switch OFF of the external MOSFETs. In the third stage the gate drive current will be  $I_{onx}$  (ISTEP3\_CONFx, x = 1...4 / x = 1, 2 register), x = 1...4 / x = 1, 2, in case of switch ON and  $I_{offx}$  (ISTEP3\_CONFx, x = 1...4 / x = 1, 2 register), x = 1...4 / x = 1, 2, in case of switch OFF of the external MOSFETs.

DS15025 - Rev 1 page 38/130



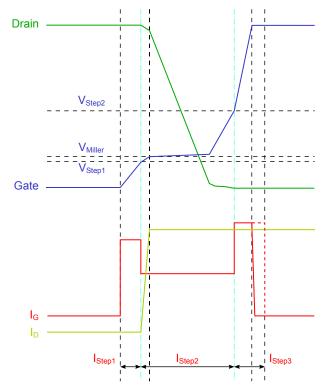



Figure 21. Power ON/OFF steps for gate drivers

DS15025 - Rev 1 page 39/130

# Protections and diagnostics

# 5.1 Reverse polarity protection

The output of the charge pump (CPOUT pin) can be used to supply an external n-channel MOSFET, building an active reverse polarity protection (refer to the Figure 22).

## 5.2 Programmable cross current protection time (DT)

In any input mode (quad/dual half-bridge mode or full-bridge mode), the device adds the configured dead-time between the turn-off of a MOSFET and the turn-on of the complementary one (that is, the other MOSFET of the same leg) to avoid cross-conduction in any of the half-bridges. Two different methods have been implemented to choose the starting point of the cross-current protection time according to the DTP\_REF bit. If the DTP\_REF = 0, the cross-current protection time is calculated starting from the command to switch off a MOSFET and switch on the complementary. If the DTP\_REF = 1, the cross current protection time is calculated starting from the instant in which the  $V_{gs}$  of the MOSFET being switched off has reached the value set in the  $V_{STEP1x}$ . In quad/dual half-bridge mode each half-bridge dead-time  $t_{DTxxx}$  is independently configurable by control bits DTx[2:0], x = 1...4/2.

## 5.3 Short circuit detection/drain source monitoring (DSHS/DSLS)

The voltage-drop over each MOSFET is sensed and compared to a programmable threshold to detect an overcurrent condition. This monitoring is activated only on the external MOSFETs of the half bridges driven to be ON. In the L99MH94 / L99MH92 each half-bridge has its own programmable threshold (VDS\_CONFx[3:0], x = 1...4/2), blanking time (VDS\_BLANKx[3:0], x = 1...4/2) and filtering time (VDS\_FILTx[2:0], x = 1...4/2).

As soon as the gate driver starts to turn ON a MOSFET, the corresponding drain source monitoring comparator output is masked for the programmed blanking time to give time to the MOSFET to turn on. After the blanking time is expired, a filtering time is applied to filter noise. Both values must be chosen depending on the application.

If the voltage-drop over the driven MOSFET exceeds the programmed threshold voltage  $V_{SCdx}$  (VDS\_CONFx[3:0], x = 1...4/2) for a time longer than the programmed filtering time (and the programmed blanking time, where applicable), either the gate drivers belonging to the faulty leg are forced to switch off actively the half-bridge MOSFETs with the maximum available current, regardless of the programmed gate discharge current bits.

In any case the drain source monitoring flag VDSHSx, x = 1...4/2, or VDSLSx, x = 1...4/2, of the MOSFET detecting the fault is set. The drain source monitoring flags must be cleared through SPI to reactivate the affected half-bridge/full-bridge gate drivers that are forced in disabled mode. The drain source monitoring flag VDSHSx/VDSLSx can be cleared by an SPI "read and clear" command only if the fault condition is no longer present.

If the voltage-drop over the driven MOSFET still exceeds the programmed threshold voltage  $V_{SCdx}$  (VDS\_CONFx[3:0], x = 1...4/2) for a time longer than the programmed filtering time (and the programmed blanking time, where applicable) after the SPI "read and clear" command, the drain source monitoring flag VDSHSx, x = 1...4/2, or VDSLSx, x = 1...4/2 will be set again. It is up to the microcontroller to decide how many attempts to make before finally turning off the half-bridges where the over current is present.

DS15025 - Rev 1 page 40/130



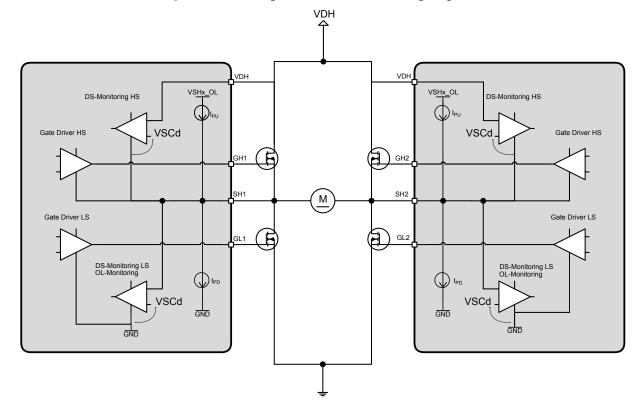



Figure 22. Full-bridge drain source monitoring diagnosis

## 5.4 Diagnostic in off-mode

## 5.4.1 Off-state diagnostic introduction

The off-state diagnostic features (that is, the MOSFETs are off while the diagnostic is performed) offer several advantages:

- Diagnostic checks can be performed for loads that are infrequently activated.
- MOSFET short circuit conditions are detected without the stress inherent to on-state diagnostic mode. For
  example, the microcontroller can perform an off-state diagnostic right before the activation request of the
  load. Upon the fault condition, the application software can report the failure and inhibits the load activation,
  avoiding any stress to the MOSFETs.

To perform the off-state diagnostic the following suggestions must be taken:

- The half-bridge drivers must be in active mode: EN = High, OUTEx = 1, x = 1...4/2
- The corresponding MOSFETs are off: HB MODEx = 00, x = 1...4/2
- The device is operating in normal mode:
  - V<sub>DH</sub> and V<sub>DD</sub> are in the normal operating range
  - No watchdog failure

It is highly recommended to restore the setting of  $V_{SCdx}$  once the off-state diagnostic is performed for an appropriate MOSFET protection in on-state.

The L99MH94 / L99MH92 enables the detection of the following fault conditions while the MOSFETs are deactivated:

- SHx is shorted to V<sub>DH</sub>
- SHx is shorted to GND
- Open load

Note:

The Figure 23 shows the block diagram of the off-state diagnostic functionality integrated into the L99MH94 / L99MH92.

The following integrated components are used to perform the off-state diagnostic:

DS15025 - Rev 1 page 41/130



- Pull-up diagnostic current (I<sub>shx PU</sub>)
- Pull-down diagnostic current (I<sub>shx\_PD</sub>)
- Comparator for the high-side (HS) and low-side (LS) drain-source voltage monitoring
- The checked node can go up or down and it is not bounded to the pull-up value of the off state

 $I_{shx\_PU}$  and  $I_{shx\_PD}$  can be activated for each half-bridge only if the bridge driver is in active mode as set by the control bits OUTEx, x = 1...4/2. Also  $I_{shx\_PU}$  and  $I_{shx\_PD}$  can be activated only when the off-state diagnostic is enabled by the microcontroller.

The  $V_{ds}$  comparators change their state after a filter time called tDIAG. The faults in the DSRx are not latched and the configurations placed in the registers are bypassed during diag off.

The I<sub>shx PU</sub> ,and I<sub>shx PD</sub> values can be selected by using the DIAGOFF\_CURR\_SEL register.

The L99MH94 / L99MH92 determines the voltage at SHx, using the drain-source overvoltage comparators of the high-side or low-side MOSFETs. The microcontroller can read the status bit VDS\_HSx\_DIAG, x = 1...4/2, or the status bit VDS\_LSx\_DIAG, x = 1...4/2 to determine if V<sub>SHx</sub> is high or low.

The diagnostic process is controlled by the microcontroller, whose task is:

- To activate and deactivate I<sub>shx PU</sub> and I<sub>shx PD</sub>, controlled by the HB\_IDIAGx registers
- To read and interpret the status bits VDS\_LSx\_DIAG and VDS\_HSx\_DIAG

The following conditions are equivalent in the rest of this document:

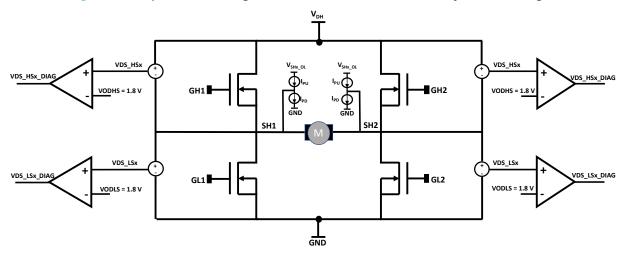
- VDS HSx DIAG = VDS LSx DIAG = 0: SHx is low
- VDS\_HSx\_DIAG = VDS\_LSx\_DIAG = 1: SHx is high

## 5.4.2 Example with a DC motor controlled by two half-bridges

This section gives an example of an off-state diagnostic with one DC motor controlled by the half-bridges 1 and 2. The voltages at SH1/SH2 (noted  $V_{SH1}/V_{SH2}$ ) are analyzed in the following test configurations:

Configuration 1

 $I_{shx\ PU}$  HB1 OFF,  $I_{shx\ PU}$  HB2 OFF,  $I_{shx\ PD}$  HB1 ON,  $I_{shx\ PD}$  HB2 ON


Configuration 2

 $\rm I_{shx~PU}$  HB1 ON,  $\rm I_{shx~PU}$  HB2 OFF,  $\rm I_{shx~PD}$  HB1 OFF,  $\rm I_{shx~PD}$  HB2 ON

Configuration 3

I<sub>shx PU</sub> HB1 OFF, I<sub>shx PU</sub> HB2 ON, I<sub>shx PD</sub> HB1 ON, I<sub>shx PD</sub> HB2 OFF

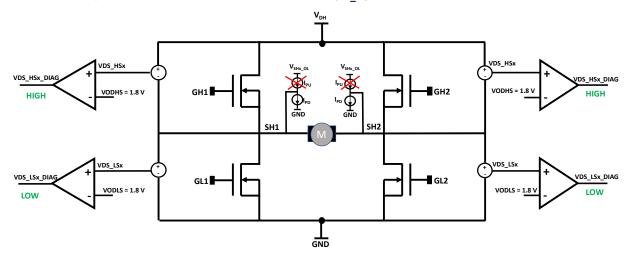
Figure 23. Simplified block diagram with one DC motor controlled by two half-bridges



#### 5.4.3 Normal load conditions

## **Configuration 1**

- I<sub>shx PU</sub> HB1 OFF, I<sub>shx PD</sub> HB1 ON
- I<sub>shx\_PU</sub> HB2 OFF, I<sub>shx\_PD</sub> HB2 ON

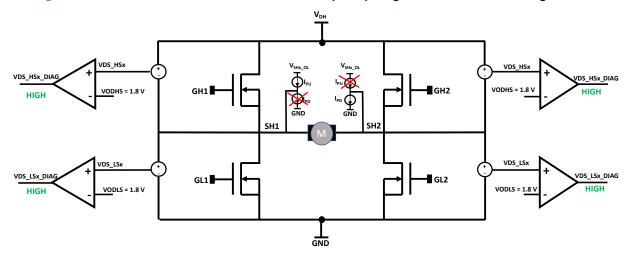

In normal conditions, the motor is connected between SH1 and SH2 without any short circuit.

DS15025 - Rev 1 page 42/130



If  $I_{shx\_PU}$  of HB1 and HB2 are off, the SH1 and SH2 are pulled down by  $I_{shx\_PD}$  of HB1 and HB2 (see the Figure 24), so VDS\_LS1 = VDS\_LS2 = LOW and VDS\_HS1 = VDS\_HS2 = HIGH.

Figure 24. One motor in normal conditions, I<sub>shx\_PU</sub> HB1/HB2 OFF with normal load




#### **Configuration 2**

- I<sub>shx PU</sub> HB1 ON, I<sub>shx PD</sub> HB1 OFF
- I<sub>shx PU</sub> HB2 OFF, I<sub>shx PD</sub> HB2 ON

With  $I_{shx\_PU}$  HB1 ON the SH1 is pulled to  $V_{SHx\_OL}$ , so VDS\_LS1 and VDS\_HS1 go HIGH (see the Figure 25). SH2 is also pulled to  $V_{SHx\_OL}$  by  $I_{shx\_PU}$  of HB1 via the motor, so also VDS\_LS2 and VDS\_HS2 go HIGH VDS\_LS2.

Figure 25. One motor in normal conditions with one pull-up diagnostic current on - Configuration 2



## **Configuration 3**

- $I_{shx\_PU}$  HB1 OFF,  $I_{shx\_PD}$  HB1 ON
- I<sub>shx\_PU</sub> HB2 ON, I<sub>shx\_PD</sub> HB2 OFF

This configuration is equivalent to the configuration 2, with HB2 pull-up activated instead of HB1.

With  $I_{shx\_PU}$  HB2 ON the SH2 is pulled to  $V_{SHx\_OL}$ , so VDS\_LS2 and VDS\_HS2 go HIGH (see the Figure 25). SH1 is also pulled to  $V_{SHx\_OL}$  by  $I_{shx\_PU}$  of HB2 via the motor, so also VDS\_LS1 and VDS\_HS1 go HIGH.

The Table 27 summarizes the results obtained in normal conditions.

DS15025 - Rev 1 page 43/130



VDS\_HSX\_DIAG
HIGH

VDS\_LSX\_DIAG

VDS\_LSX\_DIAG

VDS\_LSX\_DIAG

VDS\_LSX\_DIAG

HIGH

VDS\_LSX\_DIAG

HIGH

VDS\_LSX\_DIAG

HIGH

VDS\_LSX\_DIAG

HIGH

Figure 26. One motor in normal conditions with one pull-up diagnostic current on - Configuration 3

Table 27. Truth table with normal load conditions

| Configuration | I <sub>PU</sub> HB1 | I <sub>PU</sub> HB2 | I <sub>PD</sub> HB1 | I <sub>PD</sub> HB2 | VDS_LS1 | VDS_LS2 | VDS_HS1 | VDS_HS2 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
| 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | HIGH    | HIGH    | HIGH    |
| 3             | OFF                 | ON                  | ON                  | OFF                 | HIGH    | HIGH    | HIGH    | HIGH    |

## 5.4.4 Short circuit to V<sub>DH</sub>

A short circuit between SH1 and  $V_{DH}$  results in VDS\_HS1 = LOW and VDS\_LS1 = HIGH when  $I_{shx\_PD}$  HB1 and  $I_{shx\_PD}$  HB2 are activated.

SH2 is also pulled up by the short circuit via the motor, so VDS\_HS2 = LOW and VDS\_LS2 = HIGH. Similarly, a short circuit of SH2 to  $V_{DH}$  results in VDS\_HS1/2 = LOW and VDS\_LS1/2 = HIGH.

The Figure 27 and Table 28 summarize the results obtained with a short circuit of one output to V<sub>DH</sub>.

Figure 27. Short circuit to V<sub>DH</sub>

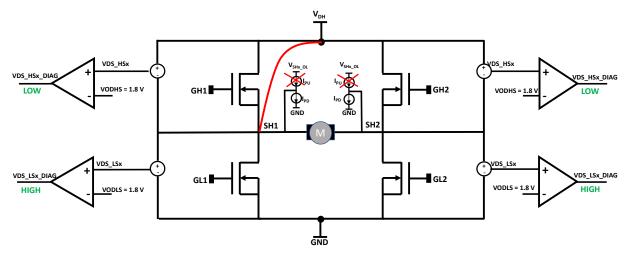



Table 28. Truth table with a short circuit to V<sub>DH</sub>

| Configuration | I <sub>PU</sub> HB1 | I <sub>PU</sub> HB2 | I <sub>PD</sub> HB1 | I <sub>PD</sub> HB2 | VDS_LS1 | VDS_LS2 | VDS_HS1 | VDS_HS2 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
| 1             | OFF                 | OFF                 | ON                  | ON                  | HIGH    | HIGH    | LOW     | LOW     |

DS15025 - Rev 1 page 44/130



| Configuration | I <sub>PU</sub> HB1 | I <sub>PU</sub> HB2 | I <sub>PD</sub> HB1 | I <sub>PD</sub> HB2 | VDS_LS1 | VDS_LS2 | VDS_HS1 | VDS_HS2 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
| 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | HIGH    | LOW     | LOW     |
| 3             | OFF                 | ON                  | ON                  | OFF                 | HIGH    | HIGH    | LOW     | LOW     |

#### 5.4.5 Short circuit to GND

A short circuit between SH1 and GND results in VDS\_HS1 = HIGH and VDS\_LS1 = LOW even if  $I_{shx\_PU}$  are activated. SH2 is pulled down by the short circuit via the motor winding, so VDS\_HS2 = HIGH and VDS\_LS2 = LOW.

Similarly, a short circuit of SH2 to GND results in VDS\_HS1/2 = HIGH and VDS\_LS1/2 = LOW, independently from the state of  $I_{shx\ PU}$ .

The Figure 28 and Table 29 summarize the results obtained with a short circuit of one output to GND.

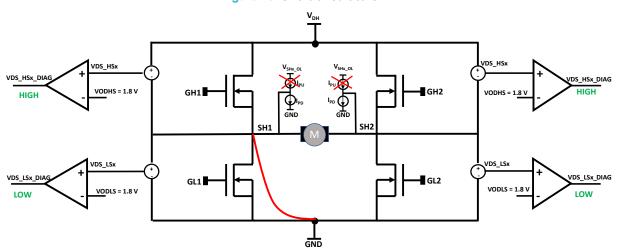



Figure 28. Short circuit to GND

Table 29. Truth table with a short circuit to GND

| Configuration | I <sub>PU</sub> HB1 | I <sub>PU</sub> HB2 | I <sub>PD</sub> HB1 | I <sub>PD</sub> HB2 | VDS_LS1 | VDS_LS2 | VDS_HS1 | VDS_HS2 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
| 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| 2             | ON                  | OFF                 | OFF                 | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| 3             | OFF                 | ON                  | ON                  | OFF                 | LOW     | LOW     | HIGH    | HIGH    |

## 5.4.6 Open load - SH1 disconnected

## **Configuration 1**

- I<sub>shx\_PU</sub> HB1 OFF, I<sub>shx\_PD</sub> HB1 ON
- I<sub>shx PU</sub> HB2 OFF, I<sub>shx PD</sub> HB2 ON

SH1 and SH2 are pulled down by their respective pull-down diagnostic current, so VDS\_LS1 = VDS\_LS2 = LOW. VDS\_HS1 and VDS\_HS2, instead, are HIGH

## **Configuration 2**

- $I_{shx\_PU}$  HB1 ON,  $I_{shx\_PD}$  HB1 OFF
- I<sub>shx PU</sub> HB2 OFF, I<sub>shx PD</sub> HB2 ON

SH1 is pulled up by  $I_{shx\_PU}$  HB1, so VDS\_LS1 = HIGH and VDS1\_HS1 = HIGH. Due to the motor disconnection at SH1, SH2 is pulled down by  $I_{shx\_PD}$  HB2, so VDS\_LS2 = LOW and VDS\_HS2 = HIGH

## **Configuration 3**

- $I_{shx\ PU}$  HB1 OFF,  $I_{shx\ PD}$  HB1 ON
- I<sub>shx PU</sub> HB2 ON, I<sub>shx PD</sub> HB2 OFF

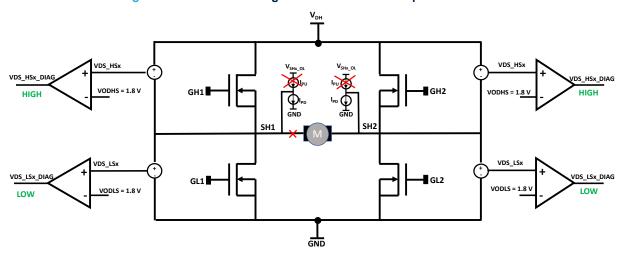
DS15025 - Rev 1 page 45/130

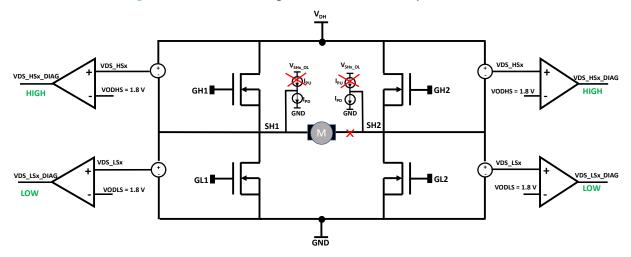


SH1 is pulled down by  $I_{shx\_PD}$  HB1, so VDS\_LS1 = LOW and VDS\_HS1 = HIGH. Instead, SH2 is pulled up by  $I_{shx\_PU}$  HB2: VDS\_LS2 = HIGH and VDS\_HS2 = HIGH.

The Figure 29 and Table 30 summarize the results obtained with an open load at SH1.

Figure 29. One motor - Diagnostic results with an open load at SH1





Table 30. Truth table open load - SH1 disconnected

| Configuration | I <sub>PU</sub> HB1 | I <sub>PU</sub> HB2 | I <sub>PD</sub> HB1 | I <sub>PD</sub> HB2 | VDS_LS1 | VDS_LS2 | VDS_HS1 | VDS_HS2 |
|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
| 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | LOW     | HIGH    | HIGH    |
| 3             | OFF                 | ON                  | ON                  | OFF                 | LOW     | HIGH    | HIGH    | HIGH    |

## 5.4.7 Open load - SH2 is disconnected

Similarly, a motor disconnection at SH2 shows the same result as for a motor disconnection at SH1 (see the Figure 30). Therefore, the Table 30 is valid for an open load, independently from the location of the disconnection.

Figure 30. One motor - Diagnostic results with an open load at SH2



# 5.5 Summary of the off-state diagnostic

When compiling the results from the Table 27, Table 28, Table 29 and Table 30, we see that the test configuration 1 and the test configuration 2 (or test configuration 1 and the test configuration 3) are sufficient to detect and distinguish between a normal load condition, a short circuit to  $V_{DH}/GND$ , and an open load.

DS15025 - Rev 1 page 46/130



The normal condition is described in the Table 31 first line.

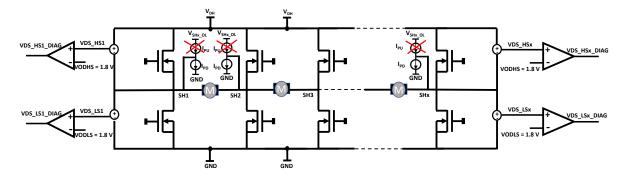
Short to VDH condition is described in the Table 31 second line.

Short to GND condition is described in the Table 31 third line.

Open load condition is described in the Table 31 fourth line. The pull-up and pull-down can be selected by using the register HB\_IDIAGx for each half-bridge.

The available configuration is reported below:

- 00: pull-up OFF, pull-down OFF
- 01: pull-up OFF, pull-down ON
- 10: pull-up ON, pull-down OFF
- 11: pull-up OFF pull-down OFF


Table 31. Differentiation between normal condition, short to V<sub>DH</sub>, short to GND and open load with one motor

| Load conditions          | Configuration | I <sub>PU</sub> HBx | I <sub>PU</sub> HBy | I <sub>PD</sub> HBx | I <sub>PD</sub> HBy | VDS_LSx | VDS_LSy | VDS_HSx | VDS_HSy |
|--------------------------|---------------|---------------------|---------------------|---------------------|---------------------|---------|---------|---------|---------|
|                          | 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| Normal condition         | 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 3             | OFF                 | ON                  | ON                  | OFF                 | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 1             | OFF                 | OFF                 | ON                  | ON                  | HIGH    | HIGH    | LOW     | LOW     |
| Short to V <sub>DH</sub> | 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | HIGH    | LOW     | LOW     |
|                          | 3             | OFF                 | ON                  | ON                  | OFF                 | HIGH    | HIGH    | LOW     | LOW     |
|                          | 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| Short to GND             | 2             | ON                  | OFF                 | OFF                 | ON                  | LOW     | LOW     | HIGH    | HIGH    |
|                          | 3             | OFF                 | ON                  | ON                  | OFF                 | LOW     | LOW     | HIGH    | HIGH    |
|                          | 1             | OFF                 | OFF                 | ON                  | ON                  | LOW     | LOW     | HIGH    | HIGH    |
| Open load                | 2             | ON                  | OFF                 | OFF                 | ON                  | HIGH    | LOW     | HIGH    | HIGH    |
|                          | 3             | OFF                 | ON                  | ON                  | OFF                 | LOW     | HIGH    | HIGH    | HIGH    |

# 5.6 Off-state diagnostic with more cascaded motors

The L99MH94 / L99MH92 allows to connect and drive up to four motors sequentially (see the Figure 31). This chapter provides hints about the off-state diagnostic with two cascaded motors controlled by three half-bridges (see the Figure 32). The same logic can be used to perform off-state diagnostics when more than two motors are connected in a sequential configuration

Figure 31. Four cascaded DC motors summary of the off-state diagnostic



The proposed principle for the off-state diagnostic consists of analyzing VDS\_LS1/2/3 and VDS\_HS1/2/3 when all pull-up diagnostic currents are deactivated, and when two out of three pull-up diagnostic currents are activated. The results are summarized in the Table 32.

DS15025 - Rev 1 page 47/130





Figure 32. Two cascaded DC motors summary of the off-state diagnostic

Table 32. Differentiation between normal condition, short to V<sub>DH</sub>, short to GND and open load with two motors

| Load<br>conditions       | Configuration | I <sub>PU</sub><br>HB1 | I <sub>PU</sub><br>HB2 | I <sub>PU</sub><br>HB3 | I <sub>PD</sub><br>HB1 | I <sub>PD</sub><br>HB2 | I <sub>PD</sub><br>HB3 | VDS_LS1 | VDS_LS2 | VDS_LS3 | VDS_HS1 | VDS_HS2 | VDS_HS3 |
|--------------------------|---------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|---------|---------|---------|---------|---------|---------|
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Normal                   | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
| condition                | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | HIGH    | HIGH    | HIGH    | LOW     | LOW     | LOW     |
| Short to V <sub>DH</sub> | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | HIGH    | HIGH    | HIGH    | LOW     | LOW     | LOW     |
| SHOLL TO ADH             | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | HIGH    | HIGH    | HIGH    | LOW     | LOW     | LOW     |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | HIGH    | HIGH    | HIGH    | LOW     | LOW     | LOW     |
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Observation OND          | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Short to GND             | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Open load motor          | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
| 1                        | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | LOW     | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Open load motor          | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | HIGH    | HIGH    | LOW     | HIGH    | HIGH    | HIGH    |
| 2                        | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 1             | OFF                    | OFF                    | OFF                    | ON                     | ON                     | ON                     | LOW     | LOW     | LOW     | HIGH    | HIGH    | HIGH    |
| Open load motor          | 2             | ON                     | ON                     | OFF                    | OFF                    | OFF                    | ON                     | HIGH    | HIGH    | LOW     | HIGH    | HIGH    | HIGH    |
| 1 and motor 2            | 3             | OFF                    | ON                     | ON                     | ON                     | OFF                    | OFF                    | LOW     | HIGH    | HIGH    | HIGH    | HIGH    | HIGH    |
|                          | 4             | ON                     | OFF                    | ON                     | OFF                    | ON                     | OFF                    | HIGH    | LOW     | HIGH    | HIGH    | HIGH    | HIGH    |

The test configurations 1, 2, 3 are sufficient to differentiate a normal load condition from all the fault conditions.

# 5.7 Diagnostic not output (DIAGN)

The microcontroller can use the DIAGN pin for diagnostic.

DIAGN pin is used to detect a device fault, including a SPI error, watchdog error or a device power-on-reset event: the purpose of the DIAGN output pin is to warn immediately the microcontroller that a new fault, which the microcontroller was not yet aware of, has been detected by the device, without the need of periodic SPI transfers.

DS15025 - Rev 1 page 48/130



The logic level signal at the pin is the logical NOR combination of all the status flags and status bits linked to the pin through the DIAGCR1 and DIAGCR2 control registers, together with the global status byte RSTB bit.

Once the device comes out of reset mode, the DIAGN pin is pulled low because of the global status byte RSTB bit. In case that just the global status byte RSTB bit is set, any valid SPI communication frame clears the RSTB bit pulling up the DIAGN pin. Any read access to the DSR1 and DSR2 registers reset this signal to a high level, until an error coming from a new source occurs again by pulling the pin low.

DIAGN pin is active low as default, but it is possible to change its functionality by the DIAGN\_ACTIVE\_LEVEL bit: setting this bit to one the DIAGN pin will be active high.

If a fault coming from a new error source occurs during the read access to the DSR1 and DSR2 registers, the DIAGN output pin remains low (this avoids any loss of information since the new error source status flag/bit will not be reported by the concomitant read access, but a new read access would be required).

Even if a read operation of the status register should always come before a "read and clear" operation: any "read and clear" operation of status registers DSR1 and DSR2 will pull the DIAGN pin high.

## 5.8 Configurable window watchdog

Out of reset mode, the L99MH94 / L99MH92 watchdog monitors the microcontroller status within a periodic window. By default, as soon as the device finishes the powerup phase, the watchdog is enabled and starts running with a long open window. The long open window provides more time to the microcontroller for the L99MH94 / L99MH92 initialization and allows the watchdog disabling procedure to be run when no watchdog is required by the application.

To trigger the watchdog for the first time during a LOW (long open window), the microcontroller must write 5555h to the watchdog trigger/disable register (WDGTRDIS) before the end of the long open window.

After the first valid watchdog trigger, the watchdog will enter in window mode. In window mode the microcontroller has to serve the watchdog by alternating the watchdog trigger bits (that is, 2AAAh,5555h,...) of the watchdog trigger/disable register (WDGTRDIS) within the watchdog open window. Any correct watchdog trigger SPI frame will immediately start a new window.

In case of a watchdog failure, because of any watchdog trigger outside the open window, invalid or unexpected watchdog trigger bits value, any watchdog timeout, any disabling procedure out of the LOW or any wrong disabling procedure during the LOW will set the WDG\_ERROR flag, stop the watchdog and put the device in fail-safe mode. In fail-safe mode the OUTEx control bits are reset, and the gate drivers are forced to switch off actively all the MOSFETs with the maximum available current, regardless of the programmed gate discharge current. To reactivate the gate drivers that are forced in disabled mode, the WDG\_ERROR flag must be cleared via SPI (clearing the WDG\_ERROR flag makes the device come out of the fail-safe mode and makes the watchdog start again with a long open window) and then the OUTEx control bits must be set to one via SPI. As long as the device is in fail-safe mode (WDG\_ERROR = 1), the OUTEx control bits are reset and cannot be set via SPI.

Once the watchdog starts running again with a long open window after coming out of the fail-safe mode, to enter in window mode the microcontroller must write 5555h to the watchdog trigger/disable register (WDGTRDIS).

To disable the watchdog, the microcontroller must write a specific key, consisting in two consecutive valid SPI frames to be sent in the right order (2F6Bh first key word, 1097h second key word), to control register WDGTRDIS, within a window (t<sub>timeout</sub>). To enable the watchdog, the microcontroller must write a specific key, consisting in two consecutive valid SPI frames to be sent in the right order (5C99h first key word, 4360h second key word), to control register WDGTRDIST, within a window (t<sub>timeout</sub>).

Any other SPI transfer between the two SPI frames carrying the key, including an invalid SPI transfer, will abort the disabled process and generate a watchdog fault (WDG\_ERROR). Besides, the keys sent in the wrong order will not disable the watchdog and generate a watchdog fault as well.

Any read access to the WDGTRDIS register provides information concerning the watchdog disabling procedure result together with the three least significant bits of the latest write operation performed on the same register.

DS15025 - Rev 1 page 49/130



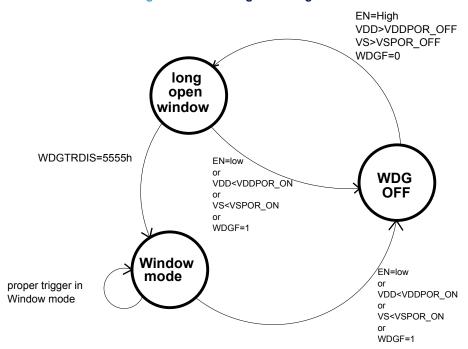



Figure 33. Watchdog state diagram

DS15025 - Rev 1 page 50/130



# 6 Serial peripheral interface (SPI)

A 24-bit SPI is used for bidirectional communication with the microcontroller.

The microcontroller SPI peripheral must run in the following configuration:

- CPOL = 0
- CPHA = 1

In this configuration the input data from the SDI pin is sampled by the high to low transition of the serial clock CLK, and the output data is changed by the low to high transition of the serial clock CLK.

The correct reception of any SPI frame is not guaranteed during a  $t_{START}$  time after the enable pin goes high with the VDD supply already ON.

The SPI protocol implemented in L99MH94 / L99MH92 is an out-of-frame: the IC provides on the frame n+1 the content of the reading request on the frame n.

Note: The SPI bus can be used in a parallel configuration by controlling the CSN signal of the connected IC's.

It is advisable to read the global status SPI registers after the power-up in order to clear the diagnostic.

## Chip select not (CSN)

The CSN input pin is used to address the SPI communication with the device. When CSN is high, the output pin (SDO) is in high impedance. When CSN is low, the output pin (SDO) driver is enabled, and a serial communication can start. The information transferred during CSN = 0 is called a communication frame. When CSN = high for  $t > t_9$  the SDO output is switched into high impedance to allow SPI communications with other SPI nodes.

## Serial data in (SDI)

The SDI input pin is used to transfer data into the device. The data applied to the SDI will be sampled on the falling edge of the serial CLK signal and shifted into an internal 24-bit shift register. At the rising edge of the CSN signal the content of the shift register will be transferred to the data input register. The writing to the selected data input register is enabled only if exactly 24 bits are transmitted within one communication frame (that is, CSN low). Instead, the writing to the selected data input register is not enabled if one of the following cases happens:

- More or less than 24 clock pulses are counted within one frame
- During the falling and rising edge of CSN the level of SCLK is not low
- All bits of a command received at SDI are logic 0 or logic 1
- The number of CKL rising edges in a frame is not 24
- The address field is unknown
- The parity check fails

This safety function is implemented to avoid an activation of the output stages by any wrong communication frame.

#### Serial data out (SDO)

The SDO output driver is activated by a logical low level at the CSN input and will go from high impedance to low or high level depending on the global error flag value (GSBN bit). The first rising edge of the CLK input after a high to low transition of the CSN pin will transfer the "SPI error or RESET" bit and, immediately after, the global status byte bit out. Each subsequent rising edge of the CLK shifts the following bits out.

#### Serial clock (CLK)

The CLK input pin is used to synchronize the input and output serial bit streams. The data input (SDI) is sampled on the falling edge of the CLK and the data output (SDO) will change on the rising edge of the CLK. The SPI can work with a CLK frequency up to 6 MHz.

## 6.1 Physical layer

This chapter describes the SPI protocol configuration. It defines a common structure of the communication frames and defines specific addresses for product and status information.

The ST-SPI allows usage of generic software to operate the devices while maintaining the required flexibility to adapt it to the individual functionality of a particular product. In addition, fail-safe mechanisms are implemented to protect the communication from external influences and wrong or unwanted usage.

The SPI connection between the microcontroller and the L99MH94 / L99MH92 is shown in the Figure 34.

DS15025 - Rev 1 page 51/130



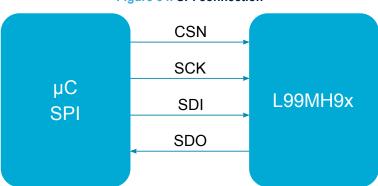



Figure 34. SPI connection

## 6.2 Clock and data characteristics

The L99MH94 / L99MH92 SPI can be driven by a microcontroller with its SPI peripheral.

Any communication frame starts with the falling edge of the CSN (communication start). CLK must be low.

The SDI data is then latched at all following rising CLK edges into the internal shift registers.

After communication start the SDO leaves 3-state mode and presents the MSB of the data shifted out to SDO. At all following falling CLK edges data is shifted out through the internal shift registers to SDO.

The communication frame is finished with the rising edge of CSN. If a valid communication took place (for example, correct number of CLK cycles, access to a valid address, no parity error), the requested operation according to the operating code will be performed (write or clear operation).

The SPI signal description is shown in the Figure 35.

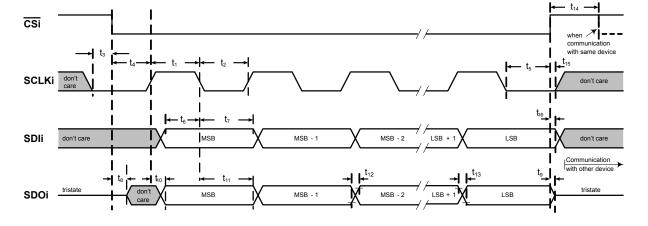



Figure 35. SPI signal description

## 6.3 Communication protocol

#### 6.3.1 SDI frame

The device data-in frame consists of 24 bits (OpCode (1 bit) + Reserved (1 bit) + Address (6 bits) + Data Byte 2 (8 bits) + Data Byte 1 (7 bits) + Parity bit (1 bit)):

- **OpCode** = The first transmitted bit (MSB) contains the operation code, which represents the command/ instruction that will be performed
- Reserved = Not used in the SDI frame (MSB-1)
- Address = The following 6 bits (MSB-2 to MSB-7) represent the register address on which the command/ operation will be performed
- Data Bytes = The subsequent 15 bits (MSB-8 to MSB-22) contain the payload to write
- Parity bit = Last bit (MSB-23) contains the parity bit for the integrity check

DS15025 - Rev 1 page 52/130



## 6.3.1.1 OpCode

The operating code is used to distinguish between different commands/operations on registers of the receiver device.

Table 33. OpCode

| MSB | Description   |
|-----|---------------|
| 0   | Read command  |
| 1   | Write command |

A <u>Write</u> command (with no parity error, no wrong address and no CLK count error) will modify the content of the addressed control register with the payload at the next communication start. Besides this a shift out of the content (data present at communication start) of the addressed register is performed.

With the Read command two different events can be performed

- A <u>Read</u> event shifts out in the frame n+1 the data's addressed in the frame n. In this case all the bits of the
  payload data sent in the frame n is set to 0, and the data of the addressed register will not be modified.
- A <u>Clear on Read</u> event shifts out in the frame n+1 the data's addressed in the frame n, but with some bits that are cleared. In this case all the bits of the payload data sent that must be cleared will be set to 1, the bits that must not be cleared will be put to 0.

### 6.3.1.2 Address

The Address bits are used to indicate the register on which the command/operation will be performed:

- In case of read command (frame n) on the OpCode bit, the Address bits indicate the register you want to read. The contents of the register to be read will be put in the next frame (n+1) sent by the SDO pin.
- In case of write command on the OpCode bit, the Address bits indicate the register where the data bytes
  must be written.

## 6.3.1.3 Data word

The payload (Data Byte 2 to Data Byte 1) is the data transferred to the device with every SPI communication. The payload always follows the Address bits.

- For a Write access the payload represents the new data written to the addressed register.
- For a Read operation the payload is not used. The payload will be all set to '0'.
- For a <u>Clear on Read</u> operation the payload is used. All the bits that must be cleared will be set to '1', all the others will be set to '0'.

## 6.3.1.4 Parity bit

A parity bit is a bit added at the end of the 24 bits of each frame as an error detection code.

An odd parity bit for each communication must be calculated considering the entire 24-bit frame. The frame is considered valid only if the result of the Parity check is valid, which means an odd number of '1' is present in the SDI frame, if not the frame will be ignored and an SPI\_ERROR event will be triggered.

## 6.3.2 SDO frame

The Data-Out frame consists of 24 bits (SPI ERROR (1 bit) + GSBN (1 bit) + Address (6 bits) + Data Byte 2 (8 bits) + Data Byte 1 (7 bits) + Parity bit (1 bit)).

- SPI ERROR = The first transmitted bit (MSB) contains the information about a SPI error or RESET
- **GSBN** = Global Status bit, used only in the SDO frame (MSB-1)
- Address = The following 6 bits (MSB-2 to MSB-7) represent the register address on which the command/ operation will be performed
- Data Bytes = The subsequent 15 bits (MSB-8 to MSB-22) contain the payload
- Parity bit = Last bit (MSB-23) contains the parity bit for the integrity check

#### 6.3.2.1 SPI ERROR bit

The SPI ERROR bit contains the information about a SPI error or a RESET event according to the Table 34:

DS15025 - Rev 1 page 53/130



#### Table 34. SPI ERROR bit

| MSB | Description                                                           |
|-----|-----------------------------------------------------------------------|
| 0   | No SPI error in previous access and no RESET event before this access |
| 1   | SPI error in previous access or RESET event before this access        |

#### 6.3.2.2 Global Status Bit (GSBN)

The GSBN is a logically NOR combination of DSR1 and DSR2 registers + SPI error bit + RSTB bit + WDG error bit. GSBN bit is directly related to the DIAGN pin.

- GSBN = 1 (no error), DSR1 bits + DSR2 bits + SPI error bit + RSBT bit all set to 0
- GSBN = 0 (error), one or more bit/s of DSR1 or DSR2 or SPI error or RSBT is/are set to 1

#### 6.3.2.3 Address

The Address bits are used to indicate the register on which the operation has been performed:

- In case of SPI error or reset or first access, address field contains the address of the DRS0 register
- · In other cases, both for read and write, Address field contains the address selected in the previous frame

#### 6.3.2.4 Data word

The payload (Data Byte 2 to Data Byte 1) is the data transferred to the device with every SPI communication, and always follows the Address bits indicating:

- In case of SPI error or reset or first access, data field contains the DRS0 register data saved at CS falling
- In other cases, both for read and write, data field contains the data value of the register at the address selected saved at CS falling

#### 6.3.3 Protocol failure detection

To achieve a communication protocol that covers certain fail-safe requirements a basic set of SPI communication failure detection mechanisms are implemented.

#### 6.3.3.1 Clock count

During communication (CSN low) a clock monitor counts the valid CLK clock edges. The number of rising edges of a valid communication command must be 24. If the number of rising edges is not 24 the SPI write command will be ignored and the SPI error bit will be set in the response of the next SPI command.

## 6.3.3.2 CLK polarity (CPOL) check

During the falling and rising edge of CS the level of SCLK must be low. If SCLK is not low during the falling or the rising edge of CS, the SPI write command will be ignored and the SPI error bit will be set in the response of the next SPI command.

## 6.3.3.3 CSN timeout

By pulling CSN low the SDO is set active and leaves its tristate condition. To ensure communication between other SPI devices within the same bus even in case of CSN stuck at low a CSN timeout is implemented. By pulling CSN low an internal timer is started. When the timer reaches its end, the ongoing command is rejected, the SPIE is set (and it will be visible at the next communication) and the SDO is set in tristate condition.

#### 6.3.3.4 SDI stuck at LOW

As a communication with data all '0' and OpCode '0' on address b'000000' cannot be distinguished between a valid command and a SDI stuck at LOW, this communication is not allowed. Nevertheless, in case a stuck at LOW is detected the command will be rejected and the SPIE will be set and it will be visible at the next communication.

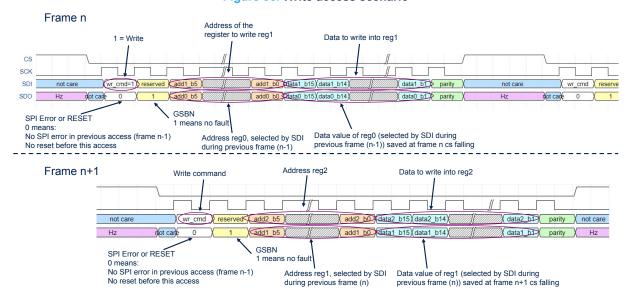
#### 6.3.3.5 SDI stuck at HIGH

As a communication with data all '1' and OpCode '1' on address b'111111' cannot be distinguished between a valid command and a SDI stuck at HIGH, this communication is not allowed. In case a stuck at HIGH is detected the command will be rejected and the SPIE will be set and it will be visible at the next communication.

DS15025 - Rev 1 page 54/130



## 6.4 SPI communication scenarios


Some SPI communication scenarios are shown in the following sections.

#### 6.4.1 Write access scenario

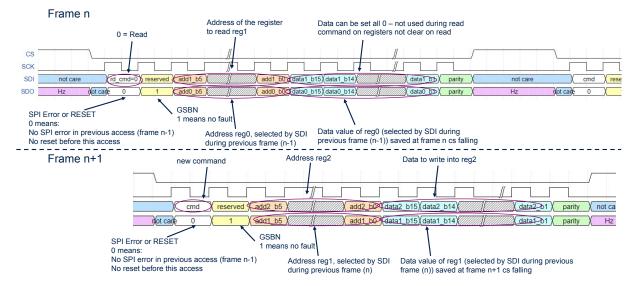
When a write communication must be performed the following steps must be considered:

- Frame n
  - SDI:
    - Bit 23 = 1 (write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)
    - Bit 0 = Parity bit
- Frame n+1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n)
    - Bit 0 = Parity bit

Figure 36. Write access scenario



DS15025 - Rev 1 page 55/130




#### 6.4.2 Read access scenario

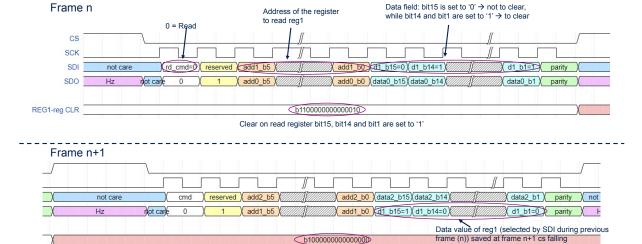
When a read communication must be performed the following steps must be considered:

- Frame n
  - SDI:
    - Bit 23 = 0 (read command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read
    - Bits 15 to 1 = Data can be set to '0'
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)
    - Bit 0 = Parity bit
- Frame n+1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n)
    - Bit 0 = Parity bit

Figure 37. Read access scenario



DS15025 - Rev 1 page 56/130




#### 6.4.3 Clear on read scenario

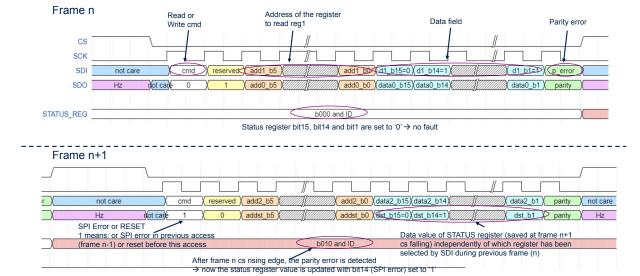
When a clear on read communication must be performed the following steps must be considered:

- Frame n
  - SDI:
    - Bit 23 = 0 (read command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read
    - Bits 15 to 1 = Set to 0 the bits "not to clear", set to 1 the bits "to clear"
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)
    - Bit 0 = Parity bit
- Frame n+1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n) with the bits cleared
    - Bit 0 = Parity bit

Figure 38. Clear on Read scenario



After frame n cs rising edge, the clear on read is executed to bit 14 and bit1 as commanded 
→ now the register value is with only bit15 set to '1'


DS15025 - Rev 1 page 57/130

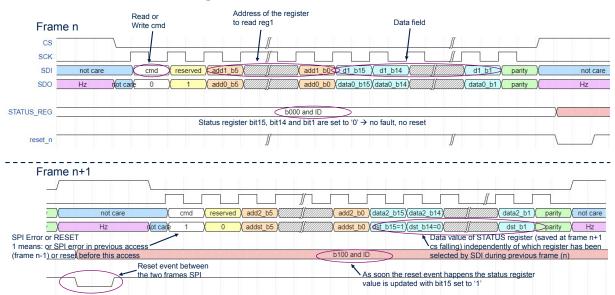


#### 6.4.4 Write or read with SPI error scenario

- Frame n
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write (if write command was chosen) or all '0' (if read command was chosen)
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)
    - Bit 0 = Parity bit
- Frame n+1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 1 (SPI error or RESET detected in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n)
    - Bits 15 to 1 = Data value of the STATUS register independently of which register has been selected by SDI during previous frame (n)
    - Bit 0 = Parity bit

Figure 39. Write or read with SPI error scenario




DS15025 - Rev 1 page 58/130

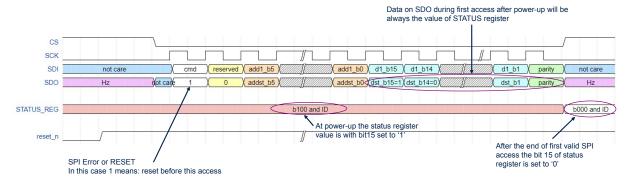


## 6.4.5 Access after RESET scenario

- Frame n
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write (if write command was chosen) or all '0' (if read command was chosen)
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)
    - Bit 0 = Parity bit
- Frame n+1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write into the chosen register
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 1 (SPI error or RESET event in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the STATUS register
    - Bits 15 to 1 = Data value of the STATUS register
    - Bit 0 = Parity bit

Figure 40. Access after RESET scenario




DS15025 - Rev 1 page 59/130



## 6.4.6 First SPI access at power-up scenario

- Frame 1
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write (if write command was chosen) or all '0' (if read command was chosen)
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 1 (SPI error or RESET event in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the STATUS register
    - Bits 15 to 1 = Data value of the STATUS register
    - Bit 0 = Parity bit

Figure 41. First SPI access at power-up scenario



## 6.4.7 Access while an internal fault happens scenario

- Frame n
  - SDI:
    - Bit 23 = 0 or 1 (read or write command on the OpCode)
    - Bit 22 = Not used
    - Bits 21 to 16 = Address of the register to read or write
    - Bits 15 to 1 = Data to write (if write command was chosen) or all '0' (if read command was chosen)
    - Bit 0 = Parity bit
  - SDO:
    - Bit 23 = 0 (no SPI error or RESET in the previous access)
    - Bit 22 = GSBN bit (1 = No fault)
    - Bits 21 to 16 = Address of the register selected in the previous frame (n-1)
    - Bits 15 to 1 = Data value of the register selected in the previous frame (n-1)

Bit 0 = Parity bit


DS15025 - Rev 1 page 60/130



#### Frame n+1

- SDI:
  - Bit 23 = 0 or 1 (read or write command on the OpCode)
  - Bit 22 = Not used
  - Bits 21 to 16 = Address of the register to read or write
  - Bits 15 to 1 = Data to write (if write command was chosen) or all '0' (if read command was chosen)
  - Bit 0 = Parity bit
- SDO:
  - Bit 23 = 0 (no SPI error or RESET in the previous access)
  - Bit 22 = GSBN bit (0 = Fault)
  - Bits 21 to 16 = Address of the register selected in the previous frame (n)
  - Bits 15 to 1 = Data value of the register selected in the previous frame (n)
  - Bit 0 = Parity bit

Figure 42. Access while an internal fault happens scenario



DS15025 - Rev 1 page 61/130



# 7 SPI Registers

# 7.1 Register map overview

Table 35. Register map overview

| Addr. | Name             | Bits | 15               | 14               | 13               | 12                  | 11                       | 10                       | 9                        | 8                        | Mode  |
|-------|------------------|------|------------------|------------------|------------------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------|
| Adar. | Name             | Bits | 7                | 6                | 5                | 4                   | 3                        | 2                        | 1                        | 0                        | Wode  |
|       |                  | MSB  | -                | RSTB             | SPI_ERROR        | WDG_ERROR           | REVISION_ID[7]           | REVISION_ID[6]           | REVISION_ID[5]           | REVISION_ID[4]           |       |
| 0x01  | DSR0             | LSB  | REVISION_ID[3]   | REVISION_ID[2]   | REVISION_ID[1]   | REVISION_ID[0]      | DEVICE_ID[3]             | DEVICE_ID[2]             | DEVICE_ID[1]             | DEVICE_ID[0]             | RO/CR |
|       |                  | MSB  | -                | RES              | VDHOV            | VDHUV               | VDDOV                    | TW                       | TSD                      | DIAGCR                   |       |
| 0x02  | DSR1             | LSB  | RES              | RES              | RES              | RES                 | VDSHS4                   | VDSHS3                   | VDSHS2                   | VDSHS1                   | RO/CR |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      |       |
| 0X03  | DSR2             | LSB  | RES              | RES              | RES              | VDSLS4              | VDSLS3                   | VDSLS2                   | VDSLS1                   | CPLOW                    | RO/CR |
| 0X04  | GLOBAL_CFG       | MSB  | -                | RES              | RES              | RES                 | OSC_SS_DIS               | DIAGN_ACTIVE_<br>LEVEL   | DIAGOFF_<br>CURR_SEL     | VDS_OFFSET_<br>ENABLE    | RO/RW |
|       | 5252.72_5.75     | LSB  | DTP_REF          | OVTS             | OUTE             | CP_LOW_ CONFIG      | CPFDD                    | EN_PWM1                  | EN_PWM2                  | RES                      |       |
|       |                  | MSB  | -                | SPARE0           | RES              | RES                 | RES                      | CSO_GAIN_SEL1            | RES                      | CSOSIG1                  |       |
| 0X05  | CSO_CFG          | LSB  | RES              | CSOEN1           | RES              | RES                 | RES                      | RES                      | CSOSH1[1]                | CSOSH1[0]                | RW    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      |       |
| 0X06  | DIODE_CFG        | LSB  | RES              | RES              | RES              | RES                 | IDIODE_CONF2 [1]         | IDIODE_CONF2 [0]         | IDIODE_CONF1 [1]         | IDIODE_CONF1 [0]         | RW    |
| 01/07 | DIODE4 DEAD      | MSB  | -                | RES              | RES              | RES                 | RES                      | DIODE1_READ [10]         | DIODE1_READ [9]          | DIODE1_READ [8]          |       |
| 0X07  | DIODE1_READ      | LSB  | DIODE1_READ [7]  | DIODE1_READ [6]  | DIODE1_READ [5]  | DIODE1_READ [4]     | DIODE1_READ [3]          | DIODE1_READ [2]          | DIODE1_READ [1]          | DIODE1_READ [0]          | RO    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | DIODE2_READ [10]         | DIODE2_READ [9]          | DIODE2_READ [8]          |       |
| 80X0  | DIODE2_READ      | LSB  | DIODE2_READ [7]  | DIODE2_READ [6]  | DIODE2_READ [5]  | DIODE2_READ [4]     | DIODE2_READ [3]          | DIODE2_READ [2]          | DIODE2_READ [1]          | DIODE2_READ [0]          | RO    |
| 0X09  | DIODE3_READ (1)  |      |                  |                  | ı                | RESER\              | /ED                      |                          | ı                        | ı                        | RO    |
| 0X0A  | DIODE4_READ (1)  |      |                  |                  |                  | RESERV              | /ED                      |                          |                          |                          | RO    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      |       |
| 0X0B  | DIAG_OFF_HS      | LSB  | RES              | RES              | RES              | RES                 | VDS_HS4_DIAG             | VDS_HS3_DIAG             | VDS_HS2_DIAG             | VDS_HS1_DIAG             | RO    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      |       |
| 0X0C  | DIAG_OFF_LS      | LSB  | RES              | RES              | RES              | RES                 | VDS_LS4_DIAG             | VDS_LS3_DIAG             | VDS_LS2_DIAG             | VDS_LS1_DIAG             | RO    |
|       |                  | MSB  | -                | DGWG             | DGSPIERR         | DGVDHOV             | DGVDHUV                  | DGTW                     | DGTSD                    | DGCPLOW                  |       |
| 0X0D  | DIAGCR1          | LSB  | RES              | RES              | RES              | RES                 | DGVDSHS4                 | DGVDSHS3                 | DGVDSHS2                 | DGVDSHS1                 | RW    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | DGVDSLS4                 | DGVDSLS3                 | DGVDSLS2                 |       |
| 0X0E  | DIAGCR2          | LSB  | DGVDSLS1         | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      | RW    |
|       |                  | MSB  | -                | WDGTRDIS [14]    | WDGTRDIS [13]    | WDGTRDIS [12]       | WDGTRDIS [11]            | WDGTRDIS [10]            | WDGTRDIS [9]             | WDGTRDIS [8]             |       |
| 0X0F  | WDGTRDIS         | LSB  | WDGTRDIS [7]     | WDGTRDIS [6]     | WDGTRDIS [5]     | WDGTRDIS [4]        | WDGTRDIS [3]             | WDGTRDIS [2]             | WDGTRDIS [1]             | WDGTRDIS [0]             | wo    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | RES                      | RES                      |       |
| 0X0F  | WDGTRDIS         | LSB  | RES              | RES              | RES              | RES                 | WDGSTATUS                | WDGINF [2]               | WDGINF [1]               | WDGINF [0]               | RO    |
|       |                  | MSB  | -                | RES              | HB1_SPARE        | DT1 [2]             | DT1 [1]                  | DT1 [0]                  | STRONG_ON_<br>WHEEL1     | HB_IDIAG1 [1]            |       |
| 0X10  | HB1_MODE_ CFG    | LSB  | HB_IDIAG1 [0]    | HB_PWM1 [2]      | HB_PWM1 [1]      | HB_PWM1 [0]         | HB_MODE1 [1]             | HB_MODE1 [0]             | HB_WHEEL1 [1]            | HB_WHEEL1 [0]            | RW    |
|       |                  | MSB  | -                | RES              | VSTEP2_CONF1     | VSTEP2_CONF1        | ISTEP3_CONF1             | ISTEP3_CONF1 [2]         | ISTEP3_CONF1 [1]         | ISTEP3_CONF1 [0]         |       |
| 0X11  | HB1_DRIVER_ CFG  | LSB  | ISTEP2_CONF1 [3] | ISTEP2_CONF1 [2] | ISTEP2_CONF1 [1] | ISTEP2_CONF1 [0]    | ISTEP1_CONF1<br>[3]      | ISTEP1_CONF1 [2]         | ISTEP1_CONF1 [1]         | ISTEP1_CONF1 [0]         | RW    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | VDS_CONF1 [3]            | VDS_CONF1 [2]            | VDS_CONF1 [1]            |       |
| 0X12  | HB1_DIAG_CFGLSB  | LSB  | VDS_CONF1 [0]    | VDS_BLANK1 [3]   | VDS_BLANK1 [2]   | VDS_BLANK1 [1]      | VDS_BLANK1 [0]           | VDS_FILT1 [2]            | VDS_FILT1 [1]            | VDS_FILT1 [0]            | RW    |
|       |                  | MSB  | -                | RES              | RES              | RES                 | RES                      | RES                      | GENMODE1 [1]             | GENMODE1 [0]             |       |
| 0x13  | HB1_TURN_OFF_CFG | LSB  | RES              | RES              | HB_FAULT1 [1]    | HB_FAULT1 [0]       | ISTEP2_OFF_<br>CONF1 [3] | ISTEP2_OFF_<br>CONF1 [2] | ISTEP2_OFF_<br>CONF1 [1] | ISTEP2_OFF_<br>CONF1 [0] | RW    |
| 0X14  | HB2_MODE_ CFG    | MSB  | -                | RES              | HB2_SPARE        | DT2 [2]             | DT2 [1]                  | DT2 [0]                  | STRONG_ON_<br>WHEEL2     | HB_IDIAG2 [1]            | RW    |
| 57117 |                  | LSB  | HB_IDIAG2 [0]    | HB_PWM2 [2]      | HB_PWM2 [1]      | HB_PWM2 [0]         | HB_MODE2 [1]             | HB_MODE2 [0]             | HB_WHEEL2 [1]            | HB_WHEEL2 [0]            |       |
| 0X15  | HB2_DRIVER_CFG   | MSB  | -                | RES              | VSTEP2_CONF2 [1] | VSTEP2_CONF2<br>[0] | ISTEP3_CONF2<br>[3]      | ISTEP3_CONF2 [2]         | ISTEP3_CONF2 [1]         | ISTEP3_CONF2 [0]         | RW    |

DS15025 - Rev 1 page 62/130





|                              |                                                          | <b>.</b> | 15                  | 14                  | 13                  | 12                  | 11                       | 10                       | 9                        | 8                        |          |
|------------------------------|----------------------------------------------------------|----------|---------------------|---------------------|---------------------|---------------------|--------------------------|--------------------------|--------------------------|--------------------------|----------|
| Addr.                        | Name                                                     | Bits     | 7                   | 6                   | 5                   | 4                   | 3                        | 2                        | 1                        | 0                        | Mode     |
| 0X15                         | HB2_DRIVER_CFG                                           | LSB      | ISTEP2_CONF2<br>[3] | ISTEP2_CONF2<br>[2] | ISTEP2_CONF2 [1]    | ISTEP2_CONF2 [0]    | ISTEP1_CONF2<br>[3]      | ISTEP1_CONF2 [2]         | ISTEP1_CONF2 [1]         | ISTEP1_CONF2 [0]         | RW       |
| 0X16                         | HP2 DIAG CEG                                             | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | VDS_CONF2 [3]            | VDS_CONF2 [2]            | VDS_CONF2 [1]            | RW       |
| 0.710                        | HB2_DIAG_CFG                                             | LSB      | VDS_CONF2 [0]       | VDS_BLANK2 [3]      | VDS_BLANK2 [2]      | VDS_BLANK2 [1]      | VDS_BLANK2 [0]           | VDS_FILT2 [2]            | VDS_FILT2 [1]            | VDS_FILT2 [0]            | KW       |
|                              |                                                          | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | RES                      | GENMODE2 [1]             | GENMODE2 [0]             |          |
| 0x17                         | HB2_TURN_OFF_CFG                                         | LSB      | RES                 | RES                 | HB_FAULT2 [1]       | HB_FAULT2 [0]       | ISTEP2_OFF_<br>CONF2 [3] | ISTEP2_OFF_<br>CONF2 [2] | ISTEP2_OFF_<br>CONF2 [1] | ISTEP2_OFF_<br>CONF2 [0] | RW       |
| 0X18                         | HB3_MODE_CFG                                             | MSB      | -                   | RES                 | HB3_SPARE           | DT3 [2]             | DT3 [1]                  | DT3 [0]                  | STRONG_ON_<br>WHEEL3     | HB_IDIAG3 [1]            | RW       |
|                              |                                                          | LSB      | HB_IDIAG3 [0]       | HB_PWM3 [2]         | HB_PWM3 [1]         | HB_PWM3 [0]         | HB_MODE3 [1]             | HB_MODE3 0]              | HB_WHEEL3 [1]            | HB_WHEEL3 [0]            |          |
| 0X19                         | HB3_DRIVER_CFG                                           | MSB      | -                   | RES                 | VSTEP2_CONF3<br>[1] | VSTEP2_CONF3<br>[0] | ISTEP3_CONF3<br>[3]      | ISTEP3_CONF3 [2]         | ISTEP3_CONF3 [1]         | ISTEP3_CONF3 [0]         | RW       |
| 0.7.13                       | TIBO_BILLVEIX_ OF O                                      | LSB      | ISTEP2_CONF3<br>[3] | ISTEP2_CONF3<br>[2] | ISTEP2_CONF3 [1]    | ISTEP2_CONF3 [0]    | ISTEP1_CONF3<br>[3]      | ISTEP1_CONF3 [2]         | ISTEP1_CONF3 [1]         | ISTEP1_CONF3 [0]         |          |
| 0X1A                         | HB3_DIAG_CFG                                             | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | VDS_CONF3 [3]            | VDS_CONF3 [2]            | VDS_CONF3 [1]            | RW       |
| 0,11,1                       | 1150_5#10_6#10                                           | LSB      | VDS_CONF3 [0]       | VDS_BLANK3 [3]      | VDS_BLANK3 [2]      | VDS_BLANK3 [1]      | VDS_BLANK3 [0]           | VDS_FILT3 [2]            | VDS_FILT3 [1]            | VDS_FILT3 [0]            |          |
|                              |                                                          | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | RES                      | GENMODE3 [1]             | GENMODE3 [0]             |          |
| 0x1B                         | HB3_TURN_OFF_CFG                                         | LSB      | RES                 | RES                 | HB_FAULT3 [1]       | HB_FAULT3 [0]       | ISTEP2_OFF_<br>CONF3 [3] | ISTEP2_OFF_<br>CONF3 [2] | ISTEP2_OFF_<br>CONF3 [1] | ISTEP2_OFF_<br>CONF3 [0] | RW       |
| 0X1C                         | HB4_MODE_CFG                                             | MSB      | -                   | RES                 | HB4_SPARE           | DT4 [2]             | DT4 [1]                  | DT4 [0]                  | STRONG_ON_<br>WHEEL4     | HB_IDIAG4 [1]            | RW       |
|                              |                                                          | LSB      | HB_IDIAG4 [0]       | HB_PWM4 [2]         | HB_PWM4 [1]         | HB_PWM4 [0]         | HB_MODE4 [1]             | HB_MODE4 [0]             | HB_WHEEL4 [1]            | HB_WHEEL4 [0]            |          |
| 0X1D                         | HB4_DRIVER_CFG                                           | MSB      | -                   | RES                 | VSTEP2_CONF4<br>[1] | VSTEP2_CONF4<br>[0] | ISTEP3_CONF4<br>[3]      | ISTEP3_CONF4 [2]         | ISTEP3_CONF4 [1]         | ISTEP3_CONF4 [0]         | RW       |
| 0,71,0                       | 1.15.1_51.117.2.1.2_0.10                                 | LSB      | ISTEP2_CONF4<br>[3] | ISTEP2_CONF4<br>[2] | ISTEP2_CONF4 [1]    | ISTEP2_CONF4 [0]    | ISTEP1_CONF4<br>[3]      | ISTEP1_CONF4 [2]         | ISTEP1_CONF4 [1]         | ISTEP1_CONF4 [0]         | ļ        |
| 0X1E                         | HB4_DIAG_CFG                                             | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | VDS_CONF4 [3]            | VDS_CONF4 [2]            | VDS_CONF4 [1]            | RW       |
| OXIL                         | 1154_5176_61 6                                           | LSB      | VDS_CONF4 [0]       | VDS_BLANK4 [3]      | VDS_BLANK4 [2]      | VDS_BLANK4 [1]      | VDS_BLANK4 [0]           | VDS_FILT4 [2]            | VDS_FILT4 [1]            | VDS_FILT4 [0]            |          |
|                              |                                                          | MSB      | -                   | RES                 | RES                 | RES                 | RES                      | RES                      | GENMODE4 [1]             | GENMODE4 [0]             |          |
| 0x1F                         | HB4_TURN_OFF_CFG                                         | LSB      | RES                 | RES                 | HB_FAULT4 [1]       | HB_FAULT4 [0]       | ISTEP2_OFF_<br>CONF4 [3] | ISTEP2_OFF_<br>CONF4 [2] | ISTEP2_OFF_<br>CONF4 [1] | ISTEP2_OFF_<br>CONF4 [0] | RW       |
| 0X20                         | HB5_MODE_ CFG (1)                                        |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0X21                         | HB5_DRIVER_ CFG (1)                                      |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0X22                         | HB5_DIAG_CFG (1)                                         |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0x23                         | HB5_TURN_OFF_CFG (1)                                     |          |                     |                     |                     | RESERV              | 'ED                      |                          |                          |                          | RW       |
| 0X24                         | HB6_MODE_ CFG (1)                                        |          |                     |                     |                     | RESERV              | 'ED                      |                          |                          |                          | RW       |
| 0X25                         | HB6_DRIVER_ CFG (1)                                      |          |                     |                     |                     | RESERV              | ÆD.                      |                          |                          |                          | RW       |
| 0X26                         | HB6_DIAG_CFG (1)                                         |          |                     |                     |                     | RESERV              | 'ED                      |                          |                          |                          | RW       |
| 0x27                         | HB6_TURN_OFF_CFG (1)                                     |          |                     |                     |                     | RESERV              | 'ED                      |                          |                          |                          | RW       |
| 0X28                         | HB7_MODE_ CFG (1)                                        |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0X29                         | HB7_DRIVER_ CFG (1)                                      |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
|                              | HB7_DIAG_CFG (1)                                         |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0X2A                         |                                                          |          |                     |                     |                     | RESERV              | /ED                      |                          |                          |                          | RW       |
| 0X2A<br>0x2B                 | HB7_TURN_OFF_CFG (1)                                     |          |                     |                     |                     |                     |                          |                          |                          |                          |          |
|                              | HB7_TURN_OFF_CFG (1) HB8_MODE_ CFG (1)                   |          |                     |                     |                     | RESERV              | 'ED                      |                          |                          |                          | RW       |
| 0x2B                         | HB8_MODE_ CFG (1)                                        |          |                     |                     |                     | RESERV              |                          |                          |                          |                          | RW<br>RW |
| 0x2B<br>0X2C                 | HB8_MODE_ CFG (1) HB8_DRIVER_ CFG (1)                    |          |                     |                     |                     |                     | /ED                      |                          |                          |                          |          |
| 0x2B<br>0X2C<br>0X2D         | HB8_MODE_ CFG (1)  HB8_DRIVER_ CFG (1)  HB8_DIAG_CFG (1) |          |                     |                     |                     | RESERV              | (ED                      |                          |                          |                          | RW       |
| 0x2B<br>0X2C<br>0X2D<br>0X2E | HB8_MODE_ CFG (1) HB8_DRIVER_ CFG (1)                    | MSB      | -                   | RES                 | RES                 | RESERV              | (ED                      | RES                      | RES                      | RES                      | RW<br>RW |

1. "Address Error" when accessing this register, only for L99MH94Q7

DS15025 - Rev 1 page 63/130



# 7.2 Status registers

# **Table 36. DSR0 (0x01) MSB**

| Bit 14         | Bit 13         | Bit 12                 | Bit 11                  | Bit 10                  | Bit 9                   | Bit 8                   |
|----------------|----------------|------------------------|-------------------------|-------------------------|-------------------------|-------------------------|
| 0 (RO)         | 0 (RO)         | 0 (CRF)                | 0 (RO)                  | 0 (RO)                  | 0 (RO)                  | 0 (RO)                  |
| RSTB           | SPI_ERROR      | WDG_ERROR              | REVISION_ID [7]         | REVISION_ID [6]         | REVISION_ID [5]         | REVISION_ID [4]         |
| Reset bit flag | SPI fault flag | Watchdog fault<br>flag | Revision ID flag<br>[7] | Revision ID flag<br>[6] | Revision ID flag<br>[5] | Revision ID flag<br>[4] |

Table 37. DSR0 (0x01) MSB description

| Bit | Name            | Description                                                                                      |
|-----|-----------------|--------------------------------------------------------------------------------------------------|
|     |                 | RESET bit flag                                                                                   |
| 14  | RSTB            | 1: Device coming out from the POR. This indicates that all the device registers have been reset. |
| 14  | NOTE            | 0: Device is not coming out from POR                                                             |
|     |                 | Automatically cleared at first valid SPI communication frame has been received after the reset   |
|     |                 | SPI fault flag                                                                                   |
| 13  | SPI_ERROR       | 0: No SPI failure detected                                                                       |
| 13  | SFI_ERROR       | 1: SPI failure detected                                                                          |
|     |                 | Automatically cleared at first valid SPI communication frame                                     |
|     |                 | Watchdog fault flag                                                                              |
| 12  | WDG_ERROR       | 0: No WDG failure detected                                                                       |
|     |                 | 1: WDG failure detected                                                                          |
| 11  | DEVISION ID 171 | Revision ID bit [7]                                                                              |
| 11  | REVISION_ID [7] | Version ID to identify the silicon version                                                       |
| 40  | DEVICION ID IO  | Revision ID bit [6]                                                                              |
| 10  | REVISION_ID [6] | Version ID to identify the silicon version                                                       |
| 9   | DEVISION ID IEI | Revision ID bit [5]                                                                              |
| 9   | REVISION_ID [5] | Version ID to identify the silicon version                                                       |
| 0   | DEVISION ID 141 | Revision ID bit [4]                                                                              |
| 8   | REVISION_ID [4] | Version ID to identify the silicon version                                                       |

**Table 38. DSR0 (0x01) LSB** 

| Bit 7                | Bit 6                | Bit 5                | Bit 4                | Bit 3              | Bit 2                 | Bit 1              | Bit 0                 |
|----------------------|----------------------|----------------------|----------------------|--------------------|-----------------------|--------------------|-----------------------|
| 0 (RO)               | 0 (RO)               | 0 (RO)               | 0 (RO)               | 0 (RO)             | 0 (RO)                | 0 (RO)             | 0 (RO)                |
| REVISION_ID [3]      | REVISION_ID [2]      | REVISION_ID [1]      | REVISION_ID [0]      | DEVICE_ID [3]      | DEVICE_ID [2]         | DEVICE_ID [1]      | DEVICE_ID [0]         |
| Revision ID flag [3] | Revision ID flag [2] | Revision ID flag [1] | Revision ID flag [0] | Device ID flag [3] | Device ID<br>flag [2] | Device ID flag [1] | Device ID<br>flag [0] |

Table 39. DSR0 (0x01) LSB description

| Bit | Name            | Description                                                    |
|-----|-----------------|----------------------------------------------------------------|
| 7   | REVISION_ID [3] | Revision ID bit [3] Version ID to identify the silicon version |
| 6   | REVISION_ID [2] | Revision ID bit [2]                                            |

DS15025 - Rev 1 page 64/130





| Bit | Name            | Description                                        |
|-----|-----------------|----------------------------------------------------|
|     |                 | Version ID to identify the silicon version         |
| 5   | REVISION_ID [1] | Revision ID bit [1]                                |
|     |                 | Version ID to identify the silicon version         |
| 4   | REVISION ID [0] | Revision ID bit [0]                                |
|     | ,               | Version ID to identify the silicon version         |
| 3   |                 | Device ID bit [3]                                  |
| 3   | DEVICE_ID [3]   | Device ID to identify the L99MH94 / L99MH92 device |
| 2   | DEVICE ID (3)   | Device ID bit [2]                                  |
| 2   | DEVICE_ID [2]   | Device ID to identify the L99MH94 / L99MH92 device |
| 4   |                 | Device ID bit [1]                                  |
| 1   | DEVICE_ID [1]   | Device ID to identify the L99MH94 / L99MH92 device |
|     | DE///OF ID (0)  | Device ID bit [0]                                  |
| 0   | DEVICE_ID [0]   | Device ID to identify the L99MH94 / L99MH92 device |

# **Table 40. DSR1 (0x02) MSB**

| Bit 14   | Bit 13               | Bit 12                  | Bit 11               | Bit 10               | Bit 9                 | Bit 8      |
|----------|----------------------|-------------------------|----------------------|----------------------|-----------------------|------------|
| 0 (RO)   | 0 (CRF)              | 0 (CRF)                 | 0 (CRF)              | 0 (CRF)              | 0 (CRF)               | 0 (RO)     |
| RES      | VDHOV                | VDHUV                   | VDDOV                | TW                   | TSD                   | DIAGCR     |
| Reserved | VDH overvoltage flag | VUH overvoltage<br>flag | VDD overvoltage flag | Thermal warning flag | Thermal shutdown flag | DIAGN flag |

# Table 41. DSR1 (0x02) MSB description

| Bit | Name   | Description                                                                                                                                                                                                                                                                                 |
|-----|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | RES    | Reserved                                                                                                                                                                                                                                                                                    |
|     |        | VDH overvoltage flag                                                                                                                                                                                                                                                                        |
| 13  | VDHOV  | This flag is set and latched as soon as an overvoltage is detected on VDH supply. It can be cleared by SPI only if the source of the fault is no longer present. Automatically cleared at first valid SPI communication frame                                                               |
|     |        | VDH undervoltage flag                                                                                                                                                                                                                                                                       |
| 12  | VDHUV  | This flag is set and latched as soon as an undervoltage is detected on VDH supply. It can be cleared by SPI only if the source of the fault is no longer present. Automatically cleared at first valid SPI communication frame                                                              |
|     |        | VDD overvoltage fault flag                                                                                                                                                                                                                                                                  |
| 11  | VDDOV  | This flag is set and latched as soon as an overvoltage is detected on VDD supply. It can be cleared by SPI only if the source of the fault is no longer present. Automatically cleared at first valid SPI communication frame                                                               |
|     |        | Thermal warning flag                                                                                                                                                                                                                                                                        |
| 10  | TW     | This flag is set and latched as soon as device junction temperature exceeds TW threshold for a time longer than the corresponding filter time. It can be cleared by SPI only if the source of the fault is no longer present. Automatically cleared at first valid SPI communication frame  |
|     |        | Thermal shutdown flag                                                                                                                                                                                                                                                                       |
| 9   | TSD    | This flag is set and latched as soon as device junction temperature exceeds TSD threshold for a time longer than the corresponding filter time. It can be cleared by SPI only if the source of the fault is no longer present. Automatically cleared at first valid SPI communication frame |
|     |        | DIAGN flag                                                                                                                                                                                                                                                                                  |
| 8   | DIAGCR | This flag is set as soon as the DIAGN pin is activated. It is automatically cleared as soon as the DIAGN is deactivated                                                                                                                                                                     |

page 65/130



# **Table 42. DSR1 (0x02) LSB**

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3                 | Bit 2                 | Bit 1                 | Bit 0                 |
|----------|----------|----------|----------|-----------------------|-----------------------|-----------------------|-----------------------|
| 0 (CR)   | 0 (CR)   | 0 (CR)   | 0 (CR)   | 0 (CRF)               | 0 (CRF)               | 0 (CRF)               | 0 (CRF)               |
| RES      | RES      | RES      | RES      | VDSHS4                | VDSHS3                | VDSHS2                | VDSHS1                |
| Reserved | Reserved | Reserved | Reserved | VDS monitoring<br>HS4 | VDS monitoring<br>HS3 | VDS monitoring<br>HS2 | VDS monitoring<br>HS1 |

# Table 43. DSR1 (0x02) LSB description

| Bit | Name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RES    |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6   | RES    | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5   | RES    | Reserved bits                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4   | RES    |                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3   | VDSHS4 | VDS monitoring flags, only for L99MH94.                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2   | VDSHS3 | Flag VDSHSx ( $x = 14$ ) is set and latched as soon as the VDS of the corresponding HS MOSFET exceeds the relative threshold (set by VDS_CONFx, $x = 14$ ) for a time longer than the corresponding filtering time or blanking filtering time, where the blanking time is applicable. It can be cleared by SPI only if the source of the fault is no longer present.                                                                         |
| 1   | VDSHS2 | VDS monitoring flags                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0   | VDSHS1 | Flag VDSHSx ( $x = 14$ for L99MH94, $x = 1$ , 2 for L99MH92) is set and latched as soon as the VDS of the corresponding HS MOSFET exceeds the relative threshold (set by VDS_CONFx, $x = 14$ for L99MH94, $x = 1$ , 2 for L99MH92) for a time longer than the corresponding filtering time or blanking filtering time, where the blanking time is applicable. It can be cleared by SPI only if the source of the fault is no longer present. |

# **Table 44. DSR2 (0x03) MSB**

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (CR)   |
| RES      |
| Reserved |

# **Table 45. DSR2 (0x03) LSB**

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3                 | Bit 2                 | Bit 1                 | Bit 0       |
|----------|----------|----------|----------|-----------------------|-----------------------|-----------------------|-------------|
| 0 (CR)                | 0 (CR)                | 0 (CR)                | 0 (CR)      |
| RES      | RES      | RES      | VDSLS4   | VDSLS3                | VDSLS2                | VDSLS1                | CPLOW       |
| Reserved | Reserved | Reserved | Reserved | VDS monitoring<br>HS4 | VDS monitoring<br>HS3 | VDS monitoring<br>HS2 | CP LOW flag |

# Table 46. DSR2 (0x03) LSB description

| Bit | Name   | Description                             |  |  |  |
|-----|--------|-----------------------------------------|--|--|--|
| 7   | RES    |                                         |  |  |  |
| 6   | RES    | Reserved bits                           |  |  |  |
| 5   | RES    |                                         |  |  |  |
| 4   | VDSLS4 | VDC manifering flows only for LOOMLIOA  |  |  |  |
| 3   | VDSLS3 | VDS monitoring flags, only for L99MH94. |  |  |  |

DS15025 - Rev 1 page 66/130





| Bit | Name   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |        | Flag VDSLSx (x = 14) is set and latched as soon as the VDS of the corresponding LS MOSFET exceeds the relative threshold (set by VDS_CONFx, x = 14) for a time longer than the corresponding filtering time or blanking filtering time, where the blanking time is applicable. It can be cleared by SPI only if the source of the fault is no longer present.                                                                                                                                                                                                            |
| 2   | VDSLS2 | VDS monitoring flags.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   | VDSLS1 | Flag VDSLSx ( $x = 14$ for L99MH94, $x = 1$ , 2 for L99MH92) is set and latched as soon as the VDS of the corresponding LS MOSFET exceeds the relative threshold (set by VDS_CONFx, $x = 14$ for L99MH94, $x = 1$ , 2 for L99MH92) for a time longer than the corresponding filtering time or blanking filtering time, where the blanking time is applicable. It can be cleared by SPI only if the source of the fault is no longer present.                                                                                                                             |
| 0   | CPLOW  | CP low flag  If the CP_LOW_CONFIG control bit is set to one, the CPLOW status flag becomes a status bit (set and reset automatically) and the gate drivers come out of forced disabled mode automatically upon recovery from the charge pump low voltage condition. In this case the status bit will be automatically cleared as soon as the charge pump output voltage is no longer below the low voltage threshold for a time longer than t <sub>CP</sub> If the CP_LOW_CONFIG control bit is set to zero, the gate drivers come out of forced disabled mode only once |
|     |        | the charge pump low-voltage flag CPLOW is cleared via SPI. The charge pump low voltage flag CPLOW can be cleared by a SPI "read and clear" command only if the charge pump low-voltage condition is no longer present, namely if $V_{CP} > V_{CP\_LOW}$ for a time longer than $t_{CP}$ .                                                                                                                                                                                                                                                                                |

#### **Control Registers** 7.3

Table 47. GLOBAL\_CFG (0x04) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11                 | Bit 10                 | Bit 9                     | Bit 8                 |
|----------|----------|----------|------------------------|------------------------|---------------------------|-----------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)                 | 0 (RW)                 | 0 (RW)                    | 0 (RW)                |
| RES      | RES      | RES      | OSC_SS_DIS             | DIAGN_ACTIVE_<br>LEVEL | DIAGOFF_CURR_<br>SEL      | VDS_OFFSET_<br>ENABLE |
| Reserved | Reserved | Reserved | Spread spectrum enable | DIAGN pin active level | DIAGOFF current selection | VDS offset enable     |

Table 48. GLOBAL\_CFG (0x04) MSB description

| Bit | Name                   | Description                                                                                                                                           |
|-----|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | RES                    |                                                                                                                                                       |
| 13  | RES                    | Reserved bits                                                                                                                                         |
| 12  | RES                    |                                                                                                                                                       |
| 11  | OSC_SS_DIS             | Spread spectrum enable  0: Spread spectrum enabled  1: Spread spectrum disabled                                                                       |
| 10  | DIAGN_ACTIVE_<br>LEVEL | DIAGN pin active level 0: DIAGN pin active low 1: DIAGN pin active high                                                                               |
| 9   | DIAGOFF_CURR_<br>SEL   | DIAGOFF current selection  0 ⇒ 1 mA  1 ⇒ 2 mA                                                                                                         |
| 8   | VDS_OFFSET_<br>ENABLE  | Offset of 6 mV on the V <sub>ds</sub> measurements. To be inserted in case of short circuit to be measured  0: No offset inserted  1: Offset inserted |

page 67/130



# Table 49. GLOBAL\_CFG (0x04) LSB

| Bit 7                                   | Bit 6                                                      | Bit 5             | Bit 4                | Bit 3                               | Bit 2       | Bit 1       | Bit 0    |
|-----------------------------------------|------------------------------------------------------------|-------------------|----------------------|-------------------------------------|-------------|-------------|----------|
| 0 (RW)                                  | 0 (RW)                                                     | 0 (RW)            | 0 (RW)               | 1 (RW)                              | 0 (RW)      | 0 (RW)      | 0 (RW)   |
| DTP_REF                                 | OVTS                                                       | OUTE              | CP_LOW_CONFIG        | CPFDD                               | EN_PWM1     | EN_PWM2     | RES      |
| Cross current protection time reference | V <sub>DH</sub> over<br>voltage<br>protection<br>threshold | Outputs<br>enable | CP low configuration | CP frequency<br>enable<br>dithering | PWM1 enable | PWM2 enable | Reserved |

# Table 50. GLOBAL\_CFG (0x04) LSB description

| Bit | Name          | Description                                                                                                                                                                                          |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |               | Cross current protection time reference                                                                                                                                                              |
| 7   | DTP_REF       | 0: the cross current protection time is calculated starting from the command to switch off a MOSFET and switch on the complementary                                                                  |
|     |               | 1: the cross current protection time is calculated starting from the instant in which the $V_{gs}$ of the MOSFET being switched off has reached the value set in the VSTEP1x                         |
|     |               | VDH over voltage protection threshold                                                                                                                                                                |
| 6   | OVTS          | 0: V <sub>DH</sub> over-voltage threshold 1 (V <sub>DHOVT1</sub> ) selected                                                                                                                          |
|     |               | 1: V <sub>DH</sub> over-voltage threshold 2 (V <sub>DHOVT2</sub> ) selected                                                                                                                          |
|     |               | Outputs enable                                                                                                                                                                                       |
| 5   | OUTE          | 0: all the gate drivers are OFF independently from OUTEx bits setting                                                                                                                                |
|     |               | 1: the gate drivers can be put OFF or ON according to the OUTEx bits setting                                                                                                                         |
|     |               | CP low configuration                                                                                                                                                                                 |
| 4   | CP_LOW_CONFIG | 0: the gate drivers come out of forced disabled mode only once the charge pump low voltage flag CPLOW is cleared via SPI                                                                             |
|     | CI_LOW_CONTIO | 1: CPLOW status flag becomes a status bit (set and reset automatically) and the gate drivers come out of forced disabled mode automatically upon recovery from the charge pump low voltage condition |
|     |               | Charge pump frequency dithering                                                                                                                                                                      |
| 3   | CPFDD         | 0: charge pump dithering doesn't enable                                                                                                                                                              |
|     |               | 1: charge pump dithering enabled                                                                                                                                                                     |
|     |               | PWM1 enable                                                                                                                                                                                          |
| 2   | EN_PWM1       | 0: PWM1 disabled                                                                                                                                                                                     |
|     |               | 1: PWM1 enabled                                                                                                                                                                                      |
|     |               | PWM2 enable                                                                                                                                                                                          |
| 1   | EN_PWM2       | 0: PWM2 disabled                                                                                                                                                                                     |
|     |               | 1: PWM2 enabled                                                                                                                                                                                      |
| 0   | RES           | Reserved bit                                                                                                                                                                                         |

# Table 51. CSO\_CFG (0x05) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10              | Bit 9    | Bit 8            |
|----------|----------|----------|----------|---------------------|----------|------------------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)   | 0 (RW)              | 0 (RW)   | 0 (RW)           |
| RES      | RES      | RES      | RES      | CSO_GAIN_SEL1       | RES      | CSOSIG1          |
| Reserved | Reserved | Reserved | Reserved | CSO1 gain selection | Reserved | CSO1 Vds mapping |

DS15025 - Rev 1 page 68/130



Table 52. CSO\_CFG (0x05) MSB description

| Bit | Name          | Description                                                                      |
|-----|---------------|----------------------------------------------------------------------------------|
| 14  | RES           | Reserved                                                                         |
| 13  | RES           | Reserved                                                                         |
| 12  | RES           | Reserved                                                                         |
| 11  | RES           | Reserved                                                                         |
|     |               | CSO1 gain selection                                                              |
| 10  | CSO_GAIN_SEL1 | 0: gain sets to 1.5                                                              |
|     |               | 1: gain sets to 3                                                                |
| 9   | RES           | Reserved                                                                         |
|     |               | CSO1 V <sub>ds</sub> mapping                                                     |
| 8   | CSOSIG1       | 0: V <sub>ds</sub> of the HSx mapped on CSO1 (to use in combination with CSOSHx) |
|     |               | 1: V <sub>ds</sub> of the LSx mapped on CSO1 (to use in combination with CSOSHx) |

# Table 53. CSO\_CFG (0x05) LSB

| Bit 7    | Bit 6       | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1                   | Bit 0                   |
|----------|-------------|----------|----------|----------|----------|-------------------------|-------------------------|
| 0 (RW)   | 0 (RW)      | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RO)   | 0 (RW)                  | 0 (RW)                  |
| RES      | CSOEN1      | RES      | RES      | RES      | RES      | CSOSH1 [1]              | CSOSH1 [0]              |
| Reserved | CSO1 enable | Reserved | Reserved | Reserved | Reserved | HSx mapping on CSO1 [1] | HSx mapping on CSO1 [0] |

# Table 54. CSO\_CFG (0x05) LSB description

| Bit | Name        | Description                                                                  |  |  |  |
|-----|-------------|------------------------------------------------------------------------------|--|--|--|
| 7   | RES         | Reserved bit                                                                 |  |  |  |
|     |             | CSO1 enable                                                                  |  |  |  |
| 6   | CSOEN1      | 0: CSO1 output disabled                                                      |  |  |  |
|     |             | 1: CSO1 output enabled                                                       |  |  |  |
| 5   | RES         |                                                                              |  |  |  |
| 4   | RES         | Descript hite                                                                |  |  |  |
| 3   | RES         | Reserved bits                                                                |  |  |  |
| 2   | RES         |                                                                              |  |  |  |
| 1   | CSOSH1 [1]  | V <sub>ds</sub> of HSx mapping on CSO1, CSOSH1 [1] not writable for L99MH92. |  |  |  |
|     |             | 00: V <sub>ds</sub> of HS1 mapped on CSO1                                    |  |  |  |
|     | 0000114 707 | 01: V <sub>ds</sub> of HS2 mapped on CSO1                                    |  |  |  |
| 0   | CSOSH1 [0]  | 10: V <sub>ds</sub> of HS3 mapped on CSO1 (only for L99MH94)                 |  |  |  |
|     |             | 11: V <sub>ds</sub> of HS4 mapped on CSO1 (only for L99MH94)                 |  |  |  |

# Table 55. DIODE\_CFG (0x06) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 69/130



# Table 56. DIODE\_CFG (0x06) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3                        | Bit 2                        | Bit 1                        | Bit 0                        |
|----------|----------|----------|----------|------------------------------|------------------------------|------------------------------|------------------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 1 (RW)                       | 0 (RW)                       | 0 (RW)                       | 0 (RW)                       |
| RES      | RES      | RES      | RES      | IDIODE_ CONF2<br>[1]         | IDIODE_ CONF2<br>[0]         | IDIODE_ CONF1<br>[1]         | IDIODE_ CONF1<br>[0]         |
| Reserved | Reserved | Reserved | Reserved | Idiode2<br>configuration [1] | Idiode2<br>configuration [0] | Idiode1<br>configuration [1] | Idiode1<br>configuration [0] |

# Table 57. DIODE\_CFG (0x06) LSB description

| Bit | Name             | Description                                                                                                                          |
|-----|------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| 7   | RES              |                                                                                                                                      |
| 6   | RES              | Reserved bits                                                                                                                        |
| 5   | RES              | Reserved bits                                                                                                                        |
| 4   | RES              |                                                                                                                                      |
| 3   | IDIODE_CONF2 [1] | Configuration of the current of the diode 2                                                                                          |
| 2   | IDIODE_CONF2 [0] | $00 \Rightarrow 250 \mu A$<br>$01 \Rightarrow 500 \mu A$<br>$10 \Rightarrow 750 \mu A$<br>$11 \Rightarrow 1000 \mu A$                |
| 1   | IDIODE_CONF1 [1] | Configuration of the current of the diode 1                                                                                          |
| 0   | IDIODE_CONF1 [0] | $00 \Rightarrow 250 \mu\text{A}$ $01 \Rightarrow 500 \mu\text{A}$ $10 \Rightarrow 750 \mu\text{A}$ $11 \Rightarrow 1000 \mu\text{A}$ |

# Table 58. DIODE1\_READ (0x07) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10               | Bit 9               | Bit 8               |
|----------|----------|----------|----------|----------------------|---------------------|---------------------|
| 0 (RO)               | 0 (RO)              | 0 (RO)              |
| RES      | RES      | RES      | RES      | DIODE1_READ [10]     | DIODE1_READ [9]     | DIODE1_READ [8]     |
| Reserved | Reserved | Reserved | Reserved | Diode1 read bit [10] | Diode1 read bit [9] | Diode1 read bit [8] |

# Table 59. DIODE1\_READ (0x07) MSB description

| Bit | Name             | Description                     |  |  |  |
|-----|------------------|---------------------------------|--|--|--|
| 14  | RES              |                                 |  |  |  |
| 13  | RES              | Reserved bits                   |  |  |  |
| 12  | RES              | Reserved bits                   |  |  |  |
| 11  | RES              |                                 |  |  |  |
| 10  | DIODE1_READ [10] |                                 |  |  |  |
| 9   | DIODE1_READ [9]  | ADC output bits for the diode 1 |  |  |  |
| 8   | DIODE1_READ [8]  |                                 |  |  |  |

DS15025 - Rev 1 page 70/130



# Table 60. DIODE1\_READ (0x07) LSB

| Bit 7       | Bit 6       | Bit 5       | Bit 4       | Bit 3       | Bit 2       | Bit 1       | Bit 0       |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0 (RO)      |
| DIODE1_     |
| READ [7]    | READ [6]    | READ [5]    | READ [4]    | READ [3]    | READ [2]    | READ [1]    | READ [0]    |
| Diode1 read |
| bit [7]     | bit [6]     | bit [5]     | bit [4]     | bit [3]     | bit [2]     | bit [1]     | bit [0]     |

# Table 61. DIODE1\_READ (0x07) LSB description

| Bit | Name            | Description                     |
|-----|-----------------|---------------------------------|
| 7   | DIODE1_READ [7] |                                 |
| 6   | DIODE1_READ [6] |                                 |
| 5   | DIODE1_READ [5] |                                 |
| 4   | DIODE1_READ [4] | ADC output hits for the diade 1 |
| 3   | DIODE1_READ [3] | ADC output bits for the diode 1 |
| 2   | DIODE1_READ [2] |                                 |
| 1   | DIODE1_READ [1] |                                 |
| 0   | DIODE1_READ [0] |                                 |

# Table 62. DIODE2\_READ (0x08) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10               | Bit 9               | Bit 8               |
|----------|----------|----------|----------|----------------------|---------------------|---------------------|
| 0 (RO)               | 0 (RO)              | 0 (RO)              |
| RES      | RES      | RES      | RES      | DIODE2_READ [10]     | DIODE2_READ [9]     | DIODE2_READ [8]     |
| Reserved | Reserved | Reserved | Reserved | Diode2 read bit [10] | Diode2 read bit [9] | Diode2 read bit [8] |

# Table 63. DIODE2\_READ (0x08) MSB description

| Bit | Name             | Description                     |
|-----|------------------|---------------------------------|
| 14  | RES              |                                 |
| 13  | RES              | Reserved bits                   |
| 12  | RES              | Reserved bits                   |
| 11  | RES              |                                 |
| 10  | DIODE2_READ [10] |                                 |
| 9   | DIODE2_READ [9]  | ADC output bits for the diode 2 |
| 8   | DIODE2_READ [8]  |                                 |

# Table 64. DIODE2\_READ (0x08) LSB

| Bit 7       | Bit 6       | Bit 5       | Bit 4       | Bit 3       | Bit 2       | Bit 1       | Bit 0       |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0 (RO)      |
| DIODE2_     |
| READ [7]    | READ [6]    | READ [5]    | READ [4]    | READ [3]    | READ [2]    | READ [1]    | READ [0]    |
| Diode2 read |
| bit [7]     | bit [6]     | bit [5]     | bit [4]     | bit [3]     | bit [2]     | bit [1]     | bit [0]     |

DS15025 - Rev 1 page 71/130



# Table 65. DIODE2\_READ (0x08) LSB description

| Bit | Name            | Description                     |
|-----|-----------------|---------------------------------|
| 7   | DIODE2_READ [7] |                                 |
| 6   | DIODE2_READ [6] |                                 |
| 5   | DIODE2_READ [5] |                                 |
| 4   | DIODE2_READ [4] | ADC output hits for the diade 2 |
| 3   | DIODE2_READ [3] | ADC output bits for the diode 2 |
| 2   | DIODE2_READ [2] |                                 |
| 1   | DIODE2_READ [1] |                                 |
| 0   | DIODE2_READ [0] |                                 |

# Table 66. DIODE3\_READ (0x09) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

# Table 67. DIODE3\_READ (0x09) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

## Table 68. DIODE4\_READ (0x0A) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

## Table 69. DIODE4\_READ (0x0A) LSB

"Address Error" when accessing this register, only for L99MH94Q7

|          |          | ,        | J        |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| 0 (RO)   |
| RES      |
| Reserved |

## Table 70. DIAG\_OFF\_HS (0x0B) MSB

| Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  |
|--------|--------|--------|--------|--------|--------|--------|
| 0 (RO) |
| RES    |

DS15025 - Rev 1 page 72/130



| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| Reserved |

## Table 71. DIAG\_OFF\_HS (0x0B) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
|----------|----------|----------|----------|--------------|--------------|--------------|--------------|
| 0 (RO)       | 0 (RO)       | 0 (RO)       | 0 (RO)       |
| RES      | RES      | RES      | RES      | VDS_HS4_DIAG | VDS_HS3_DIAG | VDS_HS2_DIAG | VDS_HS1_DIAG |
| Reserved | Reserved | Reserved | Reserved | VDS HS4 bit  | VDS HS3 bit  | VDS HS2 bit  | VDS HS1 bit  |

# Table 72. DIAG\_OFF\_HS (0x0B) LSB description

| Bit | Name         | Description                                                                                                                |
|-----|--------------|----------------------------------------------------------------------------------------------------------------------------|
| 7   | RES          |                                                                                                                            |
| 6   | RES          | Reserved bits                                                                                                              |
| 5   | RES          | Reserved bits                                                                                                              |
| 4   | RES          |                                                                                                                            |
| 3   | VDS_HS4_DIAG | Only for L99MH94.                                                                                                          |
| 2   | VDS_HS3_DIAG | Status of the HSx comparator during diag off, with a symmetric filter of 200 µs 0: LOW 1: HIGH                             |
| 1   | VDS_HS2_DIAG | Status of the HSx comparator (x = 14 for L99MH94, x = 1, 2 for L99MH92) during diag off, with a symmetric filter of 200 µs |
| 0   | VDS_HS1_DIAG | 0: LOW 1: HIGH                                                                                                             |

## Table 73. DIAG\_OFF\_LS (0x0C) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

## Table 74. DIAG\_OFF\_LS (0x0C) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3        | Bit 2        | Bit 1        | Bit 0        |
|----------|----------|----------|----------|--------------|--------------|--------------|--------------|
| 0 (RO)       | 0 (RO)       | 0 (RO)       | 0 (RW)       |
| RES      | RES      | RES      | RES      | VDS_LS4_DIAG | VDS_LS3_DIAG | VDS_LS2_DIAG | VDS_LS1_DIAG |
| Reserved | Reserved | Reserved | Reserved | VDS LS4 bit  | VDS LS3 bit  | VDS LS2 bit  | VDS LS1 bit  |

## Table 75. DIAG\_OFF\_LS (0x0C) LSB description

| Bit | Name | Description   |
|-----|------|---------------|
| 7   | RES  |               |
| 6   | RES  | Reserved bits |
| 5   | RES  | reserved bits |
| 4   | RES  |               |

DS15025 - Rev 1 page 73/130



| Bit | Name         | Description                                                                                         |
|-----|--------------|-----------------------------------------------------------------------------------------------------|
| 3   | VDS_LS4_DIAG | Only for L99MH94.                                                                                   |
| 2   | VDS_LS3_DIAG | Status of the LSx comparator during diag off, with a symmetric filter of 200 $\mu s$ 0: LOW 1: HIGH |
| 1   | VDS_LS2_DIAG | Status of the LSx comparator (x = 14 for L99MH94, x = 1, 2 for L99MH92) during diag off, with a     |
| 0   | VDS_LS1_DIAG | symmetric filter of 200 µs 0: LOW 1: HIGH                                                           |

# Table 76. DIAGCR1 (0x0D) MSB

| Bit 14                              | Bit 13                              | Bit 12                            | Bit 11                            | Bit 10                   | Bit 9                     | Bit 8                             |
|-------------------------------------|-------------------------------------|-----------------------------------|-----------------------------------|--------------------------|---------------------------|-----------------------------------|
| 1 (RW)                              | 1 (RW)                              | 1 (RW)                            | 1 (RW)                            | 1 (RW)                   | 1 (RW)                    | 1 (RW)                            |
| DGWDG                               | DGSPIERR                            | DGVDHOV                           | DGVDHUV                           | DGTW                     | DGTSD                     | DGCPLOW                           |
| Diagnostic<br>WDG_ERR<br>enable bit | Diagnostic<br>SPI_ERR<br>enable bit | Diagnostic<br>VDHOV enable<br>bit | Diagnostic<br>VDHUV enable<br>bit | Diagnostic TW enable bit | Diagnostic TSD enable bit | Diagnostic<br>CPLOW enable<br>bit |

# Table 77. DIAGCR1 (0x0D) MSB description

| Bit | Name     | Description                                                                                                                        |
|-----|----------|------------------------------------------------------------------------------------------------------------------------------------|
| 14  | DGWDG    | Diagnostic WDG ERROR enable control bit Setting this bit enables WDG_ERR status flag to be mapped on diagnostic output pin (DIAGN) |
| '-  | DOWDO    | 0: WDG_ERR no mapped on DIAGN pin 1: WDG_ERR mapped on DIAGN pin                                                                   |
|     |          | Diagnostic SPI ERROR enable control bit                                                                                            |
| 13  | DGSPIERR | Setting this bit enables SPI_ERR status flag to be mapped on diagnostic output pin (DIAGN)  0: SPI_ERR no mapped on DIAGN pin      |
|     |          | 1: SPI_ERR mapped on DIAGN pin                                                                                                     |
|     |          | Diagnostic VDHOV enable control bit                                                                                                |
| 12  | DGVDHOV  | Setting this bit enables VDHOV status flag to be mapped on diagnostic output pin (DIAGN)  0: VDHOV no mapped on DIAGN pin          |
|     |          | 1: VDHOV mapped on DIAGN pin                                                                                                       |
|     |          | Diagnostic VDHUV enable control bit  Setting this bit enables VDHUV status flag to be mapped on diagnostic output pin (DIAGN)      |
| 11  | DGVDHUV  | 0: VDHUV no mapped on DIAGN pin                                                                                                    |
|     |          | 1: VDHUV mapped on DIAGN pin                                                                                                       |
|     |          | Diagnostic TW enable control bit  Setting this bit enables TW status flag to be manned an diagnostic output pix (DIACN)            |
| 10  | DGTW     | Setting this bit enables TW status flag to be mapped on diagnostic output pin (DIAGN)  0: TW no mapped on DIAGN pin                |
|     |          | 1: TW mapped on DIAGN pin                                                                                                          |
|     |          | Diagnostic TSD enable control bit                                                                                                  |
| 9   | DGTSD    | Setting this bit enables TSD status flag to be mapped on diagnostic output pin (DIAGN)  0: TSD no mapped on DIAGN pin              |
|     |          | 1: TSD mapped on DIAGN pin                                                                                                         |
| 8   | DGCPLOW  | Diagnostic CPLOW enable control bit                                                                                                |

DS15025 - Rev 1 page 74/130



| Bit | Name | Description                                                                              |
|-----|------|------------------------------------------------------------------------------------------|
|     |      | Setting this bit enables CPLOW status flag to be mapped on diagnostic output pin (DIAGN) |
|     |      | 0: CPLOW no mapped on DIAGN pin                                                          |
|     |      | 1: CPLOW mapped on DIAGN pin                                                             |

## Table 78. DIAGCR1 (0x0D) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3                         | Bit 2                         | Bit 1                         | Bit 0                         |
|----------|----------|----------|----------|-------------------------------|-------------------------------|-------------------------------|-------------------------------|
| 1 (RW)                        | 1 (RW)                        | 1 (RW)                        | 1 (RW)                        |
| RES      | RES      | RES      | RES      | DGVDSHS4                      | DGVDSHS3                      | DGVDSHS2                      | DGVDSHS1                      |
| Reserved | Reserved | Reserved | Reserved | Diagnostic enable VDS_HS4 bit | Diagnostic enable VDS_HS3 bit | Diagnostic enable VDS_HS2 bit | Diagnostic enable VDS_HS1 bit |

## Table 79. DIAGCR1 (0x0D) LSB description

| Bit | Name     | Description                                                                                                                                                                                                             |  |  |  |  |  |  |
|-----|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7   | RES      |                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 6   | RES      | Reserved bits                                                                                                                                                                                                           |  |  |  |  |  |  |
| 5   | RES      | Reserved bits                                                                                                                                                                                                           |  |  |  |  |  |  |
| 4   | RES      |                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 3   | DGVDSHS4 | Diagnostic VDS_HS4 enable control bit, only for L99MH94.  Setting this bit enables VDS_HS4 status flag to be mapped on diagnostic output pin (DIAGN)  0: VDS_HS4 no mapped on DIAGN pin  1: VDS_HS4 mapped on DIAGN pin |  |  |  |  |  |  |
| 2   | DGVDSHS3 | Diagnostic VDS_HS3 enable control bit, only for L99MH94.  Setting this bit enables VDS_HS3 status flag to be mapped on diagnostic output pin (DIAGN)  0: VDS_HS3 no mapped on DIAGN pin  1: VDS_HS3 mapped on DIAGN pin |  |  |  |  |  |  |
| 1   | DGVDSHS2 | Diagnostic VDS_HS2 enable control bit  Setting this bit enables VDS_HS2 status flag to be mapped on diagnostic output pin (DIAGN)  0: VDS_HS2 no mapped on DIAGN pin  1: VDS_HS2 mapped on DIAGN pin                    |  |  |  |  |  |  |
| 0   | DGVDSHS1 | Diagnostic VDS_HS1 enable control bit Setting this bit enables VDS_HS1 status flag to be mapped on diagnostic output pin (DIAGN) 0: VDS_HS1 no mapped on DIAGN pin 1: VDS_HS1 mapped on DIAGN pin                       |  |  |  |  |  |  |

## Table 80. DIAGCR2 (0x0E) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10                        | Bit 9                         | Bit 8                         |
|----------|----------|----------|----------|-------------------------------|-------------------------------|-------------------------------|
| 1 (RW)                        | 1 (RW)                        | 1 (RW)                        |
| RES      | RES      | RES      | RES      | DGVDSLS4                      | DGVDSLS3                      | DGVDSLS2                      |
| Reserved | Reserved | Reserved | Reserved | Diagnostic enable VDS_LS4 bit | Diagnostic enable VDS_LS3 bit | Diagnostic enable VDS_LS2 bit |

DS15025 - Rev 1 page 75/130



Table 81. DIAGCR2 (0x0E) MSB description

| Bit | Name     | Description                                                                                |
|-----|----------|--------------------------------------------------------------------------------------------|
| 14  | RES      |                                                                                            |
| 13  | RES      | Reserved bits                                                                              |
| 12  | RES      | Reserved Dits                                                                              |
| 11  | RES      |                                                                                            |
|     |          | Diagnostic VDS_LS4 enable control bit, only for L99MH94.                                   |
| 10  | DGVDSLS4 | Setting this bit enables VDS_LS4 status flag to be mapped on diagnostic output pin (DIAGN) |
| 10  | DGVD3L34 | 0: VDS_LS4 no mapped on DIAGN pin                                                          |
|     |          | 1: VDS_LS4 mapped on DIAGN pin                                                             |
|     |          | Diagnostic VDS_LS3 enable control bit, only for L99MH94.                                   |
| 9   | DGVDSLS3 | Setting this bit enables VDS_LS3 status flag to be mapped on diagnostic output pin (DIAGN) |
|     | DOVDOLOG | 0: VDS_LS3 no mapped on DIAGN pin                                                          |
|     |          | 1: VDS_LS3 mapped on DIAGN pin                                                             |
|     | DGVDSLS2 | Diagnostic VDS_LS2 enable control bit                                                      |
| 8   |          | Setting this bit enables VDS_LS2 status flag to be mapped on diagnostic output pin (DIAGN) |
|     | 23,20202 | 0: VDS_LS2 no mapped on DIAGN pin                                                          |
|     |          | 1: VDS_LS2 mapped on DIAGN pin                                                             |

## Table 82. DIAGCR2 (0x0E) LSB

| Bit 7                         | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|-------------------------------|----------|----------|----------|----------|----------|----------|----------|
| 1 (RW)                        | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| DGVDSLS1                      | RES      |
| Diagnostic enable VDS_LS1 bit | Reserved |

#### Table 83. DIAGCR2 (0x0E) LSB description

| Bit | Name     | Description                                                                                |  |  |  |
|-----|----------|--------------------------------------------------------------------------------------------|--|--|--|
|     |          | Diagnostic VDS_LS1 enable control bit                                                      |  |  |  |
| 7   | DGVDSLS1 | Setting this bit enables VDS_LS1 status flag to be mapped on diagnostic output pin (DIAGN) |  |  |  |
| '   | DGVDSLST | 0: VDS_LS1 no mapped on DIAGN pin                                                          |  |  |  |
|     |          | 1: VDS_LS1 mapped on DIAGN pin                                                             |  |  |  |
| 6   | RES      |                                                                                            |  |  |  |
| 5   | RES      |                                                                                            |  |  |  |
| 4   | RES      |                                                                                            |  |  |  |
| 3   | RES      | Reserved bits                                                                              |  |  |  |
| 2   | RES      |                                                                                            |  |  |  |
| 1   | RES      |                                                                                            |  |  |  |
| 0   | RES      |                                                                                            |  |  |  |

## Table 84. WDGTRDIS (0x0F) MSB

| Bit 14 | Bit 13 | Bit 12 | Bit 11 | Bit 10 | Bit 9  | Bit 8  |
|--------|--------|--------|--------|--------|--------|--------|
| 0 (RW) |

DS15025 - Rev 1 page 76/130



| Bit 14                   | Bit 13                   | Bit 12                   | Bit 11                   | Bit 10                   | Bit 9                   | Bit 8                   |
|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-------------------------|-------------------------|
| WDGTRDIS<br>[14]         | WDGTRDIS<br>[13]         | WDGTRDIS<br>[12]         | WDGTRDIS [11]            | WDGTRDIS<br>[10]         | WDGTRDIS [9]            | WDGTRDIS [8]            |
| Watchdog<br>trigger [14] | Watchdog<br>trigger [13] | Watchdog<br>trigger [12] | Watchdog<br>trigger [11] | Watchdog<br>trigger [10] | Watchdog<br>trigger [9] | Watchdog<br>trigger [8] |

Table 85. WDGTRDIS (0x0F) MSB description

| Bit | Name             | Description                                                                                                      |
|-----|------------------|------------------------------------------------------------------------------------------------------------------|
| 14  | WDGTRDIS<br>[14] |                                                                                                                  |
| 13  | WDGTRDIS<br>[13] | Watchdog trigger ⇒ the device must receive alternatively 5555h and 2AAAh. The first word must be                 |
| 12  | WDGTRDIS<br>[12] | Watchdog disable ⇒ the device must receive in the right order 2F6Bh (first key word) and 1097h                   |
| 11  | WDGTRDIS<br>[11] | (second key word)  Watchdog enable ⇒ the device must receive in the right order 5C99h (first key word) and 4360h |
| 10  | WDGTRDIS<br>[10] | (second key word)                                                                                                |
| 9   | WDGTRDIS [9]     |                                                                                                                  |
| 8   | WDGTRDIS [8]     |                                                                                                                  |

## Table 86. WDGTRDIS (0x0F) LSB

| Bit 7       | Bit 6       | Bit 5       | Bit 4       | Bit 3       | Bit 2       | Bit 1       | Bit 0       |
|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| 0 (RW)      |
| WDGTRDIS    |
| [7]         | [6]         | [5]         | [4]         | [3]         | [2]         | [1]         | [0]         |
| Watchdog    |
| trigger [7] | trigger [6] | trigger [5] | trigger [4] | trigger [3] | trigger [2] | trigger [1] | trigger [0] |

## Table 87. WDGTRDIS (0x0F) LSB description

| Bit | Name         | Description                                                                                                     |
|-----|--------------|-----------------------------------------------------------------------------------------------------------------|
| 7   | WDGTRDIS [7] |                                                                                                                 |
| 6   | WDGTRDIS [6] |                                                                                                                 |
| 5   | WDGTRDIS [5] | Watchdog trigger ⇒ the device must receive alternatively 5555h and 2AAAh. The first word must be 5555h          |
| 4   | WDGTRDIS [4] | Watchdog disable ⇒ the device must receive in the right order 2F6Bh (first key word) and 1097h                  |
| 3   | WDGTRDIS [3] | (second key word)                                                                                               |
| 2   | WDGTRDIS [2] | Watchdog enable ⇒ the device must receive in the right order 5C99h (first key word) and 4360h (second key word) |
| 1   | WDGTRDIS [1] |                                                                                                                 |
| 0   | WDGTRDIS [0] |                                                                                                                 |

## Table 88. WDGTRDIS (0x0F) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 77/130



## Table 89. WDGTRDIS (0x0F) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3           | Bit 2            | Bit 1            | Bit 0            |
|----------|----------|----------|----------|-----------------|------------------|------------------|------------------|
| 0 (RO)          | 0 (RO)           | 0 (RO)           | 0 (RO)           |
| RES      | RES      | RES      | RES      | WDGSTATUS       | WDGINF [2]       | WDGINF [1]       | WDGINF [0]       |
| Reserved | Reserved | Reserved | Reserved | Watchdog status | Watchdog inf [2] | Watchdog inf [1] | Watchdog inf [0] |

# Table 90. WDGTRDIS (0x0F) LSB description

| Bit | Name       | Description                                                                                             |
|-----|------------|---------------------------------------------------------------------------------------------------------|
| 7   | RES        | Reserved                                                                                                |
| 6   | RES        | Reserved                                                                                                |
| 5   | RES        | Reserved                                                                                                |
| 4   | RES        | Reserved                                                                                                |
| 3   | WDGSTATUS  | Watchdog status  This bit is enabled if the watchdog has been successfully disabled                     |
| 2   | WDGINF [2] | Watchdog info                                                                                           |
| 1   | WDGINF [1] | These bits represent the three least significant bits of the latest write command performed on the same |
| 0   | WDGINF [0] | register                                                                                                |

# Table 91. HB1\_MODE\_CFG (0x10) MSB

| Bit 14   | Bit 13   | Bit 12          | Bit 11          | Bit 10          | Bit 9                       | Bit 8                  |
|----------|----------|-----------------|-----------------|-----------------|-----------------------------|------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RW)          | 0 (RW)          | 0 (RW)          | 0 (RW)                      | 0 (RW)                 |
| RES      | RES      | DT1 [2]         | DT1 [1]         | DT1 [0]         | STRONG_ON_WHEEL1            | HB_IDIAG1 [1]          |
| Reserved | Reserved | Dead Time 1 [2] | Dead Time 1 [1] | Dead Time 1 [0] | Free-wheeling strong on HB1 | HB1 diagnostic current |

## Table 92. HB1\_MODE\_CFG (0x10) MSB description

| Bit | Name                   | Description                                                   |  |  |  |
|-----|------------------------|---------------------------------------------------------------|--|--|--|
| 14  | RES                    | Decembed hits                                                 |  |  |  |
| 13  | RES                    | Reserved bits                                                 |  |  |  |
| 12  | DT1 [2]                | Dead time of the HB1                                          |  |  |  |
| 11  | DT1 [1]                | $000 \Rightarrow 0.5 \mu s$                                   |  |  |  |
|     |                        | 001 ⇒ 1 μs                                                    |  |  |  |
|     |                        | 010 ⇒ 2 μs                                                    |  |  |  |
|     | 10 DT1 [0]             | 011 ⇒ 3 μs                                                    |  |  |  |
| 10  |                        | 100 ⇒ 4 μs                                                    |  |  |  |
|     |                        | $101 \Rightarrow 5 \mu s$                                     |  |  |  |
|     |                        | 110 ⇒ 6 µs                                                    |  |  |  |
|     |                        | 111 ⇒ 16 μs                                                   |  |  |  |
|     | CTDONG ON              | Free-wheeling strong ON of the HB1                            |  |  |  |
| 9   | 9 STRONG_ON_<br>WHEEL1 | 0: Strong on disabled, free-wheeling gate current set to 4 mA |  |  |  |
|     |                        | 1: Strong on enabled, free-wheeling gate current set to 30 mA |  |  |  |
|     | LID IDIA CA 141        | Half bridge 1 diagnostic currents setting                     |  |  |  |
| 8   | HB_IDIAG1 [1]          | 00: pull-up and pull-down currents off                        |  |  |  |

DS15025 - Rev 1 page 78/130



| Bit | Name | Description                                      |
|-----|------|--------------------------------------------------|
|     |      | 01: pull-up current off and pull-down current on |
|     |      | 10: pull-up current on and pull-down current off |
|     |      | 11: pull-up and pull-down currents off           |

# Table 93. HB1\_MODE\_CFG (0x10) LSB

| Bit 7                        | Bit 6               | Bit 5               | Bit 4               | Bit 3           | Bit 2           | Bit 1                     | Bit 0                     |
|------------------------------|---------------------|---------------------|---------------------|-----------------|-----------------|---------------------------|---------------------------|
| 0 (RW)                       | 0 (RW)              | 0 (RW)              | 0 (RW)              | 0 (RW)          | 0 (RW)          | 0 (RW)                    | 0 (RW)                    |
| HB_IDIAG1<br>[1]             | HB_PWM1<br>[2]      | HB_PWM1<br>[1]      | HB_PWM1<br>[0]      | HB_MODE1<br>[1] | HB_MODE1<br>[0] | HB_WHEEL1<br>[1]          | HB_WHEEL1<br>[0]          |
| HB1<br>diagnostic<br>current | HB1 PWM mapping [2] | HB1 PWM mapping [1] | HB1 PWM mapping [0] | HB1 mode [1]    | HB1 mode [0]    | HB1 free-<br>wheeling [1] | HB1 free-<br>wheeling [0] |

# Table 94. HB1\_MODE\_CFG (0x10) LSB description

| Bit | Name          | Description                                                                                                                                                                                                                                                                |
|-----|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | HB_IDIAG1 [0] | Half bridge 1 diagnostic currents setting  00: pull-up and pull-down currents off  01: pull-up current off and pull-down current on  10: pull-up current on and pull-down current off  11: pull-up and pull-down currents off                                              |
| 6   | HB_PWM1 [2]   | PWM mapping on HB1                                                                                                                                                                                                                                                         |
| 5   | HB_PWM1 [1]   | This 3 bits register is used to indicate which PWM signal is applied to the HS or LS of the half-bridge 1                                                                                                                                                                  |
| 4   | HB_PWM1 [0]   | 000 ⇒ LS of HB mapped on PWM1  001 ⇒ LS of HB mapped on PWM2  011 ⇒ HS of HB mapped on PWM1  100 ⇒ HS of HB mapped on PWM2  010 = 101 = 110 = 111 ⇒ No Mapped                                                                                                              |
| 3   | HB_MODE1 [1]  | HB1 functionality mode                                                                                                                                                                                                                                                     |
| 2   | HB_MODE1 [0]  | 00 ⇒ LS and HS of the HB1 are kept off<br>01 ⇒ LS of the HB1 is ON (static, no PWM), HS of the HB1 is OFF<br>10 ⇒ HS of the half bridge 1 is ON (static, no PWM), LS of the half bridge is OFF<br>11 ⇒ LS or HS of the half-bridge is ON according to the HB_PWM1 register |
| 1   | HB_WHEEL1 [1] | HB1 free-wheeling mode                                                                                                                                                                                                                                                     |
| 0   | HB_WHEEL1 [0] | 00 = 11 ⇒ No mapping<br>01 ⇒ Active free-wheeling on HS of the HB<br>10 ⇒ Active free-wheeling on LS of the HB                                                                                                                                                             |

# Table 95. HB1\_DRIVER\_CFG (0x11) MSB

| Bit 14   | Bit 13                            | Bit 12                            | Bit 11              | Bit 10              | Bit 9               | Bit 8               |
|----------|-----------------------------------|-----------------------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RO)   | 0 (RW)                            | 0 (RW)                            | 0 (RW)              | 0 (RW)              | 0 (RW)              | 0 (RW)              |
| RES      | VSTEP2_CONF1<br>[1]               | VSTEP2_CONF1<br>[0]               | ISTEP3_CONF1<br>[3] | ISTEP3_CONF1<br>[2] | ISTEP3_CONF1<br>[1] | ISTEP3_CONF1<br>[0] |
| Reserved | HB1 Vstep1 and<br>Vstep2 conf [1] | HB1 Vstep1 and<br>Vstep2 conf [0] | HB1 Istep3 conf [3] | HB1 Istep3 conf [2] | HB1 Istep3 conf [1] | HB1 Istep3 conf [0] |

DS15025 - Rev 1 page 79/130





Table 96. HB1\_DRIVER\_CFG (0x11) MSB description

| Bit | Name             | Description                                                    |  |  |  |
|-----|------------------|----------------------------------------------------------------|--|--|--|
| 14  | RES              | Reserved bit                                                   |  |  |  |
| 13  | VSTEP2_CONF1 [1] | Vstep1 and Vstep2 thresholds configuration of the HB1          |  |  |  |
|     |                  | These two bits set the Vstep1 and Vstep2 thresholds of the HB1 |  |  |  |
|     |                  | 00: Vstep1 = 1.1 V, Vstep2 = 2.67 V for the switch ON          |  |  |  |
|     |                  | 00: Vstep1 = 1.3 V, Vstep2 = 3.33 V for the switch OFF         |  |  |  |
|     |                  | 01: Vstep1 = 1.1 V, Vstep2 = 3.56 V for the switch ON          |  |  |  |
| 12  | VSTEP2_CONF1 [0] | 01: Vstep1 = 1.3 V, Vstep2 = 4.44 V for the switch OFF         |  |  |  |
|     |                  | 10: Vstep1 = 2.2 V, Vstep2 = 4.45 V for the switch ON          |  |  |  |
|     |                  | 10: Vstep1 = 2.6 V, Vstep2 = 5.55 V for the switch OFF         |  |  |  |
|     |                  | 11: Vstep1 = 2.2 V, Vstep2 = 5.34 V for the switch ON          |  |  |  |
|     |                  | 11: Vstep1 = 2.6 V, Vstep2 = 6.66 V for the switch OFF         |  |  |  |
| 11  | ISTEP3_CONF1 [3] | Istep3 configuration of the HB1                                |  |  |  |
| 10  | ISTEP3_CONF1 [2] | 0000 ⇒ 2 mA                                                    |  |  |  |
| 9   | ISTEP3_CONF1 [1] | 0001 ⇒ 4 mA                                                    |  |  |  |
|     |                  | 0010 ⇒ 8 mA                                                    |  |  |  |
|     |                  | 0011 ⇒ 12 mA                                                   |  |  |  |
|     |                  | 0100 ⇒ 20 mA                                                   |  |  |  |
|     |                  | 0101 ⇒ 28 mA                                                   |  |  |  |
|     |                  | 0110 ⇒ 36 mA                                                   |  |  |  |
|     |                  | 0111 ⇒ 44 mA                                                   |  |  |  |
|     | IOTEDO CONEA IO  | 1000 ⇒ 52 mA                                                   |  |  |  |
| 8   | ISTEP3_CONF1 [0] | 1001 ⇒ 60 mA                                                   |  |  |  |
|     |                  | 1010 ⇒ 68 mA                                                   |  |  |  |
|     |                  | 1011 ⇒ 76 mA                                                   |  |  |  |
|     |                  | 1100 ⇒ 84 mA                                                   |  |  |  |
|     |                  | 1101 ⇒ 92 mA                                                   |  |  |  |
|     |                  | 1110 ⇒ 104 mA                                                  |  |  |  |
|     |                  | 1111 ⇒ 120 mA                                                  |  |  |  |

## Table 97. HB1\_DRIVER\_CFG (0x11) LSB

| Bit 7               | Bit 6               | Bit 5               | Bit 4               | Bit 3               | Bit 2               | Bit 1               | Bit 0               |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RW)              |
| ISTEP2_CONF1 [3]    | ISTEP2_CONF1 [2]    | ISTEP2_CONF1 [1]    | ISTEP2_CONF1 [0]    | ISTEP1_CONF1 [3]    | ISTEP1_CONF1 [2]    | ISTEP1_CONF1 [1]    | ISTEP1_CONF1 [0]    |
| HB1 Istep3 conf [3] | HB1 Istep3 conf [2] | HB1 Istep3 conf [1] | HB1 Istep3 conf [0] | HB1 Istep3 conf [3] | HB1 Istep3 conf [2] | HB1 Istep3 conf [1] | HB1 Istep3 conf [0] |

## Table 98. HB1\_DRIVER\_CFG (0x11) LSB description

| Bit | Name             | Description                                                    |
|-----|------------------|----------------------------------------------------------------|
| 7   | ISTEP2_CONF1 [3] | Istep2 configuration of the HB1 for the low to high transition |
| 6   | ISTEP2_CONF1 [2] | 0000 ⇒ 1 mA                                                    |
| 5   | ISTEP2_CONF1 [1] | 0001 ⇒ 2 mA                                                    |
|     |                  | 0010 ⇒ 3 mA                                                    |
| 4   | ISTEP2_CONF1 [0] | 0011 ⇒ 4 mA                                                    |
|     |                  | 0100 ⇒ 6 mA                                                    |

DS15025 - Rev 1 page 80/130



| Bit | Name             | Description                     |  |  |  |
|-----|------------------|---------------------------------|--|--|--|
|     |                  | 0101 ⇒ 8 mA                     |  |  |  |
|     |                  | 0110 ⇒ 10 mA                    |  |  |  |
|     |                  | 0111 ⇒ 12 mA                    |  |  |  |
|     |                  | 1000 ⇒ 16 mA                    |  |  |  |
|     |                  | 1001 ⇒ 20 mA                    |  |  |  |
|     |                  | 1010 ⇒ 24 mA                    |  |  |  |
|     |                  | 1011 ⇒ 28 mA                    |  |  |  |
|     |                  | 1100 ⇒ 32 mA                    |  |  |  |
|     |                  | 1101 ⇒ 36 mA                    |  |  |  |
|     |                  | 1110 ⇒ 40 mA                    |  |  |  |
|     |                  | 1111 ⇒ 44 mA                    |  |  |  |
| 3   | ISTEP1_CONF1 [3] | Istep1 configuration of the HB1 |  |  |  |
| 2   | ISTEP1_CONF1 [2] | 0000 ⇒ 1 mA                     |  |  |  |
| 1   | ISTEP1_CONF1 [1] | 0001 ⇒ 2 mA                     |  |  |  |
|     |                  | 0010 ⇒ 3 mA                     |  |  |  |
|     |                  | 0011 ⇒ 4 mA                     |  |  |  |
|     |                  | 0100 ⇒ 6 mA                     |  |  |  |
|     |                  | 0101 ⇒ 8 mA                     |  |  |  |
|     |                  | 0110 ⇒ 10 mA                    |  |  |  |
|     |                  | 0111 ⇒ 12 mA                    |  |  |  |
| 0   | ISTEP1_CONF1 [0] | 1000 ⇒ 16 mA                    |  |  |  |
| U   | ISTEPT_CONFT[0]  | 1001 ⇒ 20 mA                    |  |  |  |
|     |                  | 1010 ⇒ 24 mA                    |  |  |  |
|     |                  | 1011 ⇒ 28 mA                    |  |  |  |
|     |                  | 1100 ⇒ 32 mA                    |  |  |  |
|     |                  | 1101 ⇒ 36 mA                    |  |  |  |
|     |                  | 1110 ⇒ 40 mA                    |  |  |  |
|     |                  | 1111 ⇒ 44 mA                    |  |  |  |

# Table 99. HB1\_DIAG\_CFG (0x12) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10                  | Bit 9                   | Bit 8                   |
|----------|----------|----------|----------|-------------------------|-------------------------|-------------------------|
| 0 (RO)   | 0 (RO)   | Bit 12   | Bit 11   | 0 (RW)                  | 0 (RW)                  | 0 (RW)                  |
| RES      | RES      | RES      | RES      | VDS_CONF1 [3]           | VDS_CONF1 [2]           | VDS_CONF1 [1]           |
| Reserved | Reserved | Reserved | Reserved | VDS conf of the HB1 [3] | VDS conf of the HB1 [2] | VDS conf of the HB1 [1] |

# Table 100. HB1\_DIAG\_CFG (0x12) MSB description

| Bit | Name          | Description                                                |  |  |  |
|-----|---------------|------------------------------------------------------------|--|--|--|
| 14  | RES           |                                                            |  |  |  |
| 13  | RES           | Decenyed hite                                              |  |  |  |
| 12  | RES           | Reserved bits                                              |  |  |  |
| 11  | RES           |                                                            |  |  |  |
| 10  | VDS_CONF1 [3] | V <sub>ds</sub> monitor threshold configuration of the HB1 |  |  |  |
| 9   | VDS_CONF1 [2] | 0000 ⇒ 75 mV                                               |  |  |  |

DS15025 - Rev 1 page 81/130





57

# Table 101. HB1\_DIAG\_CFG (0x12) LSB

 $0111 \Rightarrow 600 \text{ mV}$  $1xxx \Rightarrow 2 \text{ V}$ 

| Bit 7                      | Bit 6                      | Bit 5                      | Bit 4                      | Bit 3                      | Bit 2                       | Bit 1                       | Bit 0                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0 (RW)                      | 0 (RW)                      | 0 (RW)                      |
| VDS_CONF1<br>[0]           | VDS_BLANK1<br>[3]          | VDS_BLANK1<br>[2]          | VDS_BLANK1<br>[1]          | VDS_BLANK1<br>[0]          | VDS_FILT1<br>[2]            | VDS_FILT1<br>[2]            | VDS_FILT1<br>[2]            |
| VDS conf of<br>the HB1 [0] | VDS blanking time conf [3] | VDS blanking time conf [2] | VDS blanking time conf [1] | VDS blanking time conf [0] | VDS filter<br>time conf [2] | VDS filter<br>time conf [1] | VDS filter<br>time conf [0] |

## Table 102. HB1\_DIAG\_CFG (0x12) LSB description

| Bit | Name             | Description                                                |  |  |  |
|-----|------------------|------------------------------------------------------------|--|--|--|
|     |                  | V <sub>ds</sub> monitor threshold configuration of the HB1 |  |  |  |
|     |                  | 0000 ⇒ 75 mV                                               |  |  |  |
|     |                  | 0001 ⇒ 150 mV                                              |  |  |  |
|     |                  | 0010 ⇒ 200 mV                                              |  |  |  |
| 7   | VDS_CONF1 [0]    | 0011 ⇒ 250 mV                                              |  |  |  |
| '   | VD3_CON 1 [0]    | 0100 ⇒ 300 mV                                              |  |  |  |
|     |                  | 0101 ⇒ 400 mV                                              |  |  |  |
|     |                  | 0110 ⇒ 500 mV                                              |  |  |  |
|     |                  | 0111 ⇒ 600 mV                                              |  |  |  |
|     |                  | $1xxx \Rightarrow 2 V$                                     |  |  |  |
| 6   | VDS_BLANK1 [3]   | V <sub>ds</sub> blanking time configuration of the HB1     |  |  |  |
| 5   | VDS_BLANK1 [2]   | 0000 ⇒ 0.625 μs                                            |  |  |  |
| 4   | VDS_BLANK1 [1]   | 0001 ⇒ 1 μs                                                |  |  |  |
|     |                  | 0010 ⇒ 1.25 μs                                             |  |  |  |
|     |                  | 0011 ⇒ 1.5 μs                                              |  |  |  |
|     |                  | 0100 ⇒ 2 μs                                                |  |  |  |
|     |                  | 0101 ⇒ 3 μs                                                |  |  |  |
| 3   | VDS_BLANK1 [0]   | 0110 ⇒ 4 μs                                                |  |  |  |
| 3   | VDO_BEAININT [0] | 0111 ⇒ 5 μs                                                |  |  |  |
|     |                  | 1000 ⇒ 6 µs                                                |  |  |  |
|     |                  | 1001 ⇒ 7 μs                                                |  |  |  |
|     |                  | 1010 ⇒ 8 µs                                                |  |  |  |
|     |                  | 1x11 ⇒ 0.625 μs                                            |  |  |  |
| 2   | VDS_FILT1 [2]    | V <sub>ds</sub> filtering time configuration               |  |  |  |
| 1   | VDS_FILT1 [1]    | $000 \Rightarrow 0.5 \mu s$                                |  |  |  |

DS15025 - Rev 1 page 82/130



| Bit | Name          | Description                 |
|-----|---------------|-----------------------------|
|     |               | $001 \Rightarrow 1 \mu s$   |
|     |               | $010 \Rightarrow 2 \mu s$   |
|     |               | $011 \Rightarrow 3 \mu s$   |
| 0   | VDS_FILT1 [0] | $100 \Rightarrow 4 \mu s$   |
|     |               | $101 \Rightarrow 5 \mu s$   |
|     |               | $110 \Rightarrow 6 \mu s$   |
|     |               | $111 \Rightarrow 0.5 \mu s$ |

## Table 103. HB1\_TURN\_OFF\_CFG (0x13) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9                | Bit 8                |
|----------|----------|----------|----------|----------|----------------------|----------------------|
| 0 (RO)   | 0 (RW)               | 0 (RW)               |
| RES      | RES      | RES      | RES      | RES      | GENMODE1 [1]         | GENMODE1 [0]         |
| Reserved | Reserved | Reserved | Reserved | Reserved | GENMODE bit conf [1] | GENMODE bit conf [0] |

## Table 104. HB1\_TURN\_OFF\_CFG (0x13) MSB description

| Bit | Name           | Description                                                 |  |  |  |  |
|-----|----------------|-------------------------------------------------------------|--|--|--|--|
| 14  | RES            |                                                             |  |  |  |  |
| 13  | RES            | Reserved bits                                               |  |  |  |  |
| 12  | RES            |                                                             |  |  |  |  |
| 11  | RES            |                                                             |  |  |  |  |
| 10  | RES            |                                                             |  |  |  |  |
| 9   | GENMODE1 [1]   | HB1 Gate driver actions when a VDH overvoltage is detected: |  |  |  |  |
|     |                | 00 ⇒ Gate driver off                                        |  |  |  |  |
| 8   | CENIMODE 1 IOI | $01 \Rightarrow HS$ off, LS on to lock the motor            |  |  |  |  |
| 0   | GENMODE1 [0]   | 10 ⇒ Flag only                                              |  |  |  |  |
|     |                | 11 ⇒ Gate driver off                                        |  |  |  |  |

# Table 105. HB1\_TURN\_OFF\_CFG (0x13) LSB

| Bit 7    | Bit 6    | Bit 5                | Bit 4                | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    |
|----------|----------|----------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)               | 0 (RW)               | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   |
| RES      | RES      | HB_FAULT1<br>[1]     | HB_FAULT1<br>[0]     | ISTEP2_OFF_<br>CONF1 [3] | ISTEP2_OFF_<br>CONF1 [2] | ISTEP2_OFF_<br>CONF1 [1] | ISTEP2_OFF_<br>CONF1 [0] |
| Reserved | Reserved | HB1 fault key<br>[1] | HB1 fault key<br>[0] | HB1 Istep2 conf [3]      | HB1 Istep2 conf [2]      | HB1 Istep2 conf [1]      | HB1 Istep2 conf [0]      |

#### Table 106. HB1\_TURN\_OFF\_CFG (0x13) LSB description

| Bit | Name          | Description                                      |
|-----|---------------|--------------------------------------------------|
| 7   | HB_FAULT1 [3] | Reserved bits                                    |
| 6   | HB_FAULT1 [2] | Reserved bits                                    |
| 5   | HB_FAULT1 [1] | HB1 fault key                                    |
|     |               | 00 ⇒ No key                                      |
| 4   | HB_FAULT1 [0] | 01 ⇒ key 1                                       |
|     |               | $10 \Rightarrow \text{key 2 (only for L99MH94)}$ |

DS15025 - Rev 1 page 83/130



| Bit | Name                 | Description                                                                      |
|-----|----------------------|----------------------------------------------------------------------------------|
|     |                      | 11 ⇒ key 1 + key 2 (only key 1 in L99MH92 because MSB not writable)              |
| 3   | ISTEP2_OFF_CONF1 [3] | Istep2 configuration of the HB1 in case of the switch OFF of the external MOSFET |
| 2   | ISTEP2_OFF_CONF1 [2] | 0000 ⇒ 1 mA                                                                      |
| 1   | ISTEP2_OFF_CONF1 [1] | 0001 ⇒ 2 mA                                                                      |
|     |                      | 0010 ⇒ 3 mA                                                                      |
|     |                      | 0011 ⇒ 4 mA                                                                      |
|     |                      | 0100 ⇒ 6 mA                                                                      |
|     |                      | 0101 ⇒ 8 mA                                                                      |
|     |                      | 0110 ⇒ 10 mA                                                                     |
|     |                      | 0111 ⇒ 12 mA                                                                     |
|     |                      | 1000 ⇒ 16 mA                                                                     |
| 0   | ISTEP2_OFF_CONF1 [0] | 1001 ⇒ 20 mA                                                                     |
|     |                      | 1010 ⇒24 mA                                                                      |
|     |                      | 1011 ⇒ 28 mA                                                                     |
|     |                      | 1100 ⇒ 32 mA                                                                     |
|     |                      | 1101 ⇒ 36 mA                                                                     |
|     |                      | 1110 ⇒ 40 mA                                                                     |
|     |                      | 1111 ⇒ 44 mA                                                                     |

# Table 107. HB2\_MODE\_CFG (0x14) MSB

| Bit 14   | Bit 13   | Bit 12          | Bit 11          | Bit 10          | Bit 9                       | Bit 8                  |
|----------|----------|-----------------|-----------------|-----------------|-----------------------------|------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RW)          | 0 (RW)          | 0 (RW)          | 0 (RW)                      | 0 (RW)                 |
| RES      | RES      | DT2 [2]         | DT2 [1]         | DT2 [0]         | STRONG_ON_WHEEL2            | HB_IDIAG2 [1]          |
| Reserved | Reserved | Dead Time 2 [2] | Dead Time 2 [1] | Dead Time 2 [0] | Free-wheeling strong on HB2 | HB2 diagnostic current |

# Table 108. HB2\_MODE\_CFG (0x14) MSB description

| Bit | Name          | Description                                                   |
|-----|---------------|---------------------------------------------------------------|
| 14  | RES           | Reserved bits                                                 |
| 13  | RES           | Nesei veu bits                                                |
| 12  | DT2 [2]       | Dead time of the HB2                                          |
| 11  | DT2 [1]       | $000 \Rightarrow 0.5 \mu\text{s}$                             |
|     |               | 001 ⇒ 1 μs                                                    |
|     |               | $010 \Rightarrow 2 \mu s$                                     |
|     | 10 DT2 [0]    | $011 \Rightarrow 3 \mu s$                                     |
| 10  |               | 100 ⇒ 4 µs                                                    |
|     |               | 101 ⇒ 5 μs                                                    |
|     |               | 110 ⇒ 6 μs                                                    |
|     |               | 111 ⇒ 16 µs                                                   |
|     | CTDONG ON     | Free-wheeling strong ON of the HB2                            |
| 9   | STRONG_ON_    | 0: strong on disabled, free-wheeling gate current set to 4 mA |
|     | WHEEL2        | 1: strong on enabled, free-wheeling gate current set to 30 mA |
| 8   | HB IDIVO3 [4] | HB2 diagnostic currents setting                               |
| 0   | HB_IDIAG2 [1] | 00: pull-up and pull-down currents off                        |

DS15025 - Rev 1 page 84/130



| Bit | Name | Description                                      |
|-----|------|--------------------------------------------------|
|     |      | 01: pull-up current off and pull-down current on |
|     |      | 10: pull-up current on and pull-down current off |
|     |      | 11: pull-up and pull-down currents off           |

## Table 109. HB2\_MODE\_CFG (0x14) LSB

| Bit 7                        | Bit 6               | Bit 5               | Bit 4                  | Bit 3           | Bit 2           | Bit 1                     | Bit 0                     |
|------------------------------|---------------------|---------------------|------------------------|-----------------|-----------------|---------------------------|---------------------------|
| 0 (RW)                       | 0 (RW)              | 0 (RW)              | 0 (RW)                 | 0 (RW)          | 0 (RW)          | 0 (RW)                    | 0 (RW)                    |
| HB_IDIAG2<br>[1]             | HB_PWM2<br>[2]      | HB_PWM2<br>[1]      | HB_PWM2<br>[0]         | HB_MODE2<br>[1] | HB_MODE2<br>[0] | HB_WHEEL2<br>[1]          | HB_WHEEL2<br>[0]          |
| HB2<br>diagnostic<br>current | HB2 PWM mapping [2] | HB2 PWM mapping [1] | HB2 PWM<br>mapping [0] | HB2 mode [1]    | HB2 mode [0]    | HB2 free-<br>wheeling [1] | HB2 free-<br>wheeling [0] |

# Table 110. HB2\_MODE\_CFG (0x14) LSB description

| Bit | Name          | Description                                                                                                                                                                                                                                       |
|-----|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | HB_IDIAG2 [0] | Half-bridge 2 diagnostic currents setting  00: pull-up and pull-down currents off  01: pull-up current off and pull-down current on  10: pull-up current on and pull-down current off  11: pull-up and pull-down currents off                     |
| 6   | HB_PWM2 [2]   | PWM mapping on HB2                                                                                                                                                                                                                                |
| 5   | HB_PWM2 [1]   | This 3 bits register is used to indicate which PWM signal is applied to the HS or LS of the half-bridge 2                                                                                                                                         |
| 4   | HB_PWM2 [0]   | 000 ⇒ LS of HB mapped on PWM1  001 ⇒ LS of HB mapped on PWM2  011 ⇒ HS of HB mapped on PWM1  100 ⇒ HS of HB mapped on PWM2  010 = 101 = 110 = 111 ⇒ No Mapped                                                                                     |
| 3   | HB_MODE2 [1]  | HB2 functionality mode                                                                                                                                                                                                                            |
| 2   | HB_MODE2 [0]  | 00 ⇒ LS and HS of the HB2 are kept off<br>01 ⇒ LS of the HB2 is ON (static, no PWM), HS of the HB2 is OFF<br>10 ⇒ HS of the HB2 is ON (static, no PWM), LS of the HB2 is OFF<br>11 ⇒ LS or HS of the HB2 are ON according to the HB_PWM2 register |
| 1   | HB_WHEEL2 [1] | HB2 free-wheeling mode                                                                                                                                                                                                                            |
| 0   | HB_WHEEL2 [0] | 00 = 11 ⇒ No mapping<br>01 ⇒ Active free-wheeling on HS of the HB<br>10 ⇒ Active free-wheeling on LS of the HB                                                                                                                                    |

## Table 111. HB2\_DRIVER\_CFG (0x15) MSB

| Bit 14   | Bit 13                         | Bit 12                         | Bit 11              | Bit 10              | Bit 9               | Bit 8               |
|----------|--------------------------------|--------------------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RO)   | 0 (RW)                         | 0 (RW)                         | 0 (RW)              | 0 (RW)              | 0 (RW)              | 0 (RW)              |
| RES      | VSTEP2_CONF2 [1]               | VSTEP2_CONF2 [0]               | ISTEP3_CONF2 [3]    | ISTEP3_CONF2 [2]    | ISTEP3_CONF2 [1]    | ISTEP3_CONF2 [0]    |
| Reserved | HB2 Vstep1 and Vstep2 conf [1] | HB2 Vstep1 and Vstep2 conf [0] | HB2 Istep3 conf [3] | HB2 Istep3 conf [2] | HB2 Istep3 conf [1] | HB2 Istep3 conf [0] |

DS15025 - Rev 1 page 85/130



Table 112. HB2\_DRIVER\_CFG (0x15) MSB description

| Bit | Name             | Description                                                    |
|-----|------------------|----------------------------------------------------------------|
| 14  | RES              | Reserved bit                                                   |
| 13  | VSTEP2_CONF2 [1] | Vstep1 and Vstep2 thresholds configuration of the HB2          |
|     |                  | These two bits set the Vstep1 and Vstep2 thresholds of the HB2 |
|     |                  | 00: Vstep1 = 1.1 V, Vstep2 = 2.67 V for the switch ON          |
|     |                  | 00: Vstep1 = 1.3 V, Vstep2 = 3.33 V for the switch OFF         |
|     |                  | 01: Vstep1 = 1.1 V, Vstep2 = 3.56 V for the switch ON          |
| 12  | VSTEP2_CONF2 [0] | 01: Vstep1 = 1.3 V, Vstep2 = 4.44 V for the switch OFF         |
|     |                  | 10 = Vstep1 = 2.2 V, Vstep2 = 4.45 V for the switch ON         |
|     |                  | 10: Vstep1 = 2.6 V, Vstep2 = 5.55 V for the switch OFF         |
|     |                  | 11: Vstep1 = 2.2 V, Vstep2 = 5.34 V for the switch ON          |
|     |                  | 11: Vstep1 = 2.6 V, Vstep2 = 6.66 V for the switch OFF         |
| 11  | ISTEP3_CONF2 [3] | Istep3 configuration of the HB2                                |
| 10  | ISTEP3_CONF2 [2] | 0000 ⇒ 2 mA                                                    |
| 9   | ISTEP3_CONF2 [1] | 0001 ⇒ 4 mA                                                    |
|     |                  | 0010 ⇒ 8 mA                                                    |
|     |                  | 0011 ⇒ 12 mA                                                   |
|     |                  | 0100 ⇒ 20 mA                                                   |
|     |                  | 0101 ⇒ 28 mA                                                   |
|     |                  | 0110 ⇒ 36 mA                                                   |
|     |                  | 0111 ⇒ 44 mA                                                   |
|     | ICTEDA CONEA IO  | 1000 ⇒ 52 mA                                                   |
| 8   | ISTEP3_CONF2 [0] | 1001 ⇒ 60 mA                                                   |
|     |                  | 1010 ⇒ 68 mA                                                   |
|     |                  | 1011 ⇒ 76 mA                                                   |
|     |                  | 1100 ⇒ 84 mA                                                   |
|     |                  | 1101 ⇒ 92 mA                                                   |
|     |                  | 1110 ⇒ 104 mA                                                  |
|     |                  | 1111 ⇒ 120 mA                                                  |

## Table 113. HB2\_DRIVER\_CFG (0x15) LSB

| Bit 7               | Bit 6               | Bit 5               | Bit 4               | Bit 3               | Bit 2               | Bit 1               | Bit 0               |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RW)              |
| ISTEP2_CONF2 [3]    | ISTEP2_CONF2 [2]    | ISTEP2_CONF2 [1]    | ISTEP2_CONF2 [0]    | ISTEP1_CONF2 [3]    | ISTEP1_CONF2 [2]    | ISTEP1_CONF2 [1]    | ISTEP1_CONF2 [0]    |
| HB2 Istep3 conf [3] | HB2 Istep3 conf [2] | HB2 Istep3 conf [1] | HB2 Istep3 conf [0] | HB2 Istep3 conf [3] | HB2 Istep3 conf [2] | HB2 Istep3 conf [1] | HB2 Istep3 conf [0] |

Table 114. HB2\_DRIVER\_CFG (0x15) LSB description

| Bit | Name             | Description                                                    |
|-----|------------------|----------------------------------------------------------------|
| 7   | ISTEP2_CONF2 [3] | Istep2 configuration of the HB2 for the low to high transition |
| 6   | ISTEP2_CONF2 [2] | 0000 ⇒ 1 mA                                                    |
| 5   | ISTEP2_CONF2 [1] | 0001 ⇒ 2 mA                                                    |
|     |                  | 0010 ⇒ 3 mA                                                    |
| 4   | ISTEP2_CONF2 [0] | 0011 ⇒ 4 mA                                                    |
|     |                  | 0100 ⇒ 6 mA                                                    |

DS15025 - Rev 1 page 86/130



| Bit | Name             | Description                     |
|-----|------------------|---------------------------------|
|     |                  | 0101 ⇒ 8 mA                     |
|     |                  | 0110 ⇒ 10 mA                    |
|     |                  | 0111 ⇒ 12 mA                    |
|     |                  | 1000 ⇒ 16 mA                    |
|     |                  | 1001 ⇒ 20 mA                    |
|     |                  | 1010 ⇒ 24 mA                    |
|     |                  | 1011 ⇒ 28 mA                    |
|     |                  | 1100 ⇒ 32 mA                    |
|     |                  | 1101 ⇒ 36 mA                    |
|     |                  | 1110 ⇒ 40 mA                    |
|     |                  | 1111 ⇒ 44 mA                    |
| 3   | ISTEP1_CONF2 [3] | Istep1 configuration of the HB2 |
| 2   | ISTEP1_CONF2 [2] | 0000 ⇒ 1 mA                     |
| 1   | ISTEP1_CONF2 [1] | 0001 ⇒ 2 mA                     |
|     |                  | 0010 ⇒ 3 mA                     |
|     |                  | 0011 ⇒ 4 mA                     |
|     |                  | 0100 ⇒ 6 mA                     |
|     |                  | 0101 ⇒ 8 mA                     |
|     |                  | 0110 ⇒ 10 mA                    |
|     |                  | 0111 ⇒ 12 mA                    |
|     | ICTED4 CONES IO  | 1000 ⇒ 16 mA                    |
| 0   | ISTEP1_CONF2 [0] | 1001 ⇒ 20 mA                    |
|     |                  | 1010 ⇒ 24 mA                    |
|     |                  | 1011 ⇒ 28 mA                    |
|     |                  | 1100 ⇒ 32 mA                    |
|     |                  | 1101 ⇒ 36 mA                    |
|     |                  | 1110 ⇒ 40 mA                    |
|     |                  | 1111 ⇒ 44 mA                    |

# Table 115. HB2\_DIAG\_CFG (0x16) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10                  | Bit 9                   | Bit 8                   |
|----------|----------|----------|----------|-------------------------|-------------------------|-------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)                  | 0 (RW)                  | 0 (RW)                  |
| RES      | RES      | RES      | RES      | VDS_CONF2 [3]           | VDS_CONF2 [2]           | VDS_CONF2 [1]           |
| Reserved | Reserved | Reserved | Reserved | VDS conf of the HB2 [3] | VDS conf of the HB2 [2] | VDS conf of the HB2 [1] |

Table 116. HB2\_DIAG\_CFG (0x16) MSB description

| Bit | Name          | Description                                                |  |
|-----|---------------|------------------------------------------------------------|--|
| 14  | RES           |                                                            |  |
| 13  | RES           | Personal bits                                              |  |
| 12  | RES           | Reserved bits                                              |  |
| 11  | RES           |                                                            |  |
| 10  | VDS_CONF2 [3] | V <sub>ds</sub> monitor threshold configuration of the HB2 |  |
| 9   | VDS_CONF2 [2] | 0000 ⇒ 75 mV                                               |  |

DS15025 - Rev 1 page 87/130





| Bit | Name          | Description            |
|-----|---------------|------------------------|
|     |               | 0001 ⇒ 150 mV          |
|     |               | 0010 ⇒ 200 mV          |
|     | VDS_CONF2 [1] | 0011 ⇒ 250 mV          |
|     |               | 0100 ⇒ 300 mV          |
| 8   |               | 0101 ⇒ 400 mV          |
|     |               | 0110 ⇒ 500 mV          |
|     |               | 0111 ⇒ 600 mV          |
|     |               | $1xxx \Rightarrow 2 V$ |

# Table 117. HB2\_DIAG\_CFG (0x16) LSB

| Bit 7                      | Bit 6                      | Bit 5                      | Bit 4                      | Bit 3                      | Bit 2                       | Bit 1                       | Bit 0                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0 (RW)                      | 0 (RW)                      | 0 (RW)                      |
| VDS_CONF2<br>[0]           | VDS_BLANK2<br>[3]          | VDS_BLANK2<br>[2]          | VDS_BLANK2<br>[1]          | VDS_BLANK2<br>[0]          | VDS_FILT2<br>[2]            | VDS_FILT2<br>[2]            | VDS_FILT2<br>[2]            |
| VDS conf of<br>the HB2 [0] | VDS blanking time conf [3] | VDS blanking time conf [2] | VDS blanking time conf [1] | VDS blanking time conf [0] | VDS filter<br>time conf [2] | VDS filter<br>time conf [1] | VDS filter<br>time conf [0] |

# Table 118. HB2\_DIAG\_CFG (0x16) LSB description

| Bit | Name            | Description                                                |
|-----|-----------------|------------------------------------------------------------|
|     |                 | V <sub>ds</sub> monitor threshold configuration of the HB2 |
|     |                 | 0000 ⇒ 75 mV                                               |
|     |                 | 0001 ⇒ 150 mV                                              |
|     |                 | 0010 ⇒ 200 mV                                              |
| 7   | VDS_CONF2 [0]   | 0011 ⇒ 250 mV                                              |
| ,   | VD0_00141 2 [0] | 0100 ⇒ 300 mV                                              |
|     |                 | 0101 ⇒ 400 mV                                              |
|     |                 | 0110 ⇒ 500 mV                                              |
|     |                 | 0111 ⇒ 600 mV                                              |
|     |                 | $1xxx \Rightarrow 2 V$                                     |
| 6   | VDS_BLANK2 [3]  | V <sub>ds</sub> blanking time configuration of the HB2     |
| 5   | VDS_BLANK2 [2]  | 0000 ⇒ 0.625 μs                                            |
| 4   | VDS_BLANK2 [1]  | 0001 ⇒ 1 μs                                                |
|     |                 | 0010 ⇒ 1.25 μs                                             |
|     |                 | 0011 ⇒ 1.5 μs                                              |
|     |                 | 0100 ⇒ 2 μs                                                |
|     |                 | 0101 ⇒ 3 μs                                                |
| 3   | VDS_BLANK2 [0]  | 0110 ⇒ 4 μs                                                |
| J   | VD3_BLANK2 [0]  | 0111 ⇒ 5 μs                                                |
|     |                 | 1000 ⇒ 6 µs                                                |
|     |                 | 1001 ⇒ 7 µs                                                |
|     |                 | 1010 ⇒ 8 µs                                                |
|     |                 | 1x11 ⇒ 0.625 μs                                            |
| 2   | VDS_FILT2 [2]   | V <sub>ds</sub> filtering time configuration of the HB2    |
| 1   | VDS_FILT2 [1]   | $000 \Rightarrow 0.5 \mu s$                                |

DS15025 - Rev 1 page 88/130



| Bit | Name          | Description                 |
|-----|---------------|-----------------------------|
|     |               | $001 \Rightarrow 1 \mu s$   |
|     |               | $010 \Rightarrow 2 \mu s$   |
|     |               | $011 \Rightarrow 3 \mu s$   |
| 0   | VDS_FILT2 [0] | $100 \Rightarrow 4 \mu s$   |
|     |               | $101 \Rightarrow 5 \mu s$   |
|     |               | $110 \Rightarrow 6 \mu s$   |
|     |               | $111 \Rightarrow 0.5 \mu s$ |

# Table 119. HB2\_TURN\_OFF\_CFG (0x17) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9                | Bit 8                |
|----------|----------|----------|----------|----------|----------------------|----------------------|
| 0 (RO)   | 0 (RW)               | 0 (RW)               |
| RES      | RES      | RES      | RES      | RES      | GENMODE2 [1]         | GENMODE2 [0]         |
| Reserved | Reserved | Reserved | Reserved | Reserved | GENMODE bit conf [1] | GENMODE bit conf [0] |

# Table 120. HB2\_TURN\_OFF\_CFG (0x17) MSB description

| Bit | Name          | Description                                                 |  |
|-----|---------------|-------------------------------------------------------------|--|
| 14  | RES           |                                                             |  |
| 13  | RES           | Reserved bits                                               |  |
| 12  | RES           |                                                             |  |
| 11  | RES           |                                                             |  |
| 10  | RES           |                                                             |  |
| 9   | GENMODE2 [1]  | HB2 Gate driver actions when a VDH overvoltage is detected: |  |
|     |               | 00: Gate driver off                                         |  |
| 8   | CENIMODES ISI | 01: HS off, LS on to lock the motor                         |  |
| 0   | GENMODE2 [0]  | 10: Flag only                                               |  |
|     |               | 11: Gate driver off                                         |  |

# Table 121. HB2\_TURN\_OFF\_CFG (0x17) LSB

| Bit 7    | Bit 6    | Bit 5             | Bit 4                | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    |
|----------|----------|-------------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)            | 0 (RW)               | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   |
| RES      | RES      | HB_FAULT2<br>[1]  | HB_FAULT2<br>[0]     | ISTEP2_OFF_<br>CONF2 [3] | ISTEP2_OFF_<br>CONF2 [2] | ISTEP2_OFF_<br>CONF2 [1] | ISTEP2_OFF_<br>CONF2 [0] |
| Reserved | Reserved | HB2 fault key [1] | HB2 fault key<br>[0] | HB2 Istep2 conf [3]      | HB2 Istep2 conf [2]      | HB2 Istep2 conf [1]      | HB2 Istep2 conf [0]      |

# Table 122. HB2\_TURN\_OFF\_CFG (0x17) LSB description

| Bit | Name          | Description                                      |  |
|-----|---------------|--------------------------------------------------|--|
| 7   | RES           | Decembed hits                                    |  |
| 6   | RES           | Reserved bits                                    |  |
| 5   | HB_FAULT2 [1] | HB2 fault key                                    |  |
|     |               | 00 ⇒ No key                                      |  |
| 4 H | HB_FAULT2 [0] | 01 ⇒ key 1                                       |  |
|     |               | $10 \Rightarrow \text{key 2 (only for L99MH94)}$ |  |

DS15025 - Rev 1 page 89/130





| Bit | Name                 | Description                                                                      |
|-----|----------------------|----------------------------------------------------------------------------------|
|     |                      | 11 ⇒ key 1 + key 2 (only key 1 in L99MH92 because MSB not writable)              |
| 3   | ISTEP2_OFF_CONF2 [3] | Istep2 configuration of the HB2 in case of the switch OFF of the external MOSFET |
| 2   | ISTEP2_OFF_CONF2 [2] | 0000 ⇒ 1 mA                                                                      |
| 1   | ISTEP2_OFF_CONF2 [1] | 0001 ⇒ 2 mA                                                                      |
|     |                      | 0010 ⇒ 3 mA                                                                      |
|     |                      | 0011 ⇒ 4 mA                                                                      |
|     |                      | 0100 ⇒ 6 mA                                                                      |
|     |                      | 0101 ⇒ 8 mA                                                                      |
|     |                      | 0110 ⇒ 10 mA                                                                     |
|     |                      | 0111 ⇒ 12 mA                                                                     |
|     | 107550 055 001/50/01 | 1000 ⇒ 16 mA                                                                     |
| 0   | ISTEP2_OFF_CONF2 [0] | 1001 ⇒ 20 mA                                                                     |
|     |                      | 1010 ⇒ 24 mA                                                                     |
|     |                      | 1011 ⇒ 28 mA                                                                     |
|     |                      | 1100 ⇒ 32 mA                                                                     |
|     |                      | 1101 ⇒ 36 mA                                                                     |
|     |                      | 1110 ⇒ 40 mA                                                                     |
|     |                      | 1111 ⇒ 44 mA                                                                     |

# Table 123. HB3\_MODE\_CFG (0x18) MSB

| Bit 14   | Bit 13   | Bit 12          | Bit 11          | Bit 10          | Bit 9                       | Bit 8                  |
|----------|----------|-----------------|-----------------|-----------------|-----------------------------|------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RW)          | 0 (RW)          | 0 (RW)          | 0 (RW)                      | 0 (RW)                 |
| RES      | RES      | DT3 [2]         | DT3 [1]         | DT3 [0]         | STRONG_ON_WHEEL3            | HB_IDIAG3 [1]          |
| Reserved | Reserved | Dead Time 3 [2] | Dead Time 3 [1] | Dead Time 3 [0] | Free-wheeling strong on HB3 | HB3 diagnostic current |

## Table 124. HB3\_MODE\_CFG (0x18) MSB description

| Bit | Name                   | Description                                                   |  |  |  |
|-----|------------------------|---------------------------------------------------------------|--|--|--|
| 14  | RES                    | Reserved bits                                                 |  |  |  |
| 13  | RES                    | Veselven pirs                                                 |  |  |  |
| 12  | DT3 [2]                | Dead time of the HB3                                          |  |  |  |
| 11  | DT3 [1]                | $000 \Rightarrow 0.5 \mu s$                                   |  |  |  |
|     |                        | $001 \Rightarrow 1 \mu s$                                     |  |  |  |
|     |                        | $010 \Rightarrow 2 \mu s$                                     |  |  |  |
|     |                        | $011 \Rightarrow 3 \mu s$                                     |  |  |  |
| 10  | DT3 [0]                | $100 \Rightarrow 4 \mu s$                                     |  |  |  |
|     |                        | $101 \Rightarrow 5 \mu s$                                     |  |  |  |
|     |                        | $110 \Rightarrow 6 \mu s$                                     |  |  |  |
|     |                        | 111 ⇒ 16 μs                                                   |  |  |  |
|     | STRONG ON              | Free-wheeling strong ON of the HB3                            |  |  |  |
| 9   | 9 STRONG_ON_<br>WHEEL3 | 0: strong on disabled, free-wheeling gate current set to 4 mA |  |  |  |
|     |                        | 1: strong on enabled, free-wheeling gate current set to 30 mA |  |  |  |
| 0   | LID IDIACS (43         | Half-bridge 3 diagnostic currents setting                     |  |  |  |
| 8   | HB_IDIAG3 [1]          | 00: pull-up and pull-down currents off                        |  |  |  |

DS15025 - Rev 1 page 90/130



| Bit | Name | Description                                      |
|-----|------|--------------------------------------------------|
|     |      | 01: pull-up current off and pull-down current on |
|     |      | 10: pull-up current on and pull-down current off |
|     |      | 11: pull-up and pull-down currents off           |

## Table 125. HB3\_MODE\_CFG (0x18) LSB

| Bit 7                        | Bit 6                  | Bit 5               | Bit 4                  | Bit 3           | Bit 2           | Bit 1                     | Bit 0                     |
|------------------------------|------------------------|---------------------|------------------------|-----------------|-----------------|---------------------------|---------------------------|
| 0 (RW)                       | 0 (RW)                 | 0 (RW)              | 0 (RW)                 | 0 (RW)          | 0 (RW)          | 0 (RW)                    | 0 (RW)                    |
| HB_IDIAG3<br>[1]             | HB_PWM3<br>[2]         | HB_PWM3<br>[1]      | HB_PWM3<br>[0]         | HB_MODE3<br>[1] | HB_MODE3<br>[0] | HB_WHEEL3<br>[1]          | HB_WHEEL3<br>[0]          |
| HB3<br>diagnostic<br>current | HB3 PWM<br>mapping [2] | HB3 PWM mapping [1] | HB3 PWM<br>mapping [0] | HB3 mode [1]    | HB3 mode [0]    | HB3 free-<br>wheeling [1] | HB3 free-<br>wheeling [0] |

## Table 126. HB3\_MODE\_CFG (0x18) LSB description

| Bit | Name          | Description                                                                                               |
|-----|---------------|-----------------------------------------------------------------------------------------------------------|
|     |               | HB3 diagnostic currents setting                                                                           |
|     |               | 00: pull-up and pull-down currents off                                                                    |
| 7   | HB_IDIAG3 [0] | 01: pull-up current off and pull-down current on                                                          |
|     |               | 10: pull-up current on and pull-down current off                                                          |
|     |               | 11: pull-up and pull-down currents off                                                                    |
| 6   | HB_PWM3 [2]   | PWM mapping on HB3 (only for L99MH94)                                                                     |
| 5   | HB_PWM3 [1]   | This 3 bits register is used to indicate which PWM signal is applied to the HS or LS of the half-bridge 3 |
|     |               | 000 ⇒ LS of HB mapped on PWM1                                                                             |
|     |               | 001 ⇒ LS of HB mapped on PWM2                                                                             |
| 4   | HB_PWM3 [0]   | 011 ⇒ HS of HB mapped on PWM1                                                                             |
|     |               | 100 ⇒ HS of HB mapped on PWM2                                                                             |
|     |               | 010 = 101 = 110 = 111 ⇒ No Mapped                                                                         |
| 3   | HB_MODE3 [1]  | HB3 functionality mode (only for L99MH94)                                                                 |
|     |               | $00 \Rightarrow LS$ and HS of the HB3 are kept off                                                        |
| 2   | HB MODE3 [0]  | $01 \Rightarrow LS$ of the HB3 is ON (static, no PWM), HS of the HB3 is OFF                               |
|     | TIB_MOBES [0] | $10 \Rightarrow HS$ of the HB3 is ON (static, no PWM), LS of the HB3 is OFF                               |
|     |               | 11 ⇒ LS or HS of the HB3 is ON in according to the HB_PWM1 register                                       |
| 1   | HB_WHEEL3 [1] | HB3 free-wheeling mode (only for L99MH94)                                                                 |
|     |               | 00 = 11 ⇒ No mapping                                                                                      |
| 0   | HB_WHEEL3 [0] | 01 ⇒ Active free-wheeling on HS of the HB                                                                 |
|     |               | 10 ⇒ Active free-wheeling on LS of the HB                                                                 |

## Table 127. HB3\_DRIVER\_CFG (0x19) MSB

| Bit 14   | Bit 13                            | Bit 12                            | Bit 11                 | Bit 10                 | Bit 9                  | Bit 8                  |
|----------|-----------------------------------|-----------------------------------|------------------------|------------------------|------------------------|------------------------|
| 0 (RO)   | 0 (RW)                            | 0 (RW)                            | 0 (RW)                 | 0 (RW)                 | 0 (RW)                 | 0 (RW)                 |
| RES      | VSTEP2_CONF3 [1]                  | VSTEP2_CONF3<br>[0]               | ISTEP3_CONF3<br>[3]    | ISTEP3_CONF3<br>[2]    | ISTEP3_CONF3 [1]       | ISTEP3_CONF3<br>[0]    |
| Reserved | HB3 Vstep1 and<br>Vstep2 conf [1] | HB3 Vstep1 and<br>Vstep2 conf [0] | HB3 Istep3 conf<br>[3] | HB3 Istep3 conf<br>[2] | HB3 Istep3 conf<br>[1] | HB3 Istep3 conf<br>[0] |

DS15025 - Rev 1 page 91/130



Table 128. HB3\_DRIVER\_CFG (0x19) MSB description

| Bit | Name             | Description                                                              |
|-----|------------------|--------------------------------------------------------------------------|
| 14  | RES              | Reserved bit                                                             |
| 13  | VSTEP2_CONF3 [1] | Vstep1 and Vstep2 thresholds configuration of the HB3 (only for L99MH94) |
|     |                  | These two bits set the Vstep1 and Vstep2 thresholds of the HB3           |
|     |                  | 00: Vstep1 = 1.1 V, Vstep2 = 2.67 V for the switch ON                    |
|     |                  | 00: Vstep1 = 1.3 V, Vstep2 = 3.33 V for the switch OFF                   |
|     |                  | 01: Vstep1 = 1.1 V, Vstep2 = 3.56 V for the switch ON                    |
| 12  | VSTEP2_CONF3 [0] | 01: Vstep1 = 1.3 V, Vstep2 = 4.44 V for the switch OFF                   |
|     |                  | 10: Vstep1 = 2.2 V, Vstep2 = 4.45 V for the switch ON                    |
|     |                  | 10: Vstep1 = 2.6 V, Vstep2 = 5.55 V for the switch OFF                   |
|     |                  | 11: Vstep1 = 2.2 V, Vstep2 = 5.34 V for the switch ON                    |
|     |                  | 11: Vstep1 = 2.6 V, Vstep2 = 6.66 V for the switch OFF                   |
| 11  | ISTEP3_CONF3 [3] | Istep3 configuration of the HB3 (only for L99MH94)                       |
| 10  | ISTEP3_CONF3 [2] | 0000 ⇒ 2 mA                                                              |
| 9   | ISTEP3_CONF3 [1] | 0001 ⇒ 4 mA                                                              |
|     |                  | 0010 ⇒ 8 mA                                                              |
|     |                  | 0011 ⇒ 12 mA                                                             |
|     |                  | 0100 ⇒ 20 mA                                                             |
|     |                  | 0101 ⇒ 28 mA                                                             |
|     |                  | 0110 ⇒ 36 mA                                                             |
|     |                  | 0111 ⇒ 44 mA                                                             |
|     | ICTED2 CONE2 IO  | 1000 ⇒ 52 mA                                                             |
| 8   | ISTEP3_CONF3 [0] | 1001 ⇒ 60 mA                                                             |
|     |                  | 1010 ⇒ 68 mA                                                             |
|     |                  | 1011 ⇒ 76 mA                                                             |
|     |                  | 1100 ⇒ 84 mA                                                             |
|     |                  | 1101 ⇒ 92 mA                                                             |
|     |                  | 1110 ⇒ 104 mA                                                            |
|     |                  | 1111 ⇒ 120 mA                                                            |

## Table 129. HB3\_DRIVER\_CFG (0x19) LSB

| Bit 7               | Bit 6               | Bit 5               | Bit 4               | Bit 3               | Bit 2               | Bit 1               | Bit 0               |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RW)              |
| ISTEP2_CONF3 [3]    | ISTEP2_CONF3 [2]    | ISTEP2_CONF3 [1]    | ISTEP2_CONF3 [0]    | ISTEP1_CONF3 [3]    | ISTEP1_CONF3 [2]    | ISTEP1_CONF3 [1]    | ISTEP1_CONF3 [0]    |
| HB3 Istep3 conf [3] | HB3 Istep3 conf [2] | HB3 Istep3 conf [1] | HB3 Istep3 conf [0] | HB3 Istep3 conf [3] | HB3 Istep3 conf [2] | HB3 Istep3 conf [1] | HB3 Istep3 conf [0] |

# Table 130. HB3\_DRIVER\_CFG (0x19) LSB description

| Bit | Name             | Description                                                                       |
|-----|------------------|-----------------------------------------------------------------------------------|
| 7   | ISTEP2_CONF3 [3] | Istep2 configuration of the HB3 for the low to high transition (only for L99MH94) |
| 6   | ISTEP2_CONF3 [2] | 0000 ⇒ 1 mA                                                                       |
| 5   | ISTEP2_CONF3 [1] | 0001 ⇒ 2 mA                                                                       |
|     |                  | $0010 \Rightarrow 3 \text{ mA}$                                                   |
| 4   | ISTEP2_CONF3 [0] | 0011 ⇒ 4 mA                                                                       |
|     |                  | 0100 ⇒ 6 mA                                                                       |

DS15025 - Rev 1 page 92/130



| Bit | Name             | Description                                        |
|-----|------------------|----------------------------------------------------|
|     |                  | 0101 ⇒ 8 mA                                        |
|     |                  | 0110 ⇒ 10 mA                                       |
|     |                  | 0111 ⇒ 12 mA                                       |
|     |                  | 1000 ⇒ 16 mA                                       |
|     |                  | 1001 ⇒ 20 mA                                       |
|     |                  | 1010 ⇒ 24 mA                                       |
|     |                  | 1011 ⇒ 28 mA                                       |
|     |                  | 1100 ⇒ 32 mA                                       |
|     |                  | 1101 ⇒ 36 mA                                       |
|     |                  | 1110 ⇒ 40 mA                                       |
|     |                  | 1111 ⇒ 44 mA                                       |
| 3   | ISTEP1_CONF3 [3] | Istep1 configuration of the HB3 (only for L99MH94) |
| 2   | ISTEP1_CONF3 [2] | 0000 ⇒ 1 mA                                        |
| 1   | ISTEP1_CONF3 [1] | 0001 ⇒ 2 mA                                        |
|     |                  | 0010 ⇒ 3 mA                                        |
|     |                  | 0011 ⇒ 4 mA                                        |
|     |                  | 0100 ⇒ 6 mA                                        |
|     |                  | 0101 ⇒ 8 mA                                        |
|     |                  | 0110 ⇒ 10 mA                                       |
|     |                  | 0111 ⇒ 12 mA                                       |
| 0   | ISTED1 CONES IO  | 1000 ⇒ 16 mA                                       |
| 0   | ISTEP1_CONF3 [0] | 1001 ⇒ 20 mA                                       |
|     |                  | 1010 ⇒ 24 mA                                       |
|     |                  | 1011 ⇒ 28 mA                                       |
|     |                  | 1100 ⇒ 32 mA                                       |
|     |                  | 1101 ⇒ 36 mA                                       |
|     |                  | 1110 ⇒ 40 mA                                       |
|     |                  | 1111 ⇒ 44 mA                                       |

# Table 131. HB3\_DIAG\_CFG (0x1A) MSB

| Bit 14   | Bit 13                       | Bit 12 | Bit 11                  | Bit 10                  | Bit 9                   | Bit 8  |
|----------|------------------------------|--------|-------------------------|-------------------------|-------------------------|--------|
| 0 (RO)   | 0 (RO)                       | 0 (RO) | 0 (RO)                  | 0 (RW)                  | 0 (RW)                  | 0 (RW) |
| RES      | RES RES RES VDS_CONF3        |        | VDS_CONF3 [3]           | VDS_CONF3 [2]           | VDS_CONF3 [1]           |        |
| Reserved | Reserved Reserved Reserved V |        | VDS conf of the HB3 [3] | VDS conf of the HB3 [2] | VDS conf of the HB3 [1] |        |

Table 132. HB3\_DIAG\_CFG (0x1A) MSB description

| Bit | Name          | Description                                                                   |  |  |  |  |  |
|-----|---------------|-------------------------------------------------------------------------------|--|--|--|--|--|
| 14  | RES           |                                                                               |  |  |  |  |  |
| 13  | RES           | Reserved bits                                                                 |  |  |  |  |  |
| 12  | RES           | Reserved bits                                                                 |  |  |  |  |  |
| 11  | RES           |                                                                               |  |  |  |  |  |
| 10  | VDS_CONF3 [3] | V <sub>ds</sub> monitor threshold configuration of the HB3 (only for L99MH94) |  |  |  |  |  |
| 9   | VDS_CONF3 [2] | 0000 ⇒ 75 mV                                                                  |  |  |  |  |  |

DS15025 - Rev 1 page 93/130



| Bit | Name          | Description            |
|-----|---------------|------------------------|
|     |               | 0001 ⇒ 150 mV          |
|     |               | 0010 ⇒ 200 mV          |
|     |               | 0011 ⇒ 250 mV          |
|     | VDS_CONF3 [1] | 0100 ⇒ 300 mV          |
| 8   |               | 0101 ⇒ 400 mV          |
|     |               | 0110 ⇒ 500 mV          |
|     |               | 0111 ⇒ 600 mV          |
|     |               | $1xxx \Rightarrow 2 V$ |

# Table 133. HB3\_DIAG\_CFG (0x1A) LSB

| Bit 7                      | Bit 6                      | Bit 5                      | Bit 4                      | Bit 3                      | Bit 2                       | Bit 1                       | Bit 0                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0 (RW)                      | 0 (RW)                      | 0 (RW)                      |
| VDS_CONF3<br>[0]           | VDS_BLANK3<br>[3]          | VDS_BLANK3<br>[2]          | VDS_BLANK3<br>[1]          | VDS_BLANK3<br>[0]          | VDS_FILT3<br>[2]            | VDS_FILT3<br>[2]            | VDS_FILT3<br>[2]            |
| VDS conf of<br>the HB3 [0] | VDS blanking time conf [3] | VDS blanking time conf [2] | VDS blanking time conf [1] | VDS blanking time conf [0] | VDS filter<br>time conf [2] | VDS filter<br>time conf [1] | VDS filter<br>time conf [0] |

# Table 134. HB3\_DIAG\_CFG (0x1A) LSB description

| Bit | Name           | Description                                                                                                                                                                                                                                                                                      |
|-----|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7   | VDS_CONF3 [0]  | $V_{ds}$ monitor threshold configuration of the HB3 (only for L99MH94)<br>0000 ⇒ 75 mV<br>0001 ⇒ 150 mV<br>0010 ⇒ 200 mV<br>0011 ⇒ 250 mV                                                                                                                                                        |
|     |                | $0100 \Rightarrow 300 \text{ mV}$<br>$0101 \Rightarrow 400 \text{ mV}$<br>$0110 \Rightarrow 500 \text{ mV}$<br>$0111 \Rightarrow 600 \text{ mV}$<br>$1xxx \Rightarrow 2 \text{ V}$                                                                                                               |
| 6   | VDS_BLANK3 [3] | V <sub>ds</sub> blanking time configuration of the HB3 (only for L99MH94)                                                                                                                                                                                                                        |
| 5   | VDS_BLANK3 [2] | $0000 \Rightarrow 0.625 \mu\text{s}$                                                                                                                                                                                                                                                             |
| 4   | VDS_BLANK3 [1] | 0001 ⇒ 1 μs                                                                                                                                                                                                                                                                                      |
| 3   | VDS_BLANK3 [0] | $0010 \Rightarrow 1.25  \mu s$ $0011 \Rightarrow 1.5  \mu s$ $0100 \Rightarrow 2  \mu s$ $0101 \Rightarrow 3  \mu s$ $0110 \Rightarrow 4  \mu s$ $0111 \Rightarrow 5  \mu s$ $1000 \Rightarrow 6  \mu s$ $1001 \Rightarrow 7  \mu s$ $1010 \Rightarrow 8  \mu s$ $1x11 \Rightarrow 0.625  \mu s$ |
| 2   | VDS_FILT3 [2]  | V <sub>ds</sub> filtering time configuration of the HB3 (only for L99MH94)                                                                                                                                                                                                                       |
| 1   | VDS_FILT3 [1]  | 000 ⇒ 0.5 μs                                                                                                                                                                                                                                                                                     |

DS15025 - Rev 1 page 94/130



| Bit | Name          | Description               |
|-----|---------------|---------------------------|
|     |               | $001 \Rightarrow 1 \mu s$ |
|     |               | $010 \Rightarrow 2 \mu s$ |
|     |               | $011 \Rightarrow 3 \mu s$ |
| 0   | VDS_FILT3 [0] | 100 ⇒ 4 µs                |
|     |               | 101 ⇒ 5 μs                |
|     |               | $110 \Rightarrow 6 \mu s$ |
|     |               | 111 ⇒ 0.5 µs              |

# Table 135. HB3\_TURN\_OFF\_CFG (0x1B) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10               | Bit 9                | Bit 8                |
|----------|----------|----------|----------|----------------------|----------------------|----------------------|
| 0 (RO)               | 0 (RW)               | 0 (RW)               |
| RES      | RES      | RES      | RES      | RES RES GENMODE3 [1] |                      | GENMODE3 [0]         |
| Reserved | Reserved | Reserved | Reserved | Reserved             | GENMODE bit conf [1] | GENMODE bit conf [0] |

## Table 136. HB3\_TURN\_OFF\_CFG (0x1B) MSB description

| Bit | Name          | Description                                                                    |  |  |  |  |  |
|-----|---------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| 14  | RES           |                                                                                |  |  |  |  |  |
| 13  | RES           | Reserved bits                                                                  |  |  |  |  |  |
| 12  | RES           |                                                                                |  |  |  |  |  |
| 11  | RES           |                                                                                |  |  |  |  |  |
| 10  | RES           |                                                                                |  |  |  |  |  |
| 9   | GENMODE3 [1]  | HB3 Gate driver actions when a VDH overvoltage is detected (only for L99MH94): |  |  |  |  |  |
|     |               | 00: Gate driver off                                                            |  |  |  |  |  |
| 8   | OENIMODES ISI | 01: HS off, LS on to lock the motor                                            |  |  |  |  |  |
| 0   | GENMODE3 [0]  | 10: Flag only                                                                  |  |  |  |  |  |
|     |               | 11: Gate driver off                                                            |  |  |  |  |  |

# Table 137. HB3\_TURN\_OFF\_CFG (0x1B) LSB

| Bit 7    | Bit 6    | Bit 5             | Bit 4             | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    |
|----------|----------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)            | 0 (RW)            | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   |
| RES      | RES      | HB_FAULT3<br>[1]  | HB_FAULT3<br>[0]  | ISTEP2_OFF_<br>CONF3 [3] | ISTEP2_OFF_<br>CONF3 [2] | ISTEP2_OFF_<br>CONF3 [1] | ISTEP2_OFF_<br>CONF3 [0] |
| Reserved | Reserved | HB3 fault key [1] | HB3 fault key [0] | HB3 Istep2 conf [3]      | HB3 Istep2 conf [2]      | HB3 Istep2 conf [1]      | HB3 Istep2 conf [0]      |

## Table 138. HB3\_TURN\_OFF\_CFG (0x1B) LSB description

| Bit             | Name          | Description                          |  |  |  |  |
|-----------------|---------------|--------------------------------------|--|--|--|--|
| 7               | RES           | Reserved bits                        |  |  |  |  |
| 6               | RES           | Reserved bits                        |  |  |  |  |
| 5               | HB_FAULT3 [1] | HB3 fault key (only for L99MH94)     |  |  |  |  |
|                 |               | 00 ⇒ No key                          |  |  |  |  |
| 4 HB_FAULT3 [0] |               | 01 ⇒ key 1                           |  |  |  |  |
|                 |               | 10 ⇒ key 2 (not writable in L99MH92) |  |  |  |  |

DS15025 - Rev 1 page 95/130





| Bit | Name                    | Description                                                                                                                                                                                                        |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                         | 11 ⇒ key 1 + key 2 (only key 1 in L99MH92 because MSB not writable)                                                                                                                                                |
| 3   | ISTEP2_OFF_CONF3 [3]    | Istep2 configuration of the HB3 in case of the switch OFF of the external MOSFET (only for L99MH94)                                                                                                                |
| 2   | ISTEP2_OFF_CONF3 [2]    | $0000 \Rightarrow 1 \text{ mA}$ $0001 \Rightarrow 2 \text{ mA}$                                                                                                                                                    |
| 1   | ISTEP2_OFF_CONF3 [1]    | 0010 ⇒ 3 mA<br>0011 ⇒ 4 mA                                                                                                                                                                                         |
| 0   | ISTEP2_OFF_CONF3<br>[0] | $0100 \Rightarrow 6 \text{ mA}$<br>$0101 \Rightarrow 8 \text{ mA}$<br>$0110 \Rightarrow 10 \text{ mA}$<br>$0111 \Rightarrow 12 \text{ mA}$<br>$1000 \Rightarrow 16 \text{ mA}$<br>$1001 \Rightarrow 20 \text{ mA}$ |
|     |                         | 1010 ⇒ 24 mA<br>1011 ⇒ 28 mA<br>1100 ⇒ 32 mA<br>1101 ⇒ 36 mA<br>1110 ⇒ 40 mA<br>1111 ⇒ 44 mA                                                                                                                       |

# Table 139. HB3\_MODE\_CFG (0x1C) MSB

| Bit 14   | Bit 13   | Bit 12          | Bit 11          | Bit 10          | Bit 9                       | Bit 8                  |
|----------|----------|-----------------|-----------------|-----------------|-----------------------------|------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RW)          | 0 (RW)          | 0 (RW)          | 0 (RW)                      | 0 (RW)                 |
| RES      | RES      | DT4 [2]         | DT4 [1]         | DT4 [0]         | STRONG_ON_WHEEL4            | HB_IDIAG4 [1]          |
| Reserved | Reserved | Dead Time 4 [2] | Dead Time 4 [1] | Dead Time 4 [0] | Free-wheeling strong on HB4 | HB4 diagnostic current |

# Table 140. HB3\_MODE\_CFG (0x1C) MSB description

| Bit | Name          | Description                                                   |  |  |  |  |
|-----|---------------|---------------------------------------------------------------|--|--|--|--|
| 14  | RES           | eserved bit                                                   |  |  |  |  |
| 13  | RES           | eserved bit                                                   |  |  |  |  |
| 12  | DT4 [2]       | Dead time of the HB4 (only for L99MH94)                       |  |  |  |  |
| 11  | DT4 [1]       | 000 ⇒ 0.5 µs                                                  |  |  |  |  |
|     |               | $001 \Rightarrow 1 \mu s$                                     |  |  |  |  |
|     |               | $010 \Rightarrow 2 \ \mu s$                                   |  |  |  |  |
|     |               | $011 \Rightarrow 3 \mu s$                                     |  |  |  |  |
| 10  | DT4 [0]       | $100 \Rightarrow 4 \mu s$                                     |  |  |  |  |
|     |               | $101 \Rightarrow 5 \mu s$                                     |  |  |  |  |
|     |               | $110 \Rightarrow 6 \mu s$                                     |  |  |  |  |
|     |               | 111 ⇒ 16 µs                                                   |  |  |  |  |
|     | CTDONG ON     | Free-wheeling strong ON of the HB4 (only for L99MH94)         |  |  |  |  |
| 9   | STRONG_ON_    | 0: strong on disabled, free-wheeling gate current set to 4 mA |  |  |  |  |
|     | WHEEL4        | 1: strong on enabled, free-wheeling gate current set to 30 mA |  |  |  |  |
| 8   | HB_IDIAG4 [1] | HB4 diagnostic currents setting (only for L99MH94)            |  |  |  |  |

DS15025 - Rev 1 page 96/130



| Bit | Name | Description                                      |
|-----|------|--------------------------------------------------|
|     |      | 00: pull-up and pull-down currents off           |
|     |      | 01: pull-up current off and pull-down current on |
|     |      | 10: pull-up current on and pull-down current off |
|     |      | 11: pull-up and pull-down currents off           |

# Table 141. HB3\_MODE\_CFG (0x1C) LSB

| Bit 7                        | Bit 6               | Bit 5                  | Bit 4               | Bit 3           | Bit 2           | Bit 1                     | Bit 0                     |
|------------------------------|---------------------|------------------------|---------------------|-----------------|-----------------|---------------------------|---------------------------|
| 0 (RW)                       | 0 (RW)              | 0 (RW)                 | 0 (RW)              | 0 (RW)          | 0 (RW)          | 0 (RW)                    | 0 (RW)                    |
| HB_IDIAG4<br>[1]             | HB_PWM4<br>[2]      | HB_PWM4<br>[1]         | HB_PWM4<br>[0]      | HB_MODE4<br>[1] | HB_MODE4<br>[0] | HB_WHEEL4<br>[1]          | HB_WHEEL4<br>[0]          |
| HB4<br>diagnostic<br>current | HB4 PWM mapping [2] | HB4 PWM<br>mapping [1] | HB4 PWM mapping [0] | HB4 mode [1]    | HB4 mode [0]    | HB4 free-<br>wheeling [1] | HB4 free-<br>wheeling [0] |

# Table 142. HB3\_MODE\_CFG (0x1C) LSB description

| Bit | Name           | Description                                                                                               |
|-----|----------------|-----------------------------------------------------------------------------------------------------------|
|     |                | HB4 diagnostic currents setting (only for L99MH94)                                                        |
|     |                | 00: pull-up and pull-down currents off                                                                    |
| 7   |                | 01: pull-up current off and pull-down current on                                                          |
|     |                | 10: pull-up current on and pull-down current off                                                          |
|     |                | 11: pull-up and pull-down currents off                                                                    |
| 6   | HB_PWM4 [2]    | PWM mapping on HB4 (only for L99MH94)                                                                     |
| 5   | HB_PWM4 [1]    | This 3 bits register is used to indicate which PWM signal is applied to the HS or LS of the half-bridge 4 |
|     |                | 000 ⇒ LS of HB mapped on PWM1                                                                             |
|     | 4 HB_PWM4 [0]  | 001 ⇒ LS of HB mapped on PWM2                                                                             |
| 4   |                | 011 ⇒ HS of HB mapped on PWM1                                                                             |
|     |                | $100 \Rightarrow HS$ of HB mapped on PWM2                                                                 |
|     |                | 010 = 101 = 110 = 111 ⇒ No Mapped                                                                         |
| 3   | HB_MODE4 [1]   | HB4 functionality mode (only for L99MH94)                                                                 |
|     |                | $00 \Rightarrow LS$ and HS of the HB1 are kept off                                                        |
|     | LID MODE 4 101 | $01 \Rightarrow LS$ of the HB1 is ON (static, no PWM), HS of the HB1 is OFF                               |
| 2   | HB_MODE4 [0]   | $10 \Rightarrow HS$ of the half bridge 1 is ON (static, no PWM), LS of the half bridge is OFF             |
|     |                | 11 ⇒ LS or HS of the half-bridge is ON according to the HB_PWM1 register                                  |
| 1   | HB_WHEEL4 [1]  | HB4 free-wheeling mode (only for L99MH94)                                                                 |
|     |                | 00 = 11 ⇒ No mapping                                                                                      |
| 0   | HB_WHEEL4 [0]  | 01 ⇒ Active free-wheeling on HS of the HB                                                                 |
|     |                | 10 ⇒ Active free-wheeling on LS of the HB                                                                 |

# Table 143. HB4\_DRIVER\_CFG (0x1D) MSB

| Bit 14 | Bit 13              | Bit 12              | Bit 11              | Bit 10              | Bit 9               | Bit 8               |
|--------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RO) | 0 (RW)              |
| RES    | VSTEP2_CONF4<br>[1] | VSTEP2_CONF4<br>[0] | ISTEP3_CONF4<br>[3] | ISTEP3_CONF4<br>[2] | ISTEP3_CONF4<br>[1] | ISTEP3_CONF4<br>[0] |

DS15025 - Rev 1 page 97/130



| Bit 14   | Bit 13                         | Bit 12                            | Bit 11              | Bit 10              | Bit 9               | Bit 8               |
|----------|--------------------------------|-----------------------------------|---------------------|---------------------|---------------------|---------------------|
| Reserved | HB4 Vstep1 and Vstep2 conf [1] | HB4 Vstep1 and<br>Vstep2 conf [0] | HB4 Istep3 conf [3] | HB4 Istep3 conf [2] | HB4 Istep3 conf [1] | HB4 Istep3 conf [0] |

# Table 144. HB4\_DRIVER\_CFG (0x1D) MSB description

| Bit | Name             | Description                                                              |
|-----|------------------|--------------------------------------------------------------------------|
| 14  | RES              | Reserved bit                                                             |
| 13  | VSTEP2_CONF4 [1] | Vstep1 and Vstep2 thresholds configuration of the HB4 (only for L99MH94) |
|     |                  | These two bits set the Vstep1 and Vstep2 thresholds of the HB4           |
|     |                  | 00: Vstep1 = 1.1 V, Vstep2 = 2.67 V for the switch ON                    |
|     |                  | 00: Vstep1 = 1.3 V, Vstep2 = 3.33 V for the switch OFF                   |
|     |                  | 01: Vstep1 = 1.1 V, Vstep2 = 3.56 V for the switch ON                    |
| 12  | VSTEP2_CONF4 [0] | 01: Vstep1 = 1.3 V, Vstep2 = 4.44 V for the switch OFF                   |
|     |                  | 10: Vstep1 = 2.2 V, Vstep2 = 4.45 V for the switch ON                    |
|     |                  | 10: Vstep1 = 2.6 V, Vstep2 = 5.55 V for the switch OFF                   |
|     |                  | 11: Vstep1 = 2.2 V, Vstep2 = 5.34 V for the switch ON                    |
|     |                  | 11: Vstep1 = 2.6 V, Vstep2 = 6.66 V for the switch OFF                   |
| 11  | ISTEP3_CONF4 [3] | Istep3 configuration of the HB4 (only for L99MH94)                       |
| 10  | ISTEP3_CONF4 [2] | 0000 ⇒ 2 mA                                                              |
| 9   | ISTEP3_CONF4 [1] | 0001 ⇒ 4 mA                                                              |
|     |                  | 0010 ⇒ 8 mA                                                              |
|     |                  | 0011 ⇒ 12 mA                                                             |
|     |                  | 0100 ⇒ 20 mA                                                             |
|     |                  | 0101 ⇒ 28 mA                                                             |
|     |                  | 0110 ⇒ 36 mA                                                             |
|     |                  | 0111 ⇒ 44 mA                                                             |
|     | IOTEDO CONEA IO  | 1000 ⇒ 52 mA                                                             |
| 8   | ISTEP3_CONF4 [0] | 1001 ⇒ 60 mA                                                             |
|     |                  | 1010 ⇒ 68 mA                                                             |
|     |                  | 1011 ⇒ 76 mA                                                             |
|     |                  | 1100 ⇒ 84 mA                                                             |
|     |                  | 1101 ⇒ 92 mA                                                             |
|     |                  | 1110 ⇒ 104 mA                                                            |
|     |                  | 1111 ⇒ 120 mA                                                            |

## Table 145. HB4\_DRIVER\_CFG (0x1D) LSB

| Bit 7               | Bit 6               | Bit 5               | Bit 4               | Bit 3               | Bit 2               | Bit 1               | Bit 0               |
|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| 0 (RW)              |
| ISTEP2_CONF4 [3]    | ISTEP2_CONF4 [2]    | ISTEP2_CONF4 [1]    | ISTEP2_CONF4 [0]    | ISTEP1_CONF4 [3]    | ISTEP1_CONF4 [2]    | ISTEP1_CONF4 [1]    | ISTEP1_CONF4 [0]    |
| HB4 Istep3 conf [3] | HB4 Istep3 conf [2] | HB4 Istep3 conf [1] | HB4 Istep3 conf [0] | HB4 Istep3 conf [3] | HB4 Istep3 conf [2] | HB4 Istep3 conf [1] | HB4 Istep3 conf [0] |

# Table 146. HB4\_DRIVER\_CFG (0x1D) LSB description

| Bit | Name             | Description                                                                       |
|-----|------------------|-----------------------------------------------------------------------------------|
| 7   | ISTEP2_CONF4 [3] | Istep2 configuration of the HB4 for the low to high transition (only for L99MH94) |
| 6   | ISTEP2_CONF4 [2] | 0000 ⇒ 1 mA                                                                       |

DS15025 - Rev 1 page 98/130





| Bit | Name             | Description                                        |
|-----|------------------|----------------------------------------------------|
| 5   | ISTEP2_CONF4 [1] | 0001 ⇒ 2 mA                                        |
|     |                  | 0010 ⇒ 3 mA                                        |
|     |                  | 0011 ⇒ 4 mA                                        |
|     |                  | 0100 ⇒ 6 mA                                        |
|     |                  | 0101 ⇒ 8 mA                                        |
|     |                  | 0110 ⇒ 10 mA                                       |
|     |                  | 0111 ⇒ 12 mA                                       |
|     | ICTEDO CONEATO   | 1000 ⇒ 16 mA                                       |
| 4   | ISTEP2_CONF4 [0] | 1001 ⇒ 20 mA                                       |
|     |                  | 1010 ⇒ 24 mA                                       |
|     |                  | 1011 ⇒ 28 mA                                       |
|     |                  | 1100 ⇒ 32 mA                                       |
|     |                  | 1101 ⇒ 36 mA                                       |
|     |                  | 1110 ⇒ 40 mA                                       |
|     |                  | 1111 ⇒ 44 mA                                       |
| 3   | ISTEP1_CONF4 [3] | Istep1 configuration of the HB4 (only for L99MH94) |
| 2   | ISTEP1_CONF4 [2] | 0000 ⇒ 1 mA                                        |
| 1   | ISTEP1_CONF4 [1] | 0001 ⇒ 2 mA                                        |
|     |                  | 0010 ⇒ 3 mA                                        |
|     |                  | 0011 ⇒ 4 mA                                        |
|     |                  | 0100 ⇒ 6 mA                                        |
|     |                  | 0101 ⇒ 8 mA                                        |
|     |                  | 0110 ⇒ 10 mA                                       |
|     |                  | 0111 ⇒ 12 mA                                       |
| 0   | ISTED1 CONE4 [0] | 1000 ⇒ 16 mA                                       |
| 0   | ISTEP1_CONF4 [0] | 1001 ⇒ 20 mA                                       |
|     |                  | 1010 ⇒ 24 mA                                       |
|     |                  | 1011 ⇒ 28 mA                                       |
|     |                  | 1100 ⇒ 32 mA                                       |
|     |                  | 1101 ⇒ 36 mA                                       |
|     |                  | 1110 ⇒ 40 mA                                       |
|     |                  | 1111 ⇒ 44 mA                                       |

# Table 147. HB4\_DIAG\_CFG (0x1E) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10                  | Bit 9                   | Bit 8                   |
|----------|----------|----------|----------|-------------------------|-------------------------|-------------------------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)                  | 0 (RW)                  | 0 (RW)                  |
| RES      | RES      | RES      | RES      | VDS_CONF4 [3]           | VDS_CONF4 [2]           | VDS_CONF4 [1]           |
| Reserved | Reserved | Reserved | Reserved | VDS conf of the HB4 [3] | VDS conf of the HB4 [2] | VDS conf of the HB4 [1] |

Table 148. HB4\_DIAG\_CFG (0x1E) MSB description

| Bit | Name | Description   |
|-----|------|---------------|
| 14  | RES  |               |
| 13  | RES  | Reserved bits |

page 99/130



| Bit | Name          | Description                                                                                                                                                                                                                                                                  |  |  |  |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 12  | RES           | Reserved bits                                                                                                                                                                                                                                                                |  |  |  |
| 11  | RES           | TROOFF OU SILE                                                                                                                                                                                                                                                               |  |  |  |
| 10  | VDS_CONF4 [3] | V <sub>ds</sub> monitor threshold configuration of the HB4 (only for L99MH94)                                                                                                                                                                                                |  |  |  |
| 9   | VDS_CONF4 [2] | 0000 ⇒ 75 mV                                                                                                                                                                                                                                                                 |  |  |  |
| 8   | VDS_CONF4 [1] | $0001 \Rightarrow 150 \text{ mV}$ $0010 \Rightarrow 200 \text{ mV}$ $0011 \Rightarrow 250 \text{ mV}$ $0100 \Rightarrow 300 \text{ mV}$ $0101 \Rightarrow 400 \text{ mV}$ $0110 \Rightarrow 500 \text{ mV}$ $0111 \Rightarrow 600 \text{ mV}$ $1xxx \Rightarrow 2 \text{ V}$ |  |  |  |

# Table 149. HB4\_DIAG\_CFG (0x1E) LSB

| Bit 7                      | Bit 6                      | Bit 5                      | Bit 4                      | Bit 3                      | Bit 2                       | Bit 1                       | Bit 0                       |
|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|-----------------------------|-----------------------------|-----------------------------|
| 0 (RW)                      | 0 (RW)                      | 0 (RW)                      |
| VDS_CONF4<br>[0]           | VDS_BLANK4<br>[3]          | VDS_BLANK4<br>[2]          | VDS_BLANK4<br>[1]          | VDS_BLANK4<br>[0]          | VDS_FILT4<br>[2]            | VDS_FILT4<br>[2]            | VDS_FILT4<br>[2]            |
| VDS conf of<br>the HB4 [0] | VDS blanking time conf [3] | VDS blanking time conf [2] | VDS blanking time conf [1] | VDS blanking time conf [0] | VDS filter<br>time conf [2] | VDS filter<br>time conf [1] | VDS filter<br>time conf [0] |

# Table 150. HB4\_DIAG\_CFG (0x1E) LSB description

| Bit | Name             | Description                                                                   |
|-----|------------------|-------------------------------------------------------------------------------|
|     |                  | V <sub>ds</sub> monitor threshold configuration of the HB4 (only for L99MH94) |
|     |                  | 0000 ⇒ 75 mV                                                                  |
|     |                  | 0001 ⇒ 150 mV                                                                 |
|     |                  | 0010 ⇒ 200 mV                                                                 |
| 7   | VDS_CONF4 [0]    | 0011 ⇒ 250 mV                                                                 |
| '   | VD3_CON 4 [0]    | 0100 ⇒ 300 mV                                                                 |
|     |                  | 0101 ⇒ 400 mV                                                                 |
|     |                  | 0110 ⇒ 500 mV                                                                 |
|     |                  | 0111 ⇒ 600 mV                                                                 |
|     |                  | $1xxx \Rightarrow 2 V$                                                        |
| 6   | VDS_BLANK4 [3]   | V <sub>ds</sub> blanking time configuration of the HB4 (only for L99MH94)     |
| 5   | VDS_BLANK4 [2]   | 0000 ⇒ 0.625 μs                                                               |
| 4   | VDS_BLANK4 [1]   | 0001 ⇒ 1 μs                                                                   |
|     |                  | 0010 ⇒ 1.25 μs                                                                |
|     |                  | 0011 ⇒ 1.5 μs                                                                 |
|     |                  | 0100 ⇒ 2 μs                                                                   |
|     | VDO DI ANIKA IOI | 0101 ⇒ 3 μs                                                                   |
| 3   | VDS_BLANK4 [0]   | 0110 ⇒ 4 μs                                                                   |
|     |                  | 0111 ⇒ 5 μs                                                                   |
|     |                  | 1000 ⇒ 6 µs                                                                   |
|     |                  | 1001 ⇒ 7 μs                                                                   |

DS15025 - Rev 1 page 100/130





| Bit | Name          | Description                                                                |
|-----|---------------|----------------------------------------------------------------------------|
|     |               | 1010 ⇒ 8 µs                                                                |
|     |               | 1x11 ⇒ No mapped                                                           |
| 2   | VDS_FILT4 [2] | V <sub>ds</sub> filtering time configuration of the HB4 (only for L99MH94) |
| 1   | VDS_FILT4 [1] | $000 \Rightarrow 0.5 \mu\text{s}$                                          |
|     |               | 001 ⇒ 1 μs                                                                 |
|     |               | 010 ⇒ 2 µs                                                                 |
|     |               | 011 ⇒ 3 μs                                                                 |
| 0   | VDS_FILT4 [0] | 100 ⇒ 4 µs                                                                 |
|     |               | 101 ⇒ 5 µs                                                                 |
|     |               | 110 ⇒ 6 µs                                                                 |
|     |               | 111 ⇒ No mapped                                                            |

# Table 151. HB4\_TURN\_OFF\_CFG (0x1F) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9                | Bit 8                |
|----------|----------|----------|----------|----------|----------------------|----------------------|
| 0 (RO)   | 0 (RW)               | 0 (RW)               |
| RES      | RES      | RES      | RES      | RES      | GENMODE4 [1]         | GENMODE4 [0]         |
| Reserved | Reserved | Reserved | Reserved | Reserved | GENMODE bit conf [1] | GENMODE bit conf [0] |

## Table 152. HB4\_TURN\_OFF\_CFG (0x1F) MSB description

| Bit | Name           | Description                                                                    |  |  |  |
|-----|----------------|--------------------------------------------------------------------------------|--|--|--|
| 14  | RES            |                                                                                |  |  |  |
| 13  | RES            |                                                                                |  |  |  |
| 12  | RES            | Reserved bits                                                                  |  |  |  |
| 11  | RES            |                                                                                |  |  |  |
| 10  | RES            |                                                                                |  |  |  |
| 9   | GENMODE4 [1]   | HB4 Gate driver actions when a VDH overvoltage is detected (only for L99MH94): |  |  |  |
|     |                | 00: Gate driver off                                                            |  |  |  |
| 8   | CENIMODE 4 IOI | 01: HS off, LS on to lock the motor                                            |  |  |  |
| 0   | GENMODE4 [0]   | 10: Flag only                                                                  |  |  |  |
|     |                | 11: Gate driver off                                                            |  |  |  |

## Table 153. HB4\_TURN\_OFF\_CFG (0x1F) LSB

| Bit 7    | Bit 6    | Bit 5             | Bit 4             | Bit 3                    | Bit 2                    | Bit 1                    | Bit 0                    |
|----------|----------|-------------------|-------------------|--------------------------|--------------------------|--------------------------|--------------------------|
| 0 (RW)   | 0 (RW)   | 0 (RW)            | 0 (RW)            | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   | 0 (RW)                   |
| RES      | RES      | HB_FAULT4<br>[1]  | HB_FAULT4<br>[0]  | ISTEP2_OFF_<br>CONF4 [3] | ISTEP2_OFF_<br>CONF4 [2] | ISTEP2_OFF_<br>CONF4 [1] | ISTEP2_OFF_<br>CONF4 [0] |
| Reserved | Reserved | HB4 fault key [1] | HB4 fault key [0] | HB4 Istep2 conf [3]      | HB4 Istep2 conf [2]      | HB4 Istep2 conf [1]      | HB4 Istep2 conf [0]      |

# Table 154. HB4\_TURN\_OFF\_CFG (0x1F) LSB description

| Bit | Name | Description  |
|-----|------|--------------|
| 7   | RES  | Reserve bits |

page 101/130





| Bit | Name                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
|-----|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 6   | RES                     | Reserve bits                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| 5   | HB_FAULT4 [1]           | HB4 fault key (only for L99MH94)                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |
| 4   | HB_FAULT4 [0]           | 00 ⇒ No key<br>01 ⇒ key 1<br>10 ⇒ key 2 (not writable in L99MH92)<br>11 ⇒ key 1 + key 2 (only key 1 in L99MH92 because MSB not writable)                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |  |
| 3   | ISTEP2_OFF_CONF4<br>[3] | Istep2 configuration of the HB4 in case of the switch OFF of the external MOSFET (only for L99MH94)                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| 2   | ISTEP2_OFF_CONF4<br>[2] | $0000 \Rightarrow 1 \text{ mA}$<br>$0001 \Rightarrow 2 \text{ mA}$                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
| 1   | ISTEP2_OFF_CONF4<br>[1] | 0010 ⇒ 3 mA<br>0011 ⇒ 4 mA                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| 0   | ISTEP2_OFF_CONF4<br>[0] | $0100 \Rightarrow 6 \text{ mA}$<br>$0101 \Rightarrow 8 \text{ mA}$<br>$0110 \Rightarrow 10 \text{ mA}$<br>$0111 \Rightarrow 12 \text{ mA}$<br>$1000 \Rightarrow 16 \text{ mA}$<br>$1001 \Rightarrow 20 \text{ mA}$<br>$1010 \Rightarrow 24 \text{ mA}$<br>$1011 \Rightarrow 28 \text{ mA}$<br>$1100 \Rightarrow 32 \text{ mA}$<br>$1101 \Rightarrow 36 \text{ mA}$<br>$1110 \Rightarrow 40 \text{ mA}$<br>$1111 \Rightarrow 44 \text{ mA}$ |  |  |  |  |  |  |

## Table 155. HB5\_MODE\_CONFIG (0x20) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

# Table 156. HB5\_MODE\_CONFIG (0x20) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 157. HB5\_DRIVER\_CFG (0x21) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Address Life W | ien accessing this | register, only for L | .99WI 194Q1 |        |        |        |
|----------------|--------------------|----------------------|-------------|--------|--------|--------|
| Bit 14         | Bit 13             | Bit 12               | Bit 11      | Bit 10 | Bit 9  | Bit 8  |
| 0 (RO)         | 0 (RW)             | 0 (RW)               | 0 (RW)      | 0 (RW) | 0 (RW) | 0 (RW) |
| RES            | RES                | RES                  | RES         | RES    | RES    | RES    |

DS15025 - Rev 1 page 102/130



| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| Reserved |

#### Table 158. HB5\_DRIVER\_CFG (0x21) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 159. HB5\_DIAG\_CFG (0x22) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

## Table 160. HB5\_DIAG\_CFG (0x22) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 161. HB5\_TURN\_OFF\_CFG (0x23) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

## Table 162. HB5\_TURN\_OFF\_CFG (0x23) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 163. HB6\_MODE\_CONFIG (0x24) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Address Ellor Wi | ilen accessing this | register, orlig for L | 99WI 194Q1    |          |          |          |  |
|------------------|---------------------|-----------------------|---------------|----------|----------|----------|--|
| Bit 14           | Bit 13              | Bit 12                | Bit 11 Bit 10 |          | Bit 9    | Bit 8    |  |
| 0 (RO)           | 0 (RO)              | 0 (RW)                | 0 (RW)        | 0 (RW)   | 0 (RW)   | 0 (RW)   |  |
| RES              | RES                 | RES                   | RES           | RES      | RES      | RES      |  |
| Reserved         | Reserved            | Reserved              | Reserved      | Reserved | Reserved | Reserved |  |

DS15025 - Rev 1 page 103/130



#### Table 164. HB6\_MODE\_CONFIG (0x24) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 165. HB6\_DRIVER\_CFG (0x25) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

## Table 166. HB6\_DRIVER\_CFG (0x25) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 167. HB6\_DIAG\_CFG (0x26) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

#### Table 168. HB6\_DIAG\_CFG (0x26) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 169. HB6\_TURN\_OFF\_CFG (0x27) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 104/130



# Table 170. HB6\_TURN\_OFF\_CFG (0x27) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| 3        |          |          |          |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 171. HB7\_MODE\_CONFIG (0x28) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

## Table 172. HB7\_MODE\_CONFIG (0x28) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 173. HB7\_DRIVER\_CFG (0x29) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

#### Table 174. HB7\_DRIVER\_CFG (0x29) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7               | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|---------------------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)              | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| ISTEP2_CONF7 [3]    | RES      |
| HB7 Istep3 conf [3] | Reserved |

# Table 175. HB7\_DIAG\_CFG (0x2A) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 105/130



#### Table 176. HB7\_DIAG\_CFG (0x2A) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| 3        |          |          |          |          |          |          |          |
|----------|----------|----------|----------|----------|----------|----------|----------|
| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
| 0 (RW)   |
| RES      |
| Reserved |

## Table 177. HB7\_TURN\_OFF\_CFG (0x2B) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

#### Table 178. HB7\_TURN\_OFF\_CFG (0x2B) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

#### Table 179. HB8\_MODE\_CONFIG (0x2C) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

#### Table 180. HB8\_MODE\_CONFIG (0x2C) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 181. HB8\_DRIVER\_CFG (0x2D) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 106/130





#### Table 182. HB8\_DRIVER\_CFG (0x2D) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 183. HB8\_DIAG\_CFG (0x2E) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RO)   | 0 (RW)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

## Table 184. HB8\_DIAG\_CFG (0x2E) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 185. HB8\_TURN\_OFF\_CFG (0x2F) MSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   | 0 (RW)   | 0 (RW)   |
| RES      |
| Reserved |

#### Table 186. HB8\_TURN\_OFF\_CFG (0x2F) LSB

"Address Error" when accessing this register, only for L99MH94Q7

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3    | Bit 2    | Bit 1    | Bit 0    |
|----------|----------|----------|----------|----------|----------|----------|----------|
| 0 (RW)   |
| RES      |
| Reserved |

## Table 187. OUT\_ENABLE (0x30) MSB

| Bit 14   | Bit 13   | Bit 12   | Bit 11   | Bit 10   | Bit 9    | Bit 8    |
|----------|----------|----------|----------|----------|----------|----------|
| 0 (RO)   |
| RES      |
| Reserved |

DS15025 - Rev 1 page 107/130





# Table 188. OUT\_ENABLE (0x30) LSB

| Bit 7    | Bit 6    | Bit 5    | Bit 4    | Bit 3          | Bit 2          | Bit 1          | Bit 0          |
|----------|----------|----------|----------|----------------|----------------|----------------|----------------|
| 0 (RW)         | 0 (RW)         | 0 (RW)         | 0 (RW)         |
| RES      | RES      | RES      | RES      | OUT4           | OUT3           | OUT2           | OUT1           |
| Reserved | Reserved | Reserved | Reserved | Out enable HB4 | Out enable HB3 | Out enable HB2 | Out enable HB1 |

# Table 189. OUT\_ENABLE (0x30) LSB description

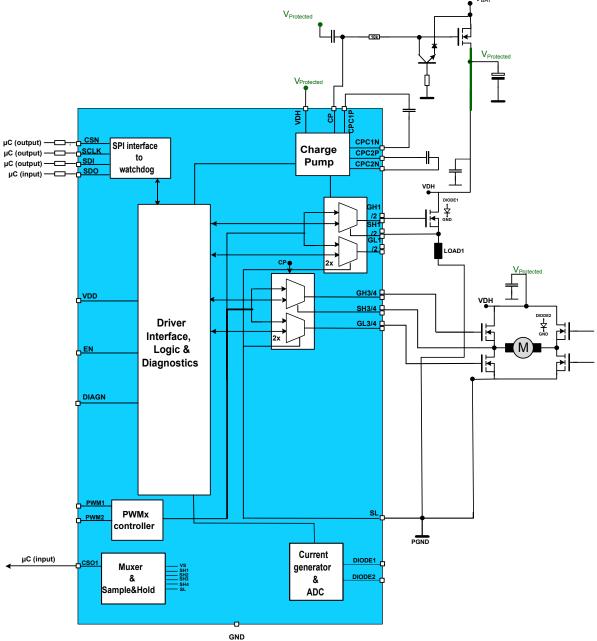
| Bit | Name   | Description                                                                               |  |  |  |  |  |  |
|-----|--------|-------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 7   | RES    | Reserved bits                                                                             |  |  |  |  |  |  |
| 6   | RES    |                                                                                           |  |  |  |  |  |  |
| 5   | RES    | Reserved bits                                                                             |  |  |  |  |  |  |
| 4   | RES    |                                                                                           |  |  |  |  |  |  |
| 3   | OUT4   | Gate driver enables bit to control HB4 (only for L99MH94).                                |  |  |  |  |  |  |
|     | 3 0014 | This bit is reset if a watchdog error is detected                                         |  |  |  |  |  |  |
| 2   | OUT3   | Gate driver enables bit to control HB3 (only for L99MH94).                                |  |  |  |  |  |  |
|     | 0010   | This bit is reset if a watchdog error is detected                                         |  |  |  |  |  |  |
| 1   | OUT2   | Gate driver enables bit to control HB2. This bit is reset if a watchdog error is detected |  |  |  |  |  |  |
| 0   | OUT1   | Gate driver enables bit to control HB1. This bit is reset if a watchdog error is detected |  |  |  |  |  |  |

DS15025 - Rev 1 page 108/130

## 8 Application examples

The L99MH94 / L99MH92 is a device that integrates the control of 4 / 2 external half-bridges in a completely independent and configurable way. This allows the device to be used in multiple application scenarios. To show the potential of L99MH94 / L99MH92 some of the possible application scenarios are shown here. A classic configuration where 2 motors are controlled simultaneously is shown in the Figure 43: 2 different H-bridges are controlled simultaneously from L99MH94 / L99MH92.

 $V_{BAT}$ μC (output) ——— CPC1N SPI interface Charge μC (output) SDI μC (output) ——— Pump watchdog μC (input) CP VDH SH3/4 GL3/4 Driver Interface, Logic & Diagnostics DIAGN **PWMx** ontroller PGND DIODE1 Current μC (input) DIODE2 generator Muxer Sample&Hold ADC GND


Figure 43. Driving 2 DC motors simultaneously

DS15025 - Rev 1 page 109/130



The Figure 44 shows an application scenario where 2 resistive loads (heater, fan etc.) are driven by a high side and a low side and 2 motors are controlled by 2 H-bridges.

Figure 44. L99MH94 driving 1 DC motors + 1 additional independent loads simultaneously



page 110/130



CPC2P CPC2N μC (output) ——— SPI interface Charge SCLK SDI μC (output) ———— μC (output) ———— Pump watchdog μC (input) -Driver Interface, Logic & Diagnostics DIAGN PWM controller PGND Current μC (input) Muxer generator DIODE1 & Sample&Hold DIODE2 ADC GND

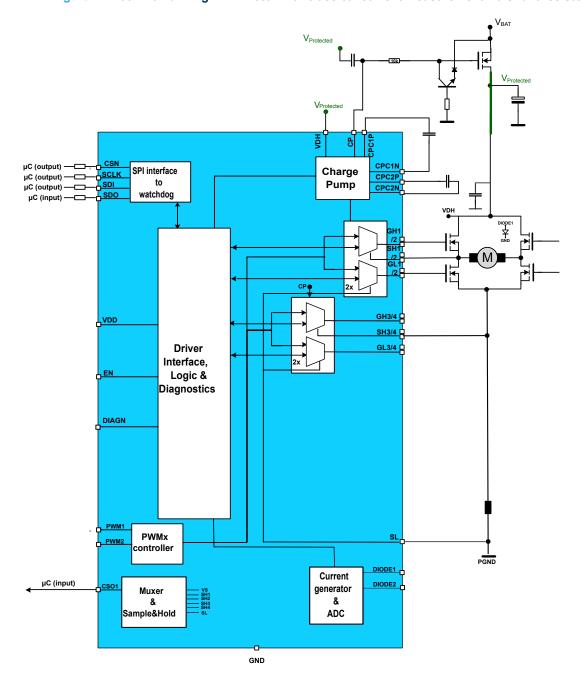
Figure 45. L99MH92 driving 1 DC motors + 1 additional independent loads simultaneously

DS15025 - Rev 1 page 111/130



The Figure 46 shows an application scenario where 3 motors are controlled by 4 half bridges.

CPC2P CPC2N μC (output) ——— SPI interface Charge μC (output) ———— μC (output) ———— <u>[sdi</u> **Pump** watchdog μC (input) Driver Interface, Logic & Diagnostics DIAGN **PWMx** ontroller Current μC (input) DIODE2 generator Muxer Sample&Hold ADC GND


Figure 46. L99MH94 driving 3 motors sequentially

DS15025 - Rev 1 page 112/130



The L99MH94 / L99MH92 also allows the classic current measurement system through a sensing resistor connected to the low side sources of an H-bridge. In this case, one of the pins of the resistor, the one connected to the low side sources, must be connected to the SHx pin of one of the other half bridges and the second pin of the resistor to the SL pin of L99MH94 / L99MH92 (see the Figure 47).

Figure 47. L99MH94 driving 1 DC motor with classical current measurement via shunt resistor



DS15025 - Rev 1 page 113/130



The L99MH94 / L99MH92 logic also allows any connection between the half bridges of the device, GHx/SHx/GLx can be associated with any GHy/SHy/GLy (see the Figure 48).

를 CSN μC (output) -SPI interface SCLK Charge μC (output) ——— CPC2 Pump μC (output) watchdog μC (input) VDH SH3/4 SH2 GL3/4 Driver Interface, Logic & Diagnostics DIAGN **PWMx** controller DIODE1 Current μC (input) generator Muxer Sample&Hold ADC

Figure 48. L99MH94 driving DC motors simultaneously with not sequentially gate drivers

DS15025 - Rev 1 page 114/130

GND



PH μC (output) ——— SPI interface Charge μC (output) ——— CPC2F Pump SDI μC (output) – watchdog SDO μC (input) VDD Driver Interface, Logic & **Diagnostics** DIAGN PWM1 **PWMx** controller PGND Current μC (input) DIODE1 Muxer generator DIODE2 Sample&Hold ADC GND

Figure 49. L99MH92 driving DC motors simultaneously with not sequentially gate drivers

DS15025 - Rev 1 page 115/130



## 9 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

#### 9.1 VFQFN32L (5x6x0.9 mm exp. pad down) package information

BOTTOM VIEW D2 А В  $\overline{\phantom{a}}$ Д  $\overline{\Phi}$ Ω  $\cup$ ppp ppp L1 PIN1 ID  $\bigcirc$  | ccc | C eee C SIDE VIEW SEATING PLANE C TOP VIEW D INDEX AREA (D/2 x E/2) aaa SECT Z-Z 0.05 ref. PLATED AREA

Figure 50. VFQFN32L (5x6x0.9 mm exp. pad down) package outline

DS15025 - Rev 1 page 116/130



Table 190. VFQFN32L (5x5x0.9 mm exp. pad down) package mechanical data

| Symbol |                   | Dimensions in mm |      |
|--------|-------------------|------------------|------|
| Symbol | Min.              | Тур.             | Max. |
| А      | 0.80              | 0.90             | 1.00 |
| A1     | 0.00              | 0.02             | 0.05 |
| A2     |                   | 0.2 REF          |      |
| A3     | 0.10              | -                | -    |
| b      | 0.20              | 0.25             | 0.30 |
| D      | -                 | 5.00             | -    |
| е      | -                 | 0.5              | -    |
| E      | -                 | 5.00             | -    |
| L      | 0.35              | 0.45             | 0.55 |
| L1     | -                 | 0.35             | -    |
| L2     | -                 | 0.075            | -    |
| L3     | -                 | 0.42             | -    |
| k      | 0.20              | -                | -    |
| N      |                   | 32+4             |      |
|        | Tolerance of form | and position     |      |
| aaa    |                   | 0.15             |      |
| bbb    | 0.10              |                  |      |
| ccc    | 0.10              |                  |      |
| ddd    | 0.05              |                  |      |
| eee    | 0.08              |                  |      |
| fff    |                   | 0.10             |      |

DS15025 - Rev 1 page 117/130



### 9.2 VFQFN48L (7x7x0.9 mm exp. pad down) package information

fff C A B + fff C A B  $\oplus$ Ф bbb C A B an T ) PPP E2  $\overline{\Phi}$ ŲZ PIN1 ID SECT Z-Z eee C CCC ( A3 A SEATING PLANE 0.05 max. PLATED AREA C D A В INDEX AREA (D/2 x E/2) (NOTE 4) ш вее 2x aaa C

Figure 51. VFQFN48L (7x7x0.9 mm exp. pad down) package outline

DS15025 - Rev 1 page 118/130



Table 191. VFQFN48L (7x7x0.9 mm exp. pad down) package mechanical data

| Symbol |                     | Dimensions in mm |      |
|--------|---------------------|------------------|------|
| Зуший  | Min.                | Тур.             | Max. |
| A      | 0.80                | 0.90             | 1.00 |
| A1     | 0.00                | 0.02             | 0.05 |
| A2     |                     | 0.2 REF          |      |
| A3     | 0.10                | -                | -    |
| b      | 0.20                | 0.25             | 0.30 |
| D      | -                   | 7.00             | -    |
| D2     | 5.30                | 5.40             | 5.50 |
| е      | -                   | 0.5              | -    |
| E      | -                   | 7.00             | -    |
| E2     | 5.30                | 5.40             | 5.50 |
| L      | 0.45                | 0.50             | 0.55 |
| L1     | 0.35                | -                | -    |
| k      | 0.25                | -                | -    |
| N      |                     | 48               |      |
|        | Tolerance of form a | nd position      |      |
| aaa    |                     | 0.15             |      |
| bbb    |                     | 0.10             |      |
| ccc    |                     | 0.08             |      |
| ddd    | 0.05                |                  |      |
| eee    | 0.10                |                  |      |
| fff    |                     | 0.10             |      |
| REF    |                     | -                |      |

DS15025 - Rev 1 page 119/130



# 10 Ordering information

Table 192. Order code

| Order code     | Package       | Packing       |
|----------------|---------------|---------------|
| LOOMHOOOF TD   | VFQFN32+4L WF | Tana and real |
| L99MH92Q5-TR   | 5x5x0.9 mm    | Tape and reel |
| LOOMI IOAOE TD | VFQFN32+4L WF | Tana and real |
| L99MH94Q5-TR   | 5x5x0.9 mm    | Tape and reel |
| LOOMIJOAOZ TD  | VFQFN48L WF   | Tong and roal |
| L99MH94Q7-TR   | 7x7x0.9 mm    | Tape and reel |

DS15025 - Rev 1 page 120/130



## **Revision history**

Table 193. Document revision history

| Date        | Version | Changes          |
|-------------|---------|------------------|
| 07-Nov-2025 | 1       | Initial release. |

DS15025 - Rev 1 page 121/130



### **Contents**

| 1 | Bloc | k diagra  | am and pin description                            | 3  |
|---|------|-----------|---------------------------------------------------|----|
|   | 1.1  | Block o   | diagram                                           | 3  |
|   | 1.2  | Pin des   | scription                                         | 5  |
| 2 | Elec | trical sp | pecifications                                     | 9  |
|   | 2.1  | Absolu    | ite maximum ratings                               | 9  |
|   | 2.2  | ESD pr    | rotection                                         | 10 |
|   | 2.3  | Therma    | al data                                           | 10 |
|   |      | 2.3.1     | Packages thermal data                             | 10 |
|   | 2.4  | Electric  | cal characteristics                               | 11 |
|   |      | 2.4.1     | Supply, supply monitoring and current consumption | 11 |
|   |      | 2.4.2     | Logic inputs PWMx, EN                             | 12 |
|   |      | 2.4.3     | Diagnostic not output (DIAGN)                     | 12 |
|   |      | 2.4.4     | Charge pump                                       | 13 |
|   |      | 2.4.5     | Gate driver                                       | 13 |
|   |      | 2.4.6     | Watchdog                                          | 17 |
|   |      | 2.4.7     | Open-load monitoring external                     | 18 |
|   |      | 2.4.8     | Drain-source monitoring threshold                 | 18 |
|   |      | 2.4.9     | Drain source monitoring blanking time             | 19 |
|   |      | 2.4.10    | Drain source monitoring filter time               | 19 |
|   |      | 2.4.11    | Cross current protection time                     | 20 |
|   |      | 2.4.12    | External temperature diode                        | 20 |
|   |      | 2.4.13    | SPI                                               | 21 |
|   |      | 2.4.14    | Indirect current sense output                     | 22 |
| 3 | Fund | ctional c | description                                       | 23 |
|   | 3.1  | Power     | supply                                            | 23 |
|   |      | 3.1.1     | VDH overvoltage (VDHOV)                           | 23 |
|   |      | 3.1.2     | VDH undervoltage (VDHUV)                          | 23 |
|   |      | 3.1.3     | VDD overvoltage (VDDOV)                           | 23 |
|   | 3.2  | Operat    | tion modes                                        | 24 |
|   |      | 3.2.1     | Reset                                             | 24 |
|   |      | 3.2.2     | Power-up state and charge pump enabling           | 24 |
|   |      | 3.2.3     | Active mode                                       | 24 |
|   |      | 3.2.4     | Multi fail-safe mode                              | 25 |
|   |      | 3.2.5     | Operational matrix                                | 29 |
|   |      | 3.2.6     | Power-up sequence                                 | 29 |
|   | 3.3  | Therma    | al warning and thermal shutdown (TW/TSD)          | 31 |
|   |      |           |                                                   |    |



|   | 3.4   | Charge   | e pump                                                 | 31 |
|---|-------|----------|--------------------------------------------------------|----|
| 4 | Gate  | s drive  | r                                                      |    |
|   | 4.1   | Output   | ts driving signals                                     | 33 |
|   | 4.2   | Indired  | ct current measurement for external MOSFET             | 34 |
|   |       | 4.2.1    | Rds(on) calibration at application level               | 34 |
|   |       | 4.2.2    | V <sub>ds</sub> measurement                            | 35 |
|   |       | 4.2.3    | Temperature measurement for calibration and monitoring | 36 |
|   |       | 4.2.4    | H-bridge current calculation                           | 38 |
|   | 4.3   | Power    | ON/OFF                                                 | 38 |
|   |       | 4.3.1    | Three stages gate current                              | 38 |
| 5 | Prot  | ections  | and diagnostics                                        | 40 |
|   | 5.1   | Revers   | se polarity protection                                 | 40 |
|   | 5.2   | Progra   | ammable cross current protection time (DT)             | 40 |
|   | 5.3   | Short of | circuit detection/drain source monitoring (DSHS/DSLS)  | 40 |
|   | 5.4   | Diagno   | ostic in off-mode                                      | 41 |
|   |       | 5.4.1    | Off-state diagnostic introduction                      | 41 |
|   |       | 5.4.2    | Example with a DC motor controlled by two half-bridges | 42 |
|   |       | 5.4.3    | Normal load conditions                                 | 42 |
|   |       | 5.4.4    | Short circuit to V <sub>DH</sub>                       | 44 |
|   |       | 5.4.5    | Short circuit to GND                                   | 45 |
|   |       | 5.4.6    | Open load - SH1 disconnected                           | 45 |
|   |       | 5.4.7    | Open load - SH2 is disconnected                        | 46 |
|   | 5.5   | Summ     | nary of the off-state diagnostic                       | 46 |
|   | 5.6   | Off-sta  | ate diagnostic with more cascaded motors               | 47 |
|   | 5.7   | Diagno   | ostic not output (DIAGN)                               | 48 |
|   | 5.8   | Config   | gurable window watchdog                                | 49 |
| 6 | Seria | al perip | heral interface (SPI)                                  | 51 |
|   | 6.1   | Physic   | cal layer                                              | 51 |
|   | 6.2   | Clock    | and data characteristics                               | 52 |
|   | 6.3   | Comm     | nunication protocol                                    | 52 |
|   |       | 6.3.1    | SDI frame                                              |    |
|   |       | 6.3.2    | SDO frame                                              | 53 |
|   |       | 6.3.3    | Protocol failure detection                             | 54 |
|   | 6.4   | SPI co   | ommunication scenarios                                 | 55 |
|   |       | 6.4.1    | Write access scenario                                  | 55 |
|   |       | 6.4.2    | Read access scenario                                   | 56 |
|   |       | 6.4.3    | Clear on read scenario                                 | 57 |





|     |       | 6.4.4     | Write or read with SPI error scenario               | 58  |
|-----|-------|-----------|-----------------------------------------------------|-----|
|     |       | 6.4.5     | Access after RESET scenario                         | 59  |
|     |       | 6.4.6     | First SPI access at power-up scenario               | 60  |
|     |       | 6.4.7     | Access while an internal fault happens scenario     | 60  |
| 7   | SPI   | Register  | rs                                                  | 62  |
|     | 7.1   | Registe   | er map overview                                     | 62  |
|     | 7.2   | Status    | registers                                           | 64  |
|     | 7.3   | Control   | Registers                                           | 67  |
| 8   | Арр   | lication  | examples                                            | 109 |
| 9   |       |           | ormation                                            |     |
|     | 9.1   | VFQFN     | N32L (5x6x0.9 mm exp. pad down) package information | 116 |
|     | 9.2   | VFQFN     | N48L (7x7x0.9 mm exp. pad down) package information | 118 |
| 10  | Orde  | ering inf | ormation                                            | 120 |
| Rev | ision | history   |                                                     | 121 |
|     |       |           |                                                     |     |
|     |       |           |                                                     |     |



## **List of tables**

| Table 1.  | Pin function - VFQFN32                                                                                         | 6    |
|-----------|----------------------------------------------------------------------------------------------------------------|------|
| Table 2.  | Pin function - VFQFN48                                                                                         | 7    |
| Table 3.  | Absolute maximum ratings                                                                                       | 9    |
| Table 4.  | ESD protection                                                                                                 | . 10 |
| Table 5.  | Operation junction temperature                                                                                 | . 10 |
| Table 6.  | Temperature warning and thermal shutdown                                                                       | . 10 |
| Table 7.  | Packages thermal resistance                                                                                    | . 10 |
| Table 8.  | Supply, supply monitoring and current consumption                                                              | . 11 |
| Table 9.  | PWMx, EN                                                                                                       | . 12 |
| Table 10. | DIAGN outputs                                                                                                  | . 12 |
| Table 11. | Charge pump                                                                                                    | . 13 |
| Table 12. | Gate driver                                                                                                    |      |
| Table 13. | Watchdog                                                                                                       | . 17 |
| Table 14. | Open-load monitoring threshold                                                                                 | . 18 |
| Table 15. | Drain-Source monitoring threshold                                                                              |      |
| Table 16. | Drain source monitoring external H-bridge                                                                      |      |
| Table 17. | Drain source monitoring filter time                                                                            |      |
| Table 18. | Cross current protection time                                                                                  |      |
| Table 19. | External temperature diode                                                                                     |      |
| Table 20. | SPI parameters                                                                                                 |      |
| Table 21. | CSO parameters                                                                                                 |      |
| Table 22. | HB MODEx register functionality                                                                                |      |
| Table 23. | Reset matrix                                                                                                   |      |
| Table 24. | PWM signal application to the half-bridges                                                                     |      |
| Table 25. | Free-wheeling mode                                                                                             |      |
| Table 26. | V <sub>ds</sub> mapping on CSO1                                                                                |      |
| Table 27. | Truth table with normal load conditions                                                                        |      |
| Table 27. |                                                                                                                |      |
|           | Truth table with a short circuit to V <sub>DH</sub>                                                            |      |
| Table 29. | Truth table with a short circuit to GND                                                                        |      |
| Table 30. | Truth table open load - SH1 disconnected                                                                       |      |
| Table 31. | Differentiation between normal condition, short to V <sub>DH</sub> , short to GND and open load with one motor |      |
| Table 32. | Differentiation between normal condition, short to $V_{DH}$ , short to GND and open load with two motors       |      |
| Table 33. | OpCode                                                                                                         | . 53 |
| Table 34. | SPI ERROR bit                                                                                                  |      |
| Table 35. | Register map overview                                                                                          | . 62 |
| Table 36. | DSR0 (0x01) MSB                                                                                                | . 64 |
| Table 37. | DSR0 (0x01) MSB description                                                                                    | . 64 |
| Table 38. | DSR0 (0x01) LSB                                                                                                |      |
| Table 39. | DSR0 (0x01) LSB description                                                                                    | . 64 |
| Table 40. | DSR1 (0x02) MSB                                                                                                | . 65 |
| Table 41. | DSR1 (0x02) MSB description                                                                                    | . 65 |
| Table 42. | DSR1 (0x02) LSB                                                                                                | . 66 |
| Table 43. | DSR1 (0x02) LSB description                                                                                    | . 66 |
| Table 44. | DSR2 (0x03) MSB                                                                                                | . 66 |
| Table 45. | DSR2 (0x03) LSB                                                                                                | . 66 |
| Table 46. | DSR2 (0x03) LSB description                                                                                    | . 66 |
| Table 47. | GLOBAL_CFG (0x04) MSB                                                                                          |      |
| Table 48. | GLOBAL_CFG (0x04) MSB description                                                                              |      |
| Table 49. | GLOBAL_CFG (0x04) LSB                                                                                          |      |
| Table 50. | GLOBAL_CFG (0x04) LSB description                                                                              |      |
| Table 51. | CSO_CFG (0x05) MSB                                                                                             |      |
| Table 52. | CSO_CFG (0x05) MSB description                                                                                 |      |
|           |                                                                                                                |      |

DS15025 - Rev 1 page 125/130

#### List of tables



| Table 53. | CSO CFG (0x05) LSB                      | 69 |
|-----------|-----------------------------------------|----|
| Table 54. | CSO CFG (0x05) LSB description          |    |
| Table 55. | DIODE_CFG (0x06) MSB                    |    |
| Table 56. | DIODE_CFG (0x06) LSB                    |    |
| Table 57. | DIODE CFG (0x06) LSB description        |    |
| Table 58. | DIODE1_READ (0x07) MSB                  |    |
| Table 59. | DIODE1_READ (0x07) MSB description      |    |
| Table 60. | DIODE1_READ (0x07) LSB                  |    |
| Table 61. | DIODE1_READ (0x07) LSB description      |    |
| Table 62. | DIODE2 READ (0x08) MSB                  |    |
| Table 63. | DIODE2_READ (0x08) MSB description      |    |
| Table 64. | DIODE2 READ (0x08) LSB                  |    |
| Table 65. | DIODE2_READ (0x08) LSB description      |    |
| Table 66. | DIODE3 READ (0x09) MSB                  |    |
| Table 67. | DIODE3 READ (0x09) LSB                  |    |
| Table 68. | DIODE4_READ (0x0A) MSB                  |    |
| Table 69. | DIODE4_READ (0x0A) LSB                  |    |
| Table 70. | DIAG_OFF_HS (0x0B) MSB                  |    |
| Table 71. | DIAG_OFF_HS (0x0B) LSB                  |    |
| Table 72. | DIAG_OFF_HS (0x0B) LSB description      |    |
| Table 73. | DIAG_OFF_LS (0x0C) MSB                  |    |
| Table 74. | DIAG OFF LS (0x0C) LSB.                 |    |
| Table 75. | DIAG OFF LS (0x0C) LSB description      |    |
| Table 76. | DIAGCR1 (0x0D) MSB                      |    |
| Table 77. | DIAGCR1 (0x0D) MSB description          |    |
| Table 78. | DIAGCR1 (0x0D) LSB                      |    |
| Table 79. | DIAGCR1 (0x0D) LSB description          |    |
| Table 80. | DIAGCR2 (0x0E) MSB                      |    |
| Table 81. | DIAGCR2 (0x0E) MSB description          |    |
| Table 82. | DIAGCR2 (0x0E) LSB                      |    |
| Table 83. | DIAGCR2 (0x0E) LSB description          |    |
| Table 84. | WDGTRDIS (0x0F) MSB                     |    |
| Table 85. | WDGTRDIS (0x0F) MSB description         |    |
| Table 86. | WDGTRDIS (0x0F) LSB                     |    |
| Table 87. | WDGTRDIS (0x0F) LSB description         |    |
| Table 88. | WDGTRDIS (0x0F) MSB                     |    |
| Table 89. | WDGTRDIS (0x0F) LSB                     |    |
|           | WDGTRDIS (0x0F) LSB description         |    |
| Table 91. | HB1 MODE CFG (0x10) MSB                 |    |
| Table 92. | HB1 MODE CFG (0x10) MSB description     |    |
| Table 93. | HB1 MODE CFG (0x10) LSB.                |    |
| Table 94. | HB1 MODE CFG (0x10) LSB description.    |    |
| Table 95. | HB1_DRIVER_CFG (0x11) MSB               |    |
| Table 96. | HB1_DRIVER_CFG (0x11) MSB description   |    |
| Table 97. | HB1_DRIVER_CFG (0x11) LSB.              |    |
|           | HB1 DRIVER CFG (0x11) LSB description   |    |
|           | HB1_DIAG_CFG (0x12) MSB                 |    |
|           | HB1 DIAG CFG (0x12) MSB description     |    |
|           | HB1_DIAG_CFG (0x12) LSB.                |    |
|           | HB1_DIAG_CFG (0x12) LSB description     |    |
|           | HB1_TURN_OFF_CFG (0x13) MSB.            |    |
|           | HB1 TURN OFF CFG (0x13) MSB description |    |
|           | HB1_TURN_OFF_CFG (0x13) LSB             |    |
|           | HB1 TURN OFF CFG (0x13) LSB description |    |
|           | HB2_MODE_CFG (0x14) MSB                 |    |
|           |                                         |    |

DS15025 - Rev 1 page 126/130

#### List of tables



|                   | HB2_MODE_CFG (0x14) MSB description      |     |
|-------------------|------------------------------------------|-----|
|                   | HB2_MODE_CFG (0x14) LSB                  |     |
|                   | HB2_MODE_CFG (0x14) LSB description.     |     |
|                   | HB2_DRIVER_CFG (0x15) MSB                |     |
|                   | HB2_DRIVER_CFG (0x15) MSB description    |     |
|                   | HB2_DRIVER_CFG (0x15) LSB                |     |
| <b>Table 114.</b> | HB2_DRIVER_CFG (0x15) LSB description    | 86  |
| <b>Table 115.</b> | HB2_DIAG_CFG (0x16) MSB                  | 87  |
| <b>Table 116.</b> | HB2_DIAG_CFG (0x16) MSB description      | 87  |
| <b>Table 117.</b> | HB2_DIAG_CFG (0x16) LSB                  | 88  |
| <b>Table 118.</b> | HB2_DIAG_CFG (0x16) LSB description      | 88  |
| <b>Table 119.</b> | HB2_TURN_OFF_CFG (0x17) MSB              | 89  |
| <b>Table 120.</b> | HB2_TURN_OFF_CFG (0x17) MSB description  | 89  |
| <b>Table 121.</b> | HB2_TURN_OFF_CFG (0x17) LSB              | 89  |
| <b>Table 122.</b> | HB2_TURN_OFF_CFG (0x17) LSB description  | 89  |
| <b>Table 123.</b> | HB3_MODE_CFG (0x18) MSB                  | 90  |
| <b>Table 124.</b> | HB3_MODE_CFG (0x18) MSB description      | 90  |
| <b>Table 125.</b> | HB3_MODE_CFG (0x18) LSB                  | 91  |
|                   | HB3_MODE_CFG (0x18) LSB description      |     |
| <b>Table 127.</b> | HB3 DRIVER CFG (0x19) MSB                | 91  |
| <b>Table 128.</b> | HB3_DRIVER_CFG (0x19) MSB description    | 92  |
|                   | HB3_DRIVER_CFG (0x19) LSB                |     |
|                   | HB3_DRIVER_CFG (0x19) LSB description    |     |
|                   | HB3_DIAG_CFG (0x1A) MSB                  |     |
|                   | HB3_DIAG_CFG (0x1A) MSB description      |     |
|                   | HB3_DIAG_CFG (0x1A) LSB                  |     |
|                   | HB3_DIAG_CFG (0x1A) LSB description      |     |
|                   | HB3_TURN_OFF_CFG (0x1B) MSB              |     |
|                   | HB3_TURN_OFF_CFG (0x1B) MSB description  |     |
|                   | HB3_TURN_OFF_CFG (0x1B) LSB              |     |
|                   | HB3_TURN_OFF_CFG (0x1B) LSB description. |     |
|                   | HB3_MODE_CFG (0x1C) MSB                  |     |
|                   | HB3_MODE_CFG (0x1C) MSB description      |     |
|                   | HB3 MODE CFG (0x1C) LSB                  |     |
|                   | HB3 MODE CFG (0x1C) LSB description      |     |
|                   | HB4_DRIVER_CFG (0x1D) MSB.               |     |
|                   | HB4 DRIVER CFG (0x1D) MSB description.   | 98  |
|                   | HB4 DRIVER CFG (0x1D) LSB                |     |
|                   | HB4 DRIVER CFG (0x1D) LSB description    |     |
|                   | HB4_DIAG_CFG (0x1E) MSB                  |     |
|                   | HB4_DIAG_CFG (0x1E) MSB description      |     |
|                   | HB4 DIAG CFG (0x1E) LSB                  |     |
|                   | HB4_DIAG_CFG (0x1E) LSB description      |     |
|                   | HB4_TURN_OFF_CFG (0x1F) MSB              |     |
|                   | HB4_TURN_OFF_CFG (0x1F) MSB description  |     |
|                   | HB4_TURN_OFF_CFG (0x1F) LSB              |     |
|                   | HB4 TURN OFF CFG (0x1F) LSB description. |     |
|                   | HB5_MODE_CONFIG (0x20) MSB               |     |
|                   | HB5_MODE_CONFIG (0x20) MSB               |     |
|                   | HB5_DRIVER_CFG (0x21) MSB                |     |
|                   | HB5_DRIVER_CFG (0x21) MSB                |     |
|                   | HB5_DIAG_CFG (0x21) LSB                  |     |
|                   | HB5_DIAG_CFG (0x22) MSB                  |     |
|                   | HB5_TURN_OFF_CFG (0x23) MSB.             |     |
|                   |                                          |     |
| 102.              | HB5_TURN_OFF_CFG (0x23) LSB              | 103 |

DS15025 - Rev 1 page 127/130

### L99MH94, L99MH92

#### List of tables



| Table 163.         | HB6_MODE_CONFIG (0x24) MSB                                  | 103 |
|--------------------|-------------------------------------------------------------|-----|
| <b>Table 164.</b>  | HB6_MODE_CONFIG (0x24) LSB                                  | 104 |
| <b>Table 165</b> . | HB6_DRIVER_CFG (0x25) MSB                                   | 104 |
| <b>Table 166.</b>  | HB6_DRIVER_CFG (0x25) LSB                                   | 104 |
| <b>Table 167.</b>  | HB6_DIAG_CFG (0x26) MSB                                     | 104 |
| <b>Table 168.</b>  | HB6_DIAG_CFG (0x26) LSB                                     | 104 |
| Table 169.         | HB6_TURN_OFF_CFG (0x27) MSB                                 | 104 |
| <b>Table 170.</b>  | HB6_TURN_OFF_CFG (0x27) LSB                                 | 105 |
|                    | HB7_MODE_CONFIG (0x28) MSB                                  |     |
|                    | HB7_MODE_CONFIG (0x28) LSB                                  |     |
|                    | HB7_DRIVER_CFG (0x29) MSB                                   |     |
|                    | HB7_DRIVER_CFG (0x29) LSB                                   |     |
|                    | HB7_DIAG_CFG (0x2A) MSB                                     |     |
|                    | HB7_DIAG_CFG (0x2A) LSB                                     |     |
|                    | HB7_TURN_OFF_CFG (0x2B) MSB                                 |     |
|                    | HB7_TURN_OFF_CFG (0x2B) LSB                                 |     |
|                    | HB8_MODE_CONFIG (0x2C) MSB                                  |     |
|                    | HB8_MODE_CONFIG (0x2C) LSB                                  |     |
|                    | HB8_DRIVER_CFG (0x2D) MSB                                   |     |
|                    | HB8_DRIVER_CFG (0x2D) LSB                                   |     |
|                    | HB8_DIAG_CFG (0x2E) MSB                                     |     |
|                    | HB8_DIAG_CFG (0x2E) LSB                                     |     |
|                    | HB8_TURN_OFF_CFG (0x2F) MSB                                 |     |
|                    | HB8_TURN_OFF_CFG (0x2F) LSB                                 |     |
|                    | OUT_ENABLE (0x30) MSB                                       |     |
|                    | OUT_ENABLE (0x30) LSB                                       |     |
|                    | OUT_ENABLE (0x30) LSB description                           |     |
|                    | VFQFN32L (5x5x0.9 mm exp. pad down) package mechanical data |     |
|                    | VFQFN48L (7x7x0.9 mm exp. pad down) package mechanical data |     |
|                    | Order code                                                  |     |
| iable 193.         | Document revision history                                   | 121 |

DS15025 - Rev 1 page 128/130



## **List of figures**

| Figure 1.  | L99MH94 block diagram                                                                           |       |
|------------|-------------------------------------------------------------------------------------------------|-------|
| Figure 2.  | L99MH92 block diagram                                                                           |       |
| Figure 3.  | L99MH94 pin connection - VFQFN32 (top view)                                                     | 5     |
| Figure 4.  | L99MH94 pin connection - VFQFN48 (top view)                                                     |       |
| Figure 5.  | L99MH92 pin connection (top view)                                                               |       |
| Figure 6.  | H-driver delay times                                                                            |       |
| Figure 7.  | Watchdog early, late and safe window                                                            |       |
| Figure 8.  | Main operating modes                                                                            |       |
| Figure 9.  | Example of possible configuration to assign a key at each half-bridge                           |       |
| Figure 10. | Example of possible configuration where a key is associated to a different half-bridge          |       |
| Figure 11. | Example of fault on HB1                                                                         |       |
| Figure 12. | Example of HBs configured with the same key                                                     |       |
| Figure 13. | V <sub>DH</sub> and V <sub>DD</sub> high, EN pin goes high and low                              |       |
| Figure 14. | V <sub>DH</sub> low, V <sub>DD</sub> high, EN pin goes high and low                             | 30    |
| Figure 15. | $V_{DH},V_{DD}$ and EN pin goes high and low with the same slew rate $\ldots\ldots\ldots\ldots$ | 30    |
| Figure 16. | V <sub>DD</sub> and EN goes high, V <sub>DH</sub> goes high and low                             | 31    |
| Figure 17. | CPLOW flag                                                                                      | 32    |
| Figure 18. | Overview of indirect current measurement                                                        | 34    |
| Figure 19. | V <sub>ds</sub> measurement by CSO1                                                             | 36    |
| Figure 20. | L99MH94 application diagram for temperature measurement                                         |       |
| Figure 21. | Power ON/OFF steps for gate drivers                                                             |       |
| Figure 22. | Full-bridge drain source monitoring diagnosis                                                   |       |
| Figure 23. | Simplified block diagram with one DC motor controlled by two half-bridges                       |       |
| Figure 24. | One motor in normal conditions, I <sub>shx PU</sub> HB1/HB2 OFF with normal load                |       |
| Figure 25. | One motor in normal conditions with one pull-up diagnostic current on - Configuration 2         |       |
| Figure 26. | One motor in normal conditions with one pull-up diagnostic current on - Configuration 3         |       |
| Figure 27. | Short circuit to V <sub>DH</sub>                                                                |       |
| Figure 28. | Short circuit to GND                                                                            |       |
| Figure 29. | One motor - Diagnostic results with an open load at SH1                                         |       |
| Figure 30. | One motor - Diagnostic results with an open load at SH2                                         |       |
| Figure 31. | Four cascaded DC motors summary of the off-state diagnostic                                     |       |
| Figure 32. | Two cascaded DC motors summary of the off-state diagnostic                                      |       |
| Figure 33. | Watchdog state diagram                                                                          |       |
| Figure 34. | SPI connection                                                                                  |       |
| Figure 35. | SPI signal description                                                                          |       |
| Figure 36. | Write access scenario                                                                           |       |
| Figure 37. | Read access scenario                                                                            |       |
| Figure 38. | Clear on Read scenario                                                                          |       |
| Figure 39. | Write or read with SPI error scenario                                                           | 58    |
| Figure 40. | Access after RESET scenario                                                                     | 59    |
| Figure 41. | First SPI access at power-up scenario                                                           | 60    |
| Figure 42. | Access while an internal fault happens scenario                                                 | 61    |
| Figure 43. | Driving 2 DC motors simultaneously                                                              | . 109 |
| Figure 44. | L99MH94 driving 1 DC motors + 1 additional independent loads simultaneously                     | 110   |
| Figure 45. | L99MH92 driving 1 DC motors + 1 additional independent loads simultaneously                     | 111   |
| Figure 46. | L99MH94 driving 3 motors sequentially                                                           |       |
| Figure 47. | L99MH94 driving 1 DC motor with classical current measurement via shunt resistor                | 113   |
| Figure 48. | L99MH94 driving DC motors simultaneously with not sequentially gate drivers                     | 114   |
| Figure 49. | L99MH92 driving DC motors simultaneously with not sequentially gate drivers                     | 115   |
| Figure 50. | VFQFN32L (5x6x0.9 mm exp. pad down) package outline                                             | 116   |
|            | VFQFN48L (7x7x0.9 mm exp. pad down) package outline                                             |       |

DS15025 - Rev 1 page 129/130



#### **IMPORTANT NOTICE - READ CAREFULLY**

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

DS15025 - Rev 1 page 130/130