

150 V half-bridge gate driver for automotive applications

SO-8

Product status link

A2387

Product label

Features

- High voltage rail up to 150 V
- dV/dt transient immunity ±50 V/ns in full temperature range
- Driver current capability:
 - 400 mA source
 - 650 mA sink
- Switching times 50/30 ns rise/fall with 1 nF load
- CMOS/TTL Schmitt-trigger inputs with hysteresis and pull down
- Internal bootstrap diode
- · Outputs in phase with inputs
- Interlocking function

Application

- HID ballasts
- DC-DC converters
- On-board charger (OBC)
- Automotive HVAC compressor modules
- Fans and pumps

Description

The A2387 is a single chip half-bridge gate driver for N-channel power MOSFETs or IGBTs.

The high-side (floating) section is designed to stand a voltage rail of up to 150 V. The logic inputs are CMOS/TTL compatible for easy interfacing of the microcontroller or DSP.

The A2387 features supply UVLOprotection and interlocking to avoid cross-conduction conditions. It operates in the temperature range -40 °C to 125 °C.

1 Block diagram

BOOTSTRAP DRIVER 8 воот UV DETECTION HVG DRIVER HVG LEVEL SHIFTER HIN LOGIC OUT TO LOAD 6 LVG LIN LVG DRIVER GND

Figure 1. A2387 block diagram

DS14604 - Rev 1 page 2/18

2 Pin description

Figure 2. Pin connection

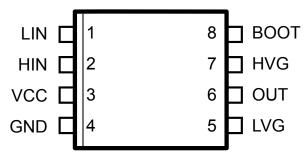


Table 1. Pin descritpion

Pin N.	Name	Туре	Function
1	LIN	I	Low-side driver logic input
2	HIN	I	High-side driver logic input
3	VCC	Р	Low voltage power supply
4	GND	Р	Ground
5	LVG (1)	0	Low-side driver output
6	OUT	Р	High-side driver floating reference
7	HVG (1)	0	High-side driver output
8	BOOT	Р	Bootstrap supply voltage

^{1.} The circuit provides less than 1 V on the LVG and HVG pins (at I_{sink} = 10 mA). This allows the omitting of the "bleeder" resistor connected between the gate and the source of the external MOSFET normally used to hold the pin low.

DS14604 - Rev 1 page 3/18

3 Electrical data

3.1 Absolute maximum ratings

Stresses above the absolute maximum ratings listed in Table 2 may cause permanent damage to the device. Exposure to maximum rating conditions for extended periods may affect device reliability. All voltages referred to ground pins unless otherwise specified.

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCC	Supply voltage	-0.3 to 18	V
V _{OUT}	Output voltage	V _{BOOT} -18 to V _{BOOT} +0.3	V
V _{BOOT}	Bootstrap voltage	-0.3 to 168	V
V _{HVG}	High-side gate output voltage	V _{OUT} -0.3 to V _{BOOT} +0.3	V
V _{LVG}	Low-side gate output voltage	-0.3 to VCC+0.3	V
Vi	Logic input voltage	-0.3 to VCC+0.3	V
dV _{OUT} /dt	Allowed output slew rate	50	V/ns
P _{tot}	Total power dissipation (T _{amb} = 85 °C)	750	mW
Tj	Junction temperature	150	°C
T _{stg}	Storage temperature	-50 to 150	°C
ESD	Human body model	2	kV

3.2 Recommended operating conditions

All voltages referred to ground pins unless otherwise specified. The junction temperature must be maintained within recommended operating conditions with proper thermal design.

Table 3. Recommended operating conditions

Symbol	Pin	Parameter	Test condition	Min.	Max.	Unit
VCC	3	Supply voltage		6.3	17	V
V _{BO} (1)	8 - 6	Floating supply voltage			17	V
V _{OUT}		Output voltage		-6 ⁽²⁾	150	V
f _{SW}		Switching frequency	HVG, LVG load C _L = 1 nF		400	kHz
Tj		Junction temperature		-40	125	°C

- 1. $V_{BO} = V_{BOOT} V_{OUT}$
- 2. LVG off. VCC = 12 V

3.3 Thermal data

Table 4. Thermal data

Symbol	Parameter	Value	Unit
R _{th(J-A)}	Thermal resistance junction-to-ambient	150	°C/W

DS14604 - Rev 1 page 4/18

4 Electrical characteristics

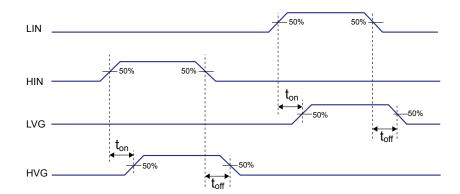
Testing conditions: , VCC = 15 V; T_j = -40 °C to +125 °C, unless otherwise specified.

Table 5. Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Logic sect	ion supply					
VCC _{thON}	VCC UVLO turn-ON threshold		5.5	6.0	6.3	V
VCC _{thOFF}	VCC UVLO turn-OFF threshold		5.0	5.5	6.0	V
VCC _{hys}	VCC UVLO hysteresis		0.3	0.5	0.7	V
I _{QCC}	VCC quiescent supply current			250	320	μA
I _{QCCU}	VCC undervoltage supply current	VCC ≤ 5.0 V		150	220	μA
Bootstrapp	ped supply voltage section (1)					
I _{QBO}	V _{BO} quiescent current	HVG ON			100	μA
I _{LK}	High voltage leakage current	V _{HVG} = V _{OUT} = V _{BOOT} = 150 V			10	μA
R _{DBOOT}	Bootstrap diode on-resistance (2)	LVG ON		125		Ω
Output driv	ving buffers					
I _{SO}	High/low-side source short circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	300	400		mA
I _{SI}	High/low-side sink short circuit current	$V_{IN} = V_{ih} (t_p < 10 \ \mu s)$	450	650		mA
Logic inpu	ts					
V _{ih}	High level logic threshold voltage		3.2			V
Vil	Low level logic threshold voltage				1.4	V
l _{ih}	High level logic input current	V _{IN} = 15 V	8	20	40	μA
l _{il}	Low level logic input current	V _{IN} = 0 V			1	μA
Dynamic c	haracteristics (see Figure 3)					
t _{on}	High/low-side driver turn-on propagation delay	V _{OUT} = 0 V, V _{BOOT} = VCC	40	120	240	ns
t _{off}	High/low-side driver turn-off propagation delay	C _L = 1 nF	40	110	210	ns
t _r	Rise time	C _L = 1 nF		50	100	ns
t _f	Fall time	- OL- 1 IIF		30	80	ns

^{1.} $V_{BO} = V_{BOOT} - V_{OUT}$

$$R_{DBOOT} = \frac{(V_{CC} - V_{BOOT1}) - (V_{CC} - V_{BOOT2})}{I_1(V_{CC}, \ V_{BOOT1}) - I_2(V_{CC}, \ V_{BOOT2})}$$

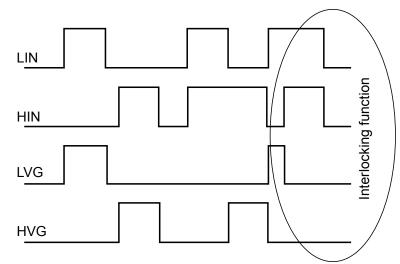

DS14604 - Rev 1 page 5/18

^{2.} R_{DBOOT} is tested in the following way:

Figure 3. Timing of input-output signals; turn-on and off propagation delays

DS14604 - Rev 1 page 6/18

5 Input logic


The A2387 input logic is VCC (17 V) compatible.

An interlocking feature is offered (see Table 6) to avoid undesired simultaneous turn-on of both power switches.

Table 6. Truth table

INPUT		ОИТРИТ		
HIN	LIN	HVG	LVG	
0	0	0	0	
0	1	0	1	
1	0	1	0	
1	1	0	0	

Figure 4. Timing of input/output signals; interlocking waveforms definition

DS14604 - Rev 1 page 7/18

6 Bootstrap driver

A bootstrap circuitry is needed to supply the high voltage section. This function is normally accomplished by a high-voltage fast recovery diode (Figure 5 a).

In the A2387 device a patented integrated structure replaces the external diode. It is realized by a high voltage DMOS, driven synchronously with the low-side driver (LVG), with a diode in series, as shown in Figure 5 b. An internal charge pump (Figure 5 b) provides the DMOS driving voltage.

Figure 5. Bootstrap driver

6.1 C_{BOOT} selection and charging

To choose the proper C_{BOOT} value the external MOS can be seen as an equivalent capacitor. This capacitor C_{EXT} is related to the MOS total gate charge:

Equation 1

$$C_{EXT} = \frac{Q_{gate}}{V_{gate}} \tag{1}$$

The ratio between the capacitors C_{EXT} and C_{BOOT} is proportional to the cyclical voltage loss. It must be: $C_{BOOT} >> C_{EXT}$.

For example: if Q_{gate} is 30 nC and V_{gate} is 10 V, C_{EXT} is 3 nF. With C_{BOOT} = 100 nF the drop would be 300 mV. If HVG must be supplied for a long period, the C_{BOOT} selection must take into account also the leakage and quiescent losses.

For example: HVG steady-state consumption is lower than 100 μ A, therefore, if HVG t_{on} is 5 ms, C_{BOOT} must supply 0.5 μ C to C_{EXT} . This charge on a 1 μ F capacitor means a voltage drop of 0.5 V.

The internal bootstrap driver offers a big advantage: the external fast recovery diode can be avoided (it usually has very high leakage current).

This structure can work only if V_{OUT} is close to GND (or lower) and, in the meantime, the LVG is on. The charging time (t_{charge}) of the C_{BOOT} is the time in which both conditions are fulfilled and it must be long enough to charge the capacitor.

The bootstrap driver introduces a voltage drop due to the DMOS R_{DBOOT} (typical value: 125 Ω). This drop can be neglected at low switching frequency, but it should be taken into account when operating at high switching frequency.

Eq. (2) is useful to compute the drop on the bootstrap DMOS:

Equation 2

$$V_{drop} = I_{charge} \cdot R_{DBOOT} \rightarrow V_{drop} = \frac{Q_{gate}}{t_{charge}} \cdot R_{DBOOT}$$
 (2)

where Q_{gate} is the gate charge of the external power MOS, R_{DBOOT} is the ON-resistance of the bootstrap DMOS, and t_{charge} is the charging time of the bootstrap capacitor.

For example: using a power MOS with a total gate charge of 30 nC, the drop on the bootstrap DMOS is about 1 V, if the t_{charge} is 5 μs . In fact:

DS14604 - Rev 1 page 8/18

Equation 3

$$V_{drop} = \frac{30 \, nC}{5 \mu s} \cdot 125 \, \Omega \sim 0.8 \, V \tag{3}$$

 V_{drop} should be taken into account when the voltage drop on C_{BOOT} is calculated: if this drop is too high, or the circuit topology doesn't allow a sufficient charging time, an external diode can be used.

DS14604 - Rev 1 page 9/18

7 Typical characteristics

Figure 6. Typical rise and fall times vs load capacitance

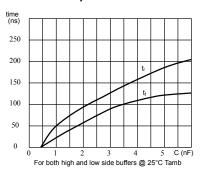


Figure 7. Quiescent current vs supply voltage

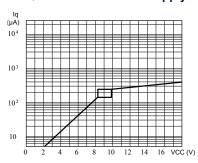


Figure 8. Turn-on time vs temperature

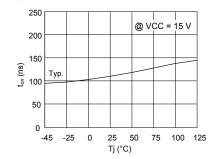


Figure 9. Turn-off time vs. temperature

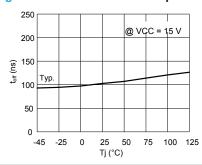


Figure 10. Output source current vs temperature

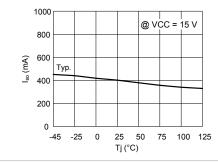
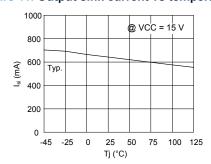
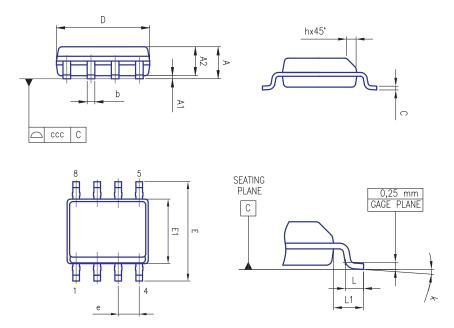



Figure 11. Output sink current vs temperature

DS14604 - Rev 1 page 10/18

8 Package information

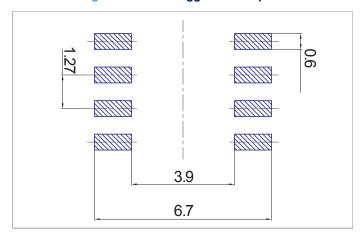

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

8.1 SO-8 package information

Table 7. SO-8 package dimensions

Symbol	Dimensions [mm]			
Зушрог	Min	Тур	Max	
А			1.75	
A1	0.10		0.25	
A2	1.25			
b	0.28		0.48	
С	0.17		0.23	
D	4.80	4.90	5.00	
E	5.80	6.00	6.20	
E1	3.80	3.90	4.00	
е		1.27		
h	0.25		0.50	
L	0.40		1.27	
L1		1.04		
k	0°		8°	
ccc			0.10	

Figure 12. SO-8 package outline



DS14604 - Rev 1 page 11/18

8.2 Suggested footprint

Figure 13. SO-8 suggested footprint

DS14604 - Rev 1 page 12/18

9 Ordering information

Table 8. Order code

Order Code	Package	Package marking	Packaging
A2387D	SO-8	A2387D	Tube
A2387DTR	SO-8	A2387D	Tape and reel

DS14604 - Rev 1 page 13/18

Revision history

Table 9. Document revision history

Date	Version	Changes
05-Mar-2024	1	Initial release.

DS14604 - Rev 1 page 14/18

Contents

1	Bloc	ck diagram	2				
2	Pin	description	3				
3	Elec	Electrical data					
	3.1	Absolute maximum ratings	4				
	3.2	Recommended operating conditions	4				
	3.3	Thermal data	4				
4	Elec	ctrical characteristics	5				
5	Inpu	ıt logicıt logic	7				
6	Воо	Bootstrap driver					
	6.1	C _{BOOT} selection and charging	8				
7	Турі	ical characteristics	.10				
8	Pac	kage information	.11				
	8.1	SO-8 package information	. 11				
	8.2	Suggested footprint	. 12				
9	Ord	ering information	.13				
		history					
Lis	t of ta	bles	.16				
Lis	t of fig	qures	.17				

List of tables

Table 1.	Pin descritpion
	Absolute maximum ratings
	Recommended operating conditions
	Thermal data
	Electrical characteristics
Table 6.	Truth table
Table 7.	SO-8 package dimensions
Table 8.	Order code
Table 9.	Document revision history

List of figures

Figure 1.	A2387 block diagram	. 2
Figure 2.	Pin connection	. 3
Figure 3.	Timing of input-output signals; turn-on and off propagation delays	. 6
Figure 4.	Timing of input/output signals; interlocking waveforms definition	. 7
Figure 5.	Bootstrap driver	. 8
Figure 6.	Typical rise and fall times vs load capacitance	10
Figure 7.	Quiescent current vs supply voltage	10
Figure 8.	Turn-on time vs temperature	10
Figure 9.	Turn-off time vs. temperature	10
Figure 10.	Output source current vs temperature	10
Figure 11.	Output sink current vs temperature	10
Figure 12.	SO-8 package outline	11
Figure 13.	SO-8 suggested footprint	12

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

DS14604 - Rev 1 page 18/18