

Very low power application processor module for Bluetooth® LE v5.2

Product status link

BlueNRG-M2

Product label

Features

- Bluetooth v5.2 certified
 - Supports master and slave modes
 - Multiple roles supported simultaneously
 - LE data packet length extension
- Embedded ST BlueNRG-2 BLE SoC
 - High performance, ultra-low power Cortex-M0 32-bit based core
 - Programmable embedded 256 kB Flash
 - 24 kB embedded RAM with data retention
 - Up to +8 dBm available output power
 - Down to -88 dBm Rx sensitivity
 - Up to 96 dB link budget with excellent link reliability
- Embedded BALF-NRG-02D3 integrated matched balun with harmonic filter
- Interfaces:
 - 1 x UART, 1 x I²C, 1xSPI, 14 x GPIO, 2 x multifunction timer, 10-bit ADC, watchdog and RTC, DMA controller, PDM stream processor, SWD debug interface
- On-board chip antenna (BLUENRG-M2SA) or PCB antenna (BLUENRG-M2SP)
- Small form factor: 11.5 mm x13.5 mm
- Complemented with Bluetooth LE protocol stack library (GAP, GATT, SM, L2CAP, LL)
- AES secutity co-processor
- Bluetooth LE SDK with a wide range of available profiles
- Certification
 - CE qualified
 - FCC, IC modular approval certified
 - TYPE qualified
 - BQE qualified
 - WPC certification
 - SRRC certification (BlueNRG-M2SA)
 - KCC cerification
- Pre-programmed UART bootloader
- Operating supply voltage: from 1.7 to 3.6 V
- Operating temperature range: -40 °C to 85 °C

Applications

- · Internet of Things
- Smart Home
- Building and industrial automation
- Smart Lighting
- Remote and access control
- Fitness, wellness and sports
- Consumer medical

- · Security and proximity
- Assisted living
- · PC and smart phone peripherals

Description

The BlueNRG-M2 is a Bluetooth[®] LE system-on-chip application processor certified module, certified under Bluetooth LE specifications v5.2 and BQE qualified. The BlueNRG-M2 module supports multiple roles simultaneously and can act at the same time as Bluetooth master and slave device. The BlueNRG-M2 is based on the BlueNRG-2 system-on-chip and entire Bluetooth LE stack and protocols are embedded into module. The BlueNRG-M2 module provides a complete RF platform in a tiny form factor. Radio, embedded antenna and high frequency oscillators are integrated to offer a certified solution to optimize the time-to-market of the final applications. The BlueNRG-M2 can be powered directly with a pair of AAA batteries or any power source from 1.7 to 3.6 V.

For information on Bluetooth® refer to www.bluetooth.com website.

DS13053 - Rev 9 page 2/32

1 General description

The BlueNRG-M2 is a Bluetooth LE application processor modules certified under Bluetooth® v5.2 specifications. The BlueNRG-M2 module has been designed around the ST BlueNRG-2 SoC where its Cortex-M0 core can execute both Bluetooth protocols and customer application. Optimized memory architecture includes 256 kB of Flash memory and 24 kB of ultra-low-leakage RAM (with full data retention). A complete power-optimized Bluetooth stack library provides:

- Master, slave, multiple role support
- GAP: central, peripheral, observer or broadcaster roles
- · Simultaneous advertising and scanning
- Capability of being slave of up to two masters simultaneously
- ATT/GATT: client and server
- SM: privacy, authentication and authorization
- L2CAP
- Link Layer: AES-128 encryption and decryption

In the BLUENRG-M2SA module both 32 MHz and 32 kHz crystal oscillators are available. It has been designed to leverage the BlueNRG-2 integrated DC-DC step down converter in order to achieve the best power consumption in active mode. It also embeds a high efficiency chip antenna. It can be configured to support both application processor (host-less) and network processor (hosted) modes.

Being based on the BlueNRG-2 SoC, the BlueNRG-M2 module leverages all tools and documentation of its ecosystem: development kit, application notes, user manuals, design notes & Tips. A wide set of sample programs are also available in C source code.

The BlueNRG-M2 module has a wide set of peripherals available for customer applications (1 x UART interface, 1 x SPI interface, 1 x I^2 C interface, 14 GPIO, 2 x multifunction timer, 10-bit ADC, watchdog & RTC, DMA controller, PDM stream processor).

The BlueNRG-M2 module enables wireless connectivity into electronic devices, not requiring any RF experience or expertise for integration into the final product. The BlueNRG-M2 module provides a complete RF application platform in a tiny form factor (11.5 x 13.5 x 2.0 mm) and being a certified solution optimizes the time to market of the final applications.

The BlueNRG-M2 module allows applications to meet the tight advisable peak current requirements imposed with the use of standard coin cell batteries. Optimized results are obtained when the embedded high-efficiency DC-DC step-down converter is used (BLUENRG-M2SA). Instead, for the BLUENRG-M2SP the best performance in terms of power consumption is achieved using a 1.8 V DC power supply. The BlueNRG-M2 can be powered directly with a standard 3 V coin cell battery as with a pair of AAA batteries or any power source from 1.7 to 3.6 V.

DS13053 - Rev 9 page 3/32

2 Block diagram

BlueNRG-M2SA 10uH SMPS 32KHz Inductor Crystal Oscillator RF Ceramic Antenna Battery or External Supply Supply Filter < BlueNRG-2 Reset **BLE 5.0 Wireless Processor** Peripherals 256KB I2C, SPI, UART, PDM, RF Filter Cortex Ring Oscillator Flash MO 32KHz 2x12KB Balun 32MHz Ring Oscillator RAM GPIO, Timer, ADC 32MHz Crystal oscillator RF PCB Antenna BlueNRG-M2SP

Figure 1. HW block diagram for the BlueNRG-M2

DS13053 - Rev 9 page 4/32

3 Software architecture

3.1 Software development kit

The BlueNRG-M2 module embeds the BlueNRG-2 application processor. Refer to the BlueNRG-2 web page (http://www.st.com) to get access to:

- BlueNRG-2 datasheet
- development kit
- Application notes
- User manuals
- Tools and software
- Design note and tips

Software and firmware should be configured taking into account the BlueNRG-M2 specific configuration as described in Section 2: Block diagram.

The BLUENRG-M2SA module has:

- 32 MHz crystal oscillator
- 32 kHz crystal oscillator
- SMPS DC-DC converter
- 10 µH SMPS inductor

The projects provided with the development kit should be customized defining as following:

- HS SPEED XTAL=HS SPEED XTAL 32MHZ
- LS SOURCE=LS SOURCE EXTERNAL 32KHZ
- SMPS INDUCTOR=SMPS INDUCTOR 10uH

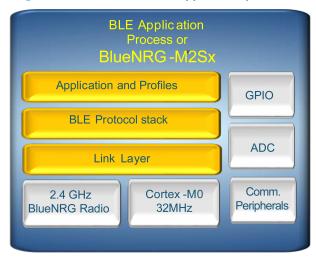
The BLUENRG-M2SP module has:

- 32 MHz crystal oscillator
- LDO converter

The projects provided with the development kit should be customized as follows:

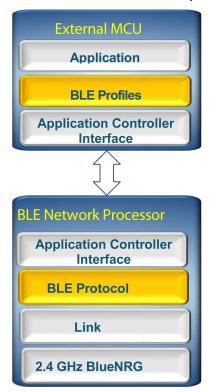
- HS_SPEED_XTAL=HS_SPEED_XTAL_32MHZ
- LS_SOURCE=LS_SOURCE_INTERNAL_RO
- SMPS_INDUCTOR=SMPS_INDUCTOR_NONE

DS13053 - Rev 9 page 5/32



3.2 Software structure

There are two possible software architectures:


1. Host-less mode (application processor): customer application runs on the BlueNRG-M2 module. Many sample projects are available in the development kit

1. Hosted mode (network processor): the module is configured as network module controlled by an external host connected via SPI or UART. A project named DTM is available in the development kit that configures the BlueNRG-M2 module as a network module.

Figure 3. BlueNRG-M2 as BLE network processor

DS13053 - Rev 9 page 6/32

4 General characteristics

4.1 Absolute maximum ratings

Table 1. Absolute maximum ratings

Ratings	Min.	Тур.	Max.	Unit
Storage temperature range	-40	-	+85	°C
Supply voltage, V _{IN}	-0.3	-	3.9	V
I/O pin voltage, V _{IO}	-0.3	-	3.9	V
RF saturation input power	-	8	-	dBm
VESD-HBM electrostatic discharge voltage	-	±2.0	-	kV

4.2 Operating conditions

Table 2. Operating conditions

Ratings	Min.	Тур.	Max.	Unit
Storage temperature range	-40	-	+85	°C
Operating ambient temperature range	-40	-	+85	°C
Supply voltage, V _{IN}	1.7	3.3	3.6	V
Signals and I/O pin voltage (according supply voltage)	1.7	-	3.6	V
Frequency range	2402	-	2480	MHz

DS13053 - Rev 9 page 7/32

5 Electrical specifications

5.1 Electrical characteristics

Characteristic measured over recommended operating conditions unless otherwise specified. Typical values are referred to V_{IN} = 3.3 V, 25 °C, SMPS on, XO 32 kHz and 32 MHz.

Table 3. Electrical characteristics for the BLUENRG-M2SA

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		Reset	-	5	-	nA
		Standby	-	0.5	-	uA
		Sleep mode: 32 kHz XO ON (24 kB retention RAM)	-	0.9	-	μА
		Active mode	-	1.89	-	mA
		RX	-	7.55	-	mA
	Supply current	TX +8 dBm		14.78	-	mA
IDD		TX +4 dBm	-	10.73	-	mA
		TX +2 dBm	-	9.27	-	mA
		TX -2 dBm	-	8.46	-	mA
		TX -5 dBm	-	7.89	-	mA
	-	TX -8 dBm	-	7.45	-	mA
		TX -11 dBm	-	7.17	-	mA
		TX -14 dBm	-	7.01	-	mA

Characteristic measured over recommended operating conditions unless otherwise specified. Typical values are referred to V_{IN} = 3.3 V, 25 °C, SMPS off, RO 32 kHz and 32 MHz.

Table 4. Electrical characteristics for the BLUENRG-M2SP

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
		Reset	-	5	-	nA
		Standby	-	0.5	-	uA
		Sleep mode: 32 kHz RO ON (24 kB retention RAM)	-	2.1	-	μА
		Active mode	-	2.75	-	mA
		RX	-	15	-	mA
	Supply current	TX +8 dBm	-	33.9	-	mA
I _{DD}		TX +4 dBm	-	22.6	-	mA
		TX +2 dBm	-	19.1	-	mA
		TX -2 dBm	-	16.9	-	mA
		TX -5 dBm	-	15.6	-	mA
	-	TX -8 dBm	-	14.7	-	mA
		TX -11 dBm	-	14.1	-	mA
		TX -14 dBm	-	13.7	-	mA

DS13053 - Rev 9 page 8/32

5.2 Digital I/O specifications

IO pins are directly connected to the embedded state of the art BlueNRG-2 chipset. For more details about the digital I/O specifications, please refer directly to the BlueNRG-2 datasheet available on www.st.com.

DS13053 - Rev 9 page 9/32

5.3 RF general characteristics

Characteristic measured over recommended operating conditions unless otherwise specified. Typical value are referred to V_{IN} = 3.3 V, 25 °C, DC/DC on, XO 32 kHz (BLUENRG-M2SA only) and XO 32 MHz.

Table 5. RF general characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
FREQ	Frequency range	-	2400	-	2483.5	MHz
FCH	Channel spacing	-	-	2	-	MHz
RFch	RF channel center frequency	-	2402	-	2480	MHz

Table 6. BLUENRG-M2SA RF characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
RPMAX ⁽¹⁾	Output power ⁽²⁾	Radiated	-	+5	-	dBm
RXSENS	Sensitivity ⁽²⁾	Conducted	-	-85	-	dBm

- 1. PA-Level set to 0x07 and En-High_Power set to 0x01 (corresponding to +8 dBm in conducted mode).
- 2. Radiated power may be impacted by application board / housing / etc.

Table 7. BLUENRG-M2SP RF characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
RPMAX ⁽¹⁾	Radiated output power ⁽²⁾	Radiated	-	+7	-	dBm
RXSENS	Sensitivity ⁽²⁾	Conducted	-	-85	-	dBm

- 1. PA-Level set to 0x07 and En-High_Power set to 0x01 (corresponding to +8dBm in conducted mode).
- 2. Radiated power may be impacted by application board / housing / etc.

DS13053 - Rev 9 page 10/32

5.4 Pin assignment

Figure 4. Pin connection for the BLUENRG-M2SA

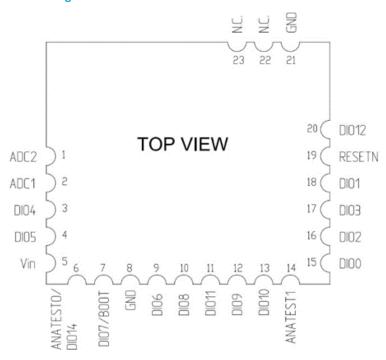
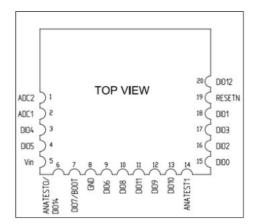



Figure 5. Pin connection for the BLUENRG-M2SP

DS13053 - Rev 9 page 11/32

Table 8. Pin connection

5: "	.,							
Pin#	Name	Mode "000"	Mode "001"	Mode "100"	Mode "010"			
1	ADC2		ADC input 2					
2	ADC1		ADC input 1					
3	DIO4	GPIO4	UART_RXD	I2C2_CLK	PWM0			
4	DIO5	GPIO5	UART_TXD	I2C2_DAT	PWM1			
5	VIN		Power	Supply				
6	ANATEST0/DIO14	GPIO14	I2C1_CLK	SPI_CLK	ADC_DAT			
7	DIO7/BOOT (1)	GPIO7	UART_CTS	I2C2_DAT	PDM_CLK			
8	GND		Gro	ound				
9	DIO6	GPIO6	UART_RTS	I2C2_CLK	PDM_DAT			
10	DIO8	GPIO8	UART_TXD	SPI_CLK	PDM_DAT			
11	DIO11	GPIO11	UART-RXD	SPI_CS1	-			
12	DIO9	GPIO9	SWCLK	SPI_IN ⁽²⁾	-			
13	DIO10	GPIO10	SWDIO	SPI_out ⁽³⁾	-			
14	ANATEST1		Ana	test1				
15	DIO0	GPIO0	UART_CTS	SPI_CLK	-			
16	DIO2	GPIO2	PWM0	SPI_OUT	PDM_CLK			
17	DIO3	GPIO3	PWM1	SPI_IN	ADC_CLK			
18	DIO1	GPIO1	UART_RTS	SPI_CS1	PDM_DAT			
19	RESETN	Reset						
20	DIO12	GPIO12 (4)	-	I2C1_CLK	-			
21 ⁽⁵⁾	GND	Ground or leave unconnected						
22 ⁽⁵⁾	N.C.	Leave unconnected						
23 ⁽⁵⁾	N.C.		Leave unconnected					

^{1.} The pin DIO7/BOOT is monitored by bootloader after power-up or hardware reset and it should be low to prevent unwanted bootloader activation.

- 4. DI012 can only be general purpose input pins (not output), or I²C1 clock pin.
- 5. BLUENRG-M2SA only.

DS13053 - Rev 9 page 12/32

^{2.} The function SPI_IN indicates that the pin is always an input when configured for SPI. Thus in case of SPI master role, it acts as MISO pin. In case of SPI slave role, this pin act as MOSI

^{3.} The function SPI_OUT indicates that the pin is always an output when configured for SPI. Thus in case of SPI master role, it acts as MOSI pin. In case of SPI slave role, this pin act as MISO.

6 Hardware design

Note:

- All unused pins should be left floating; do not ground
- All GND pins must be well grounded
- The area around the module should be free of any ground planes, power planes, trace routings, or metal for 6 mm from the module antenna position, in all directions.
- Traces should not be routed underneath the module

6.1 Reset circuitry

The BlueNRG-M2 module requires an external reset circuitry to ensure proper operation at power-on. Refer to the "Reset management" section of the BlueNRG-2 datasheet for details.

VCC (VBAT) R RESET 47 Kohm 20 DIO12 TO EXTERNAL CIRCUIT 19 RESETN (IF NEEDED) DIO1 CRESET 17 10nF DIO3 16 DIO2 15 DIOO

Figure 6. Reset circuitry

If reset pin is controlled by an external host, RC circuit on the RESETn line is not required.

6.2 Debug interface

The BlueNRG-M2 embeds the ARM serial wire debug (SWD) port. It is two pin (clock and single bi-directional data) debug interface, providing all the debug functionality plus real time access to system memory without halting the processor or requiring any target resident code

Pin functionalityModule PINPin descriptionSWCLK12SWD clock signalSWDIO13SWD data signal

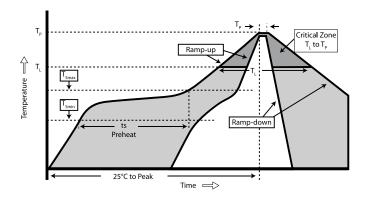
Table 9. Debug interface

For more information refer to the BlueNRG-2 technical documentation (https://www.st.com).

DS13053 - Rev 9 page 13/32

6.3 Reflow soldering

The BlueNRG-M2 is a high temperature strength surface mount Bluetooth® module supplied on a 23-pin (BLUENRG-M2SA) or 20 pin (BLUENRG-M2SP), 4-layer PCB. The final assembly recommended reflow profiles are indicated here below.


Soldering phase has to be executed with care: in order to avoid undesired melting phenomenon, particular attention has to be taken on the set up of the peak temperature.

Here are some suggestions for the temperature profile based on the following recommendations.

Table 10. Soldering profile

Profile feature	PB-free assembly
Average ramp up rate (T _{SMAX} to T _p)	3°C/ s max.
Preheat	
temperature min (T _S min.)	150 °C
temperature max (T _S max.)	200 °C
time (t_S min to t_S max.) (t_S)	60-100 s
Time maintained above	
Temperature T _L	217 °C
Time t _L	60-70 s
Peak temperature (T _P)	240 +0 °C
Time within 5 °C of peak temperature (T _P -5°)	10-20 s
Ramp down rate	6 °C/s
Time from 25 °C to peak temperature	8 minutes max.

Figure 7. Soldering profiles

DS13053 - Rev 9 page 14/32

Regulatory compliance

7.1 FCC certification

This module has been tested and found to comply with the FCC part 15 rules. These limits are designed to provide reasonable protection against harmful interference in approved installations. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications.

However, there is no guarantee that interference may not occur in a particular installation.

This device complies with part 15 of the FCC rules. Operation is subject to the following two conditions:

- 1. this device may not cause harmful interference
- 2. this device must accept any interference received, including interference that may cause undesired operation Modifications or changes to this equipment not expressly approved by STMicroelectronics may render void the user's authority to operate this equipment.

Modular approval

FCC ID: S9NBNRGM2SA & S9NBNRGM2SP

In accordance with FCC part 15, the BLUENRG-M2SA and BLUENRG-M2SP is listed as a modular transmitter device.

This module is evaluated for stand-alone use only. Finished products incorporating multiple transmitters must comply with collocation and RF exposure requirements in accordance with FCC multi-transmitter product procedures. Collocated transmitters operating in portable RF Exposure conditions (e.g. <20 cm from persons including but not limited to body worn and hand held devices) may require separate approval.

7.1.1 Labeling instructions

When the BLUENRG-M2SA and BLUENRG-M2SP are integrated into the final product, the OEM must ensure that the FCC labeling requirements are satisfied. A statement must be included on the exterior of the final product which indicates the product includes a certified module. The label should state the following (or similar wording that conveys the same meaning):

Contains FCC ID: S9NBNRGM2SA & S9NBNRGM2SP

OR

This product contains FCC ID: S9NBNRGM2SA & S9NBNRGM2SP

The OEM must include the following statements on the exterior of the final product unless the product is too small (e.g. less than 4 x 4 inches):

This device complies with part 15 of the FCC rules. Operation is subjected to the following two conditions:

- 1. this device may not cause harmful interference and
- this device must accept any interference received, including any interference that may cause undesired operations.

7.1.2 Product manual instructions

This section applies to OEM final products containing the BlueNRG-M2 module, subjected to FCC compliance. The final product manual must contain the following statement (or a similar statement that conveys the same meaning):

Note: Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to operate the equipment. (Part. 15.21)

In the case where an OEM seeks Class B (residential) limits for the final product, the following statement must be included in the final product manual:

DS13053 - Rev 9 page 15/32

Note:

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment and receiver
- · Connect the equipment into an outlet on a circuit different from that to which the receiver is connected
- Consult the dealer or an experienced radio/TV technician for help

In the case where an OEM seeks the lesser category of a Class A digital device for the final product, the following statement must be included in the final product manual:

Note:

This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his expense.

7.2 ISED certification

This device contains license-exempt transmitter(s)/receiver(s) that comply with innovation, science and economic development Canada's license-exempt RSS(s). Operation is subjected to the following two conditions:

- 1. this device may not cause interference, and
- 2. this device must accept any interference, including interference that may cause undesired operations of the

In addition, in accordance with RSS-102 clause 2.6, the RF exposure compliance distance of the BlueNRG-M2 is set equal to 15 mm.

Modular approval

ISED: 8976C-BNRGM2SA and 8976C-BNRGM2SP

In accordance with ISED RSS-247, the BlueNRG-M2 is listed as a modular transmitter device.

This module is evaluated for stand-alone use only. Finished products incorporating multiple transmitters must comply with collocation and RF exposure requirements in accordance with ISED multi-transmitter product procedures. Collocated transmitters operating in portable RF Exposure conditions (for example <20 cm from persons including but not limited to body worn and hand held devices) may require separate approval.

7.2.1 Labeling instructions

When the BlueNRG-M2 is integrated into the final product, the OEM must ensure that the IC labeling requirements are satisfied. A statement must be included on the exterior of the final product which indicates that the product includes a certified module. The label should state the following (or similar wording that conveys the same meaning):

Contains IC: 8976C-BNRGM2SA and 8976C-BNRGM2SP

or

this product contains IC: 8976C-BNRGM2SA and 8976C-BNRGM2SP

The OEM must include the following statements on the exterior of the final product unless the product is too small (e.g. less than 4 x 4 inches).

7.3 CE certification

The BlueNRG-M2 module has been certified according to the following certification rules:

- ETSI EN 300 328 V 2.2.2 (1)
- ETSI EN 301 489-17 V3.2.4 (2)
- ETSI EN 301 489-1 V2.2.3⁽³⁾
- EN IEC 62368-1:2024 + A11:2024⁽⁴⁾
- EN IEC 62311:2020

DS13053 - Rev 9 page 16/32

- ETSI EN 300 328 V2.2.2 (2019-07): "Wideband transmission systems; Data transmission equipment operating in the 2,4 GHz band; Harmonized Standard for access to radio spectrum".
- ETSI EN 301 489-17 V3.2.4 (2020-09): "ElectroMagnetic Compatibility (EMC)standard for radio equipment and services;
 Part 17: Specific conditions for Broadband Data Transmission Systems; Harmonised Standard for ElectroMagnetic
 Compatibility.
- 3. ETSI EN 301 489-1 V2.2.3 (2019-11): "ElectroMagnetic Compatibility (EMC) standard for radio equipment and services; Part 1: Common technical requirements; Harmonised Standard for ElectroMagnetic Compatibility.
- 4. EN IEC 62368-1:2024 + A11:2024: "Audio/video, information and communication technology equipment Part 1: Safety requirements".

The module is provided by CE marking:

The module has obtained the RED certificate:

- 0051-RED-0092 (BLUENRG-M2SA)
- 0051-RED-0098 (BLUENRG-M2SP)

Hereby, STMicroelectronics declares that the radio equipment type BLUENRG-M2 is in compliance with Directive 2014/53/EU.

The full text of the EU declaration of conformity is available at the following internet address:

https://www.st.com/en/wireless-connectivity/bluenrg-m2.html#documentation

The certified module production firmware release is: 2.X

For additional information please refer to: STMicroelectronics Via C. Olivetti 2, Agrate Brianza 20864 (ITALY).

7.4 TYPE certification

The BlueNRG-M2 module has been tested according to following TYPE certification rules:

- Type of specified radio equipment
 - Radio equipment according to certification ordinance article 2-1-9
- Sophisticated low power radio data communication system in 2.4 GHz band.
- · Class of emissions, assigned frequency, and antenna power
 - F1D 2402 2480 MHz channel separation 2 MHz/40 channel, 0.005 W
- Certification number:
 - 006-000725 (BLUENRG-M2SA)
 - 006-000726 (BLUENRG-M2SP)

7.5 WPC ETA certificate

The BlueNRG-M2 module is registered for equipment type approval (ETA) with WPC India.

- Registration No: ETA-SD-20190702736 BlueNRG-M2SP
- Registration No: ETA-SD-20210805996 BlueNRG-M2SA

7.6 SRRC certification

7.6.1 Modular approval

The BlueNRG-M2SA module complies with Chinese SRRC certification.

SRRC CMIIT ID: 2021DP1341

DS13053 - Rev 9 page 17/32

7.6.2 SRRC labeling instructions

When the BlueNRG-M2SA is intergrated into the final product, the OEM must ensure that the SRRC labeling requirements are satisfied. A statement must be included on the exterior of the final product, which indicates the product includes a certified module.

The label should state the following (or similar wording that conveys the same meaning):

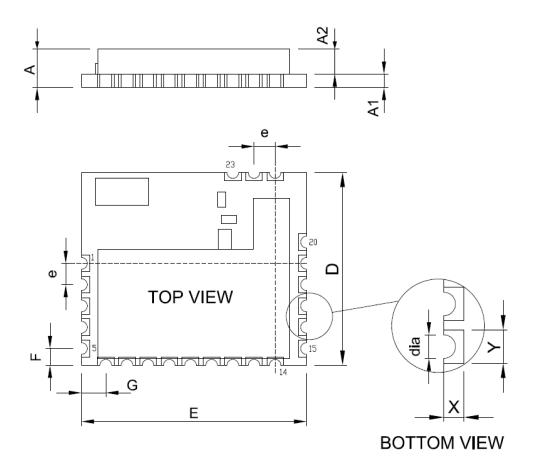
This product uses the SRRC approved radio modular. CMIIT ID: 2021DP1341.

7.7 Bluetooth certification

The module with embedded stack and profile has been qualified in accordance with SIG qualification rules:

- Declaration ID: D043965
- Upgraded declaration ID: U053518
- Qualified design ID: 160033
- Product type: End Product
- Core spec version: 5.2
- Product description: Bluetooth LE v5.2 module

DS13053 - Rev 9 page 18/32



8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 BLUENRG-M2SA package information

Figure 8. BLUENRG-M2SA package outline

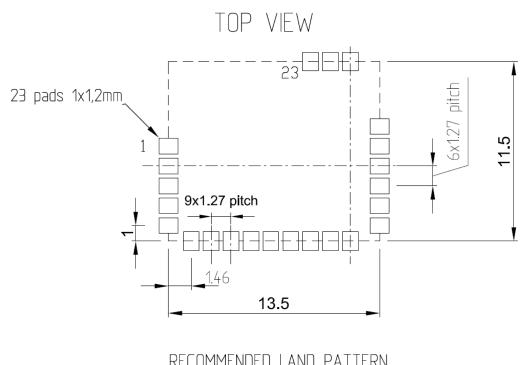

DS13053 - Rev 9 page 19/32

Table 11	RILIENRG	-M2SA	mechanical	l data
lavie i i	. DLUEINNG	-IVIZOA	HIECHAIIICA	uala

Symbol	mm				
Symbol	Min.	Тур.	Max.		
Α	2.1	2.3	2.5		
A1	0.7	0.8	0.9		
A2	1.4	1.5	1.6		
D	-	11.5	-		
E	-	13.5	-		
F	-	1	-		
G	-	1.46	-		
dia	-	0.7	-		
Pad size X,Y (on bottom side)	-	0.6x1	-		
e-pitch	-	1.27	tol.+/-0.025		

Figure 9. BLUENRG-M2SA recommended footprint

RECOMMENDED LAND PATTERN
All Dimensions are in millimeters

DS13053 - Rev 9 page 20/32

8.2 BLUENRG-M2SP package information

Figure 10. BLUENRG-M2SP package outline

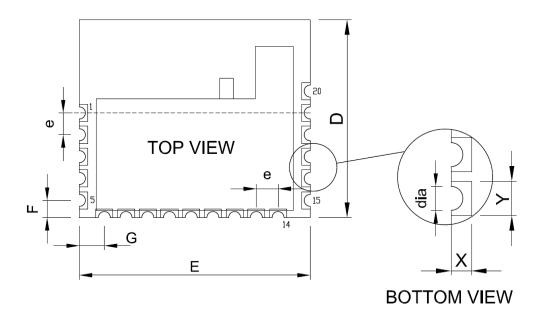
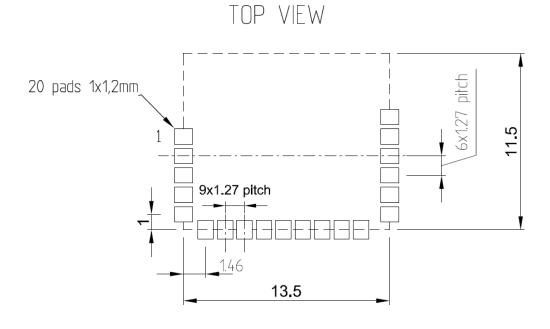


Table 12. BLUENRG-M2SP mechanical data


Symbol	mm				
Symbol	Min.	Тур.	Max.		
A	2.1	2.3	2.5		

DS13053 - Rev 9 page 21/32

Symbol	mm		
Зушьог	Min.	Тур.	Max.
A1	0.7	0.8	0.9
A2	1.4	1.5	1.6
D	-	11.5	-
E	-	13.5	-
F	-	1	-
G	-	1.46	-
dia	-	0.7	-
Pad size X,Y (on bottom side)	-	0.6x1	-
e-pitch	-	1.27	tol.+/-0.025

Figure 11. BLUENRG-M2SP recommended footprint

RECOMMENDED LAND PATTERN
All Dimensions are in millimeters

DS13053 - Rev 9 page 22/32

8.3 BlueNRG-M2 packing information

Figure 12. BlueNRG-M2 tape outline

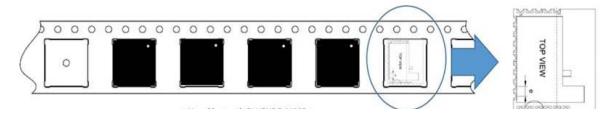


Figure 13. BlueNRG-M2 tape dimension outline

DS13053 - Rev 9 page 23/32

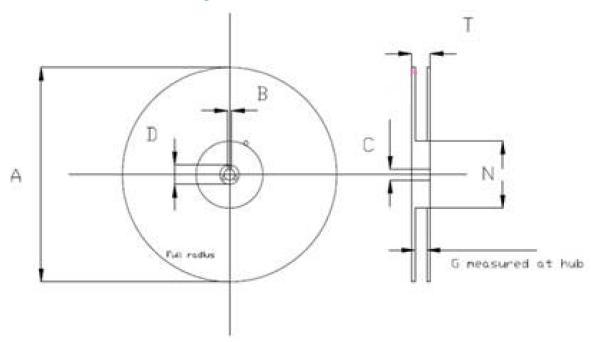


Figure 14. BlueNRG-M2 reel outline

Table 13. BlueNRG-M2 reel mechanical data

Dimensions	Reel		
Difficusions	Min.	Max.	
А	328	332	
В	1.5	-	
С	12.8	13.5	
D	20.2	-	
G	24.4	26.4	
N	100	103	
Т	26.4	30.4	

DS13053 - Rev 9 page 24/32

9 Traceability

Each module is univocally identified by serial number stored in a 2D data matrix laser marked on the top side (shield) of the module itself.

Each module bulk is identified by a bulk ID.

Bulk ID and module 2D data matrix are linked by a reciprocal traceability link. The module 2D data matrix traces the lot number of any raw material used according to following rules:

Table 14. Traceability information

Letter	Meaning
НА	Reserved
YWW	Year and week number
E	Reserved
LL	Lot sequence number
XX	Lot sub-sequence number
0000	Serial number

DS13053 - Rev 9 page 25/32

10 Important security notice

The STMicroelectronics group of companies (ST) places a high value on product security, which is why the ST product(s) identified in this documentation may be certified by various security certification bodies and/or may implement our own security measures as set forth herein. However, no level of security certification and/or built-in security measures can guarantee that ST products are resistant to all forms of attacks. As such, it is the responsibility of each of ST's customers to determine if the level of security provided in an ST product meets the customer needs both in relation to the ST product alone, as well as when combined with other components and/or software for the customer end product or application. In particular, take note that:

- ST products may have been certified by one or more security certification bodies, such as Platform Security Architecture (www.psacertified.org) and/or Security Evaluation standard for IoT Platforms (www.trustcb.com). For details concerning whether the ST product(s) referenced herein have received security certification along with the level and current status of such certification, either visit the relevant certification standards website or go to the relevant product page on www.st.com for the most up to date information. As the status and/or level of security certification for an ST product can change from time to time, customers should re-check security certification status/level as needed. If an ST product is not shown to be certified under a particular security standard, customers should not assume it is certified.
- Certification bodies have the right to evaluate, grant and revoke security certification in relation to ST
 products. These certification bodies are therefore independently responsible for granting or revoking
 security certification for an ST product, and ST does not take any responsibility for mistakes, evaluations,
 assessments, testing, or other activity carried out by the certification body with respect to any ST product.
- Industry-based cryptographic algorithms (such as AES, DES, or MD5) and other open standard technologies which may be used in conjunction with an ST product are based on standards which were not developed by ST. ST does not take responsibility for any flaws in such cryptographic algorithms or open technologies or for any methods which have been or may be developed to bypass, decrypt or crack such algorithms or technologies.
- While robust security testing may be done, no level of certification can absolutely guarantee protections against all attacks, including, for example, against advanced attacks which have not been tested for, against new or unidentified forms of attack, or against any form of attack when using an ST product outside of its specification or intended use, or in conjunction with other components or software which are used by customer to create their end product or application. ST is not responsible for resistance against such attacks. As such, regardless of the incorporated security features and/or any information or support that may be provided by ST, each customer is solely responsible for determining if the level of attacks tested for meets their needs, both in relation to the ST product alone and when incorporated into a customer end product or application.
- All security features of ST products (inclusive of any hardware, software, documentation, and the like), including but not limited to any enhanced security features added by ST, are provided on an "AS IS" BASIS. AS SUCH, TO THE EXTENT PERMITTED BY APPLICABLE LAW, ST DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, unless the applicable written and signed contract terms specifically provide otherwise.

DS13053 - Rev 9 page 26/32

Revision history

Table 15. Document revision history

Date	Version	Changes
26-Jun-2019	1	Initial release.
24-Jul-2019	2	Updated features in cover page, Figure 4. Pin connection for the BLUENRG-M2SA and Figure 6. Reset circuitry. Added Section 8.3: BlueNRG-M2 packing information
13-Jan-2021	3	Updated cover image, Section Features, Section Description, Section 1: General description, Table 10. Soldering profile, Section 7.3: CE certification, Section 7.7: Bluetooth certification. Added Section 7.5: WPC ETA certificate.
04-Mar-2021	4	Updated Section Features. Added Section 7.6: SRRC certification, Section 7.6.1: Modular approval and Section 7.6.2: SRRC labeling instructions.
19-Oct-2021	5	Updated Section Features and Section 7.3: CE certification.
28-Oct-2021	6	Updated Table 8. Pin connection.
10-Dec-2021	7	Updated Section Features, and Section 7.5: WPC ETA certificate.
20-Mar-2024	8	Updated Table 1. Absolute maximum ratings.
18-Mar-2025	9	Replaced term "Bluetooth low energy" with "Bluetooth LE" throughout the document. Updated: Section 7.2: ISED certification Section 7.3: CE certification Section 7.6.2: SRRC labeling instructions

DS13053 - Rev 9 page 27/32

Contents

1	Gen	eral description	3		
2	Bloc	lock diagram			
3	Soft	ware architecture	5		
	3.1	Software development kit	5		
	3.2	Software structure	6		
4	Gen	eral characteristics	7		
	4.1	Absolute maximum ratings	7		
	4.2	Operating conditions	7		
5	Elec	etrical specifications	8		
	5.1	Electrical characteristics	8		
	5.2	Digital I/O specifications	9		
	5.3	RF general characteristics	10		
	5.4	Pin assignment	11		
6	Hard	dware design	13		
	6.1	Reset circuitry	13		
	6.2	Debug interface	13		
	6.3	Reflow soldering	14		
7	Regi	ulatory compliance	15		
	7.1	FCC certification			
		7.1.1 Labeling instructions	15		
		7.1.2 Product manual instructions	15		
	7.2	ISED certification	16		
		7.2.1 Labeling instructions	16		
	7.3	CE certification	16		
	7.4	TYPE certification	17		
	7.5	WPC ETA certificate	17		
	7.6	SRRC certification	17		
		7.6.1 Modular approval	17		
		7.6.2 SRRC labeling instructions	18		
	7.7	Bluetooth certification	18		
8	Pack	kage information	19		
	8.1	BLUENRG-M2SA package information	19		
	8.2	BLUENRG-M2SP package information	21		
	8.3	BlueNRG-M2 packing information	23		

Contents

9	Traceability	.25
10	Important security notice	.26
Rev	ision history	.27

DS13053 - Rev 9

List of tables

Table 1.	Absolute maximum ratings	. 7
Table 2.	Operating conditions	. 7
Table 3.	Electrical characteristics for the BLUENRG-M2SA	. 8
Table 4.	Electrical characteristics for the BLUENRG-M2SP	. 8
Table 5.	RF general characteristics	10
Table 6.	BLUENRG-M2SA RF characteristics	10
Table 7.	BLUENRG-M2SP RF characteristics	10
Table 8.	Pin connection	12
Table 9.	Debug interface	13
Table 10.	Soldering profile	
Table 11.	BLUENRG-M2SA mechanical data	20
Table 12.	BLUENRG-M2SP mechanical data	
Table 13.	BlueNRG-M2 reel mechanical data	24
Table 14.	Traceability information	25
Table 15.	Document revision history	27

List of figures

Figure 1.	HW block diagram for the BlueNRG-M2	4
Figure 2.	BlueNRG-M2 - BLE application processor	6
Figure 3.	BlueNRG-M2 as BLE network processor	6
Figure 4.	Pin connection for the BLUENRG-M2SA	11
Figure 5.	Pin connection for the BLUENRG-M2SP	11
Figure 6.	Reset circuitry	
Figure 7.	Soldering profiles	
Figure 8.	BLUENRG-M2SA package outline	19
Figure 9.	BLUENRG-M2SA recommended footprint	20
Figure 10.	BLUENRG-M2SP package outline	21
Figure 11.	BLUENRG-M2SP recommended footprint	
Figure 12.	BlueNRG-M2 tape outline	
Figure 13.	BlueNRG-M2 tape dimension outline	23
Figure 14.	BlueNRG-M2 reel outline	24

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS13053 - Rev 9 page 32/32