

Rad-hard 16-bit transceiver, bidirectional level shifter

The upper metallic lid is electrically connected to ground (see availability in order codes table)

Features

- 1.4 V to 3.6 V operating supply
- Dual supply bidirectional level shifter
- Separated enable pin for 3-state output
- Internal 26 Ω limiting resistor on each A side output buffer
- Bus hold
- · Fail safe
- Cold spare
- Hermetic package
- 300 krad (Si) TID
- SEL-free at 110 MeV.cm²/mg LET
- SMD: 5962F11207
- Mass: 1.5 g

Product status link

54VCXH163245

Description

The 54VCXH163245 is a rad-hard advanced high-speed CMOS, 16-bit bidirectional, multi-purpose transceiver with 3-state outputs and cold sparing.

Designed to be used as an interface between a 3.3 V bus and a 1.8 V bus in mixed 3.3 V/1.8 V supply systems, the 54VCXH163245 is able to operate at a minimum of 1.4 V (the functionality is guaranteed at 1.4 V min., the performance are guaranteed at 1.65 V min.).

All pins have cold spare buffers to change them to high impedance when V_{DD} is tied to ground.

This IC is intended for a two-way asynchronous communication between data buses. The direction of data transmission is determined by the nDIR inputs.

1 Functional description

Figure 1. Logic diagram



Table 1. Truth table

In	puts	Fund	ction	Outputs	Comments
m G	mDIR	Bus A	Bus B	Outputs	Comments
L	L	Output	Input	A = B	H = high-voltage level
L	Н	Input	Output	B = A	L = low-voltage level
Н	X	Z	Z	Z	Z = high impedance X = irrelevant or don't care

DS11681 - Rev 9 page 2/19

1.1 Cold spare

The 54VCXH163245 features a cold spare input and output buffer. In high reliability applications, cold sparing enables a redundant device to be tied to the data bus with its power supply at 0 V (V_{CC} = 0 V) without affecting the bus signals or injecting current from the I/Os to the power supplies. Cold sparing also allows redundant devices that are not powered to be switched on when required only. Power consumption is therefore reduced by switching off the redundant circuit. This has no impact on the application. Cold sparing is achieved by implementing a high impedance between I/Os and V_{CC} . The ESD protection is ensured through a non-conventional dedicated structure. Using cold spare on Bus A and Bus B separately is not allowed. In cold spare, both V_{CCA} and V_{CCB} must be at 0 V.

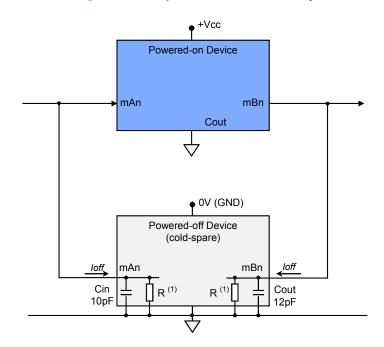


Figure 2. Cold spare and cold redundancy

1. $R = Ioff/V_{CC}$

DS11681 - Rev 9 page 3/19

1.2 Power-up and operating

During power-up, all outputs should be forced to high impedance by setting /OEx high, after VCCA and VCCB are switched on, /OEx can be set low.

- In power-up:
 VCCB must be powered up before VCCA, or simultaneously with VCCA.
 - Voca must be powered up before voca, or simulaneously with voca.
- In operating mode, to guarantee proper operation functionality after power-up:
 VCCA has to be above or equal to VCCB (VCCB higher than VCCA is forbidden)
- In power-down:
 VCCA must be powered down before VCCB, or simultaneously with VCCB.

Warning: If these power sequencing are not respected, the integrity (reliability, aging) is not impacted, however an erroneous signal can occur on the outputs during power-up and power-down.

VCCA VCCB Enable/ DIR1 Direction control /OE1 logic Enable/ DIR2 Direction control /OE2 logic **PORT A PORT B** CORE

Figure 3. Power supply domain

Note:

Control signals on DIRx and /OEx, corresponding CMOS logic levels that apply to all control inputs are: $V_{ILmax} = 0.35 \text{ x VCCB}$ and $V_{IHmin} = 0.65 \text{ x VCCB}$.

For a proper operation, connect power to all VCC and ground all GND pins (i.e., no floating VCC or GND pins). Tie all unused inputs to GND.

DS11681 - Rev 9 page 4/19

1.3 Pin connections and description

Figure 4. Pin connections

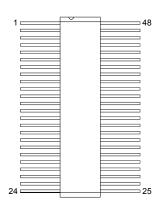


Table 2. Pin description

Device type		All	
Case outline		Х	
Terminal number	Terminal symbol	Terminal number	Terminal symbol
1	1DIR	25	2G
2	1B1	26	2A8
3	1B2	27	2A7
4	GND	28	GND
5	1B3	29	2A6
6	1B4	30	2A5
7	V _{CCB}	31	V _{CCA}
8	1B5	32	2A4
9	1B6	33	2A3
10	GND	34	GND
11	1B7	35	2A2
12	1B8	36	2A1
13	2B1	37	1A8
14	2B2	38	1A7
15	GND	39	GND
16	2B3	40	1A6
17	2B4	41	1A5
18	V _{CCB}	42	V _{CCA}
19	2B5	43	1A4
20	2B6	44	1A3
21	GND	45	GND
22	2B7	46	1A2
23	2B8	47	1A1
24	2DIR	48	1G

DS11681 - Rev 9 page 5/19

2 Absolute maximum ratings and operating conditions

Absolute maximum ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied. Stresses above the absolute maximum ratings may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability. Unless otherwise noted, all voltages are referenced to GND. The limits for the parameters specified herein apply over the full specified $V_{\rm CC}$ range and case temperature range of -55 °C to 125 °C.

Symbol	Parameter	Value	Unit
V _{CC}	Supply voltage referred to GND (V _{CCA} and V _{CCB}) ⁽¹⁾	-0.5 to 4.6	
V _{IA}	DC input voltage range port A referred to GND	-0.5 to 4.6	
V _{IB}	DC input voltage range port B referred to GND	V	
G/DIR	DC input voltage range G and DIR referred to GND	-0.5 to 4.6	·
V _{OA}	DC output voltage range port A referred to GND	-0.5 to V _{CCA} + 0.5 V	
V _{OB}	DC output voltage range port B referred to GND	-0.5 to V _{CCB} + 0.5 V	
I _{IA}	DC input currents port A, anyone input	A, anyone input ± 20	
I _{IB}	DC input currents port B, anyone input	± 20	mA
T _{stg}	Storage temperature range	-65 to 150	
TL	Lead temperature (during 10 sec.)	260	°C
T _J	Junction temperature range	150	
R _{thjc}	Thermal resistance junction-to-case (2)	22	°C/W
ESD	HBM: human body model (3)	2	kV
	No Latch-up at 300 mA (JESD 17)		

Table 3. Absolute maximum ratings

- 1. V_{CCA} must be higher or equal to V_{CCB} . (V_{CCB} higher than V_{CCA} is forbidden).
- 2. Short-circuits can cause excessive heating and destructive dissipation. Values are typical.
- 3. Human body model: a 100 pF capacitor is charged to the specified voltage, then discharged through a 1.5 kΩ resistor between two pins of the device. This is done for all couples of connected pin combinations while the other pins are floating.

Symbol	Pai	Value	Unit	
V_{CCA}	Cumply voltages referred to CND (1)	Device type 01 (see table 9 and SMD)	1.8 ⁽²⁾ to 3.6	
V _{CCB}	Supply voltages referred to GND (1)	Device type 02 (see table 9 and SMD)	1.4 ⁽³⁾ to 3.6	V
VI	Input voltage referred to GND	0 to 3.6	V	
V _O	Output voltage referred to GND		0 to V _{CC}	
T _{op}	Operating temperature		-55 to 125	°C
d _t /d _v	Input rise and fall time, V_{CC} = 3 $V^{(4)}$		0 to 10	ns/V

Table 4. Operating conditions

- 1. V_{CCA} must be higher or equal to V_{CCB} . (V_{CCB} higher than V_{CCA} is forbidden).
- 2. 1.8 V minimum operating is guaranteed with a functional test at $V_{CCA} = V_{CCB} = 1.8$ V, $V_{IL} = 0.35$ x V_{CCA} and $V_{IH} = 0.65$ x V_{CCA} applied on V_{inA} , V_{inB} , EN and DIR inputs
- 3. 1.4 V minimum operating is guaranteed with a functional test at $V_{CCA} = V_{CCB} = 1.4$ V, $V_{IL} = 0.35$ x V_{CCA} and $V_{IH} = 0.65$ x V_{CCA} applied on V_{InA} , V_{InB} , EN and DIR inputs
- 4. Derates system propagation delays by difference in rise time to switch point for t_f or $t_f > 1$ ns/V.

DS11681 - Rev 9 page 6/19

3 Electrical characteristics

In Table 5, T_{op} = -55 °C to 125 °C, unless otherwise specified. Each input/output, as applicable, is tested at the specified temperature, for the specified limits. Non-designated output terminals are high level logic, low level logic or open, except for all I_{CC} tests, where the output terminals are open. When performing these tests, the current meter must be placed in the circuit so that all current flows through the meter.

Table 5. Electrical characteristics

Symbol	Parameter	Test cond	ditions	Туре	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
V _{IC-}	Negative input clamp voltage	I _{IN} = -1 mA		01, 02	Open	Open	-1.5	-0.4	
			I _{OH} = -100 μA	01, 02	3	2.3	2.8		
		Bus A output	I _{OH} = -8 mA	01, 02	3	2.3	2.4		
		$V_{IN} = V_{IH}(min)$ or	I _{OH} = -8 mA	01, 02	3	1.65	2.4		
		V _{IL} (max)	I _{OH} = -6 mA	01, 02	2.3	1.65	1.8		
			I _{OH} = -4 mA	02	1.65	1.65	1.25		
V _{OH}	High-level output voltage		I _{OH} = -100 μA	01, 02	3	2.3	2.1		
		Bus B output	I _{OH} = -18 mA	01, 02	3	2.3	1.7		
		$V_{IN} = V_{IH}(min)$ or	I _{OH} = -6 mA	01, 02	3	1.65	1.25		
		V _{IL} (max)	I _{OH} = -6 mA	01, 02	2.3	1.65	1.25		
			I _{OH} = -4 mA	02	1.65	1.65	1.25		
			I _{OL} = 100 μA	01, 02	3	2.3		0.2	
		Bus A output V _{IN} = V _{IH} (min) or	I _{OL} = 8 mA	01, 02	3	2.3		0.55	V
			I _{OL} = 8 mA	01, 02	3	1.65		0.55	
		V _{IL} (max)	I _{OL} = 6 mA	01, 02	2.3	1.65		0.4	
			I _{OL} = 4 mA	02	1.65	1.65		0.3	
V _{OL}	Low-level output voltage	Bus B output $V_{IN} = V_{IH}(min) \text{ or } V_{IL}(max)$	I _{OL} = 100 μA	01, 02	3	2.3		0.2	
			I _{OL} = 18 mA	01, 02	3	2.3		0.6	
			I _{OL} = 6 mA	01, 02	3	1.65		0.3	
			I _{OL} = 6 mA	01, 02	2.3	1.65		0.3	
			I _{OL} = 4 mA	02	1.65	1.65		0.3	
				01, 02	3.3	3.3	2		
		Bus A		01, 02	2.5	2.5	1.6		
		bus A		01, 02	1.8	1.8	1.17		
V _{IH}	High-level input voltage			02	1.65	1.65	1.07		
	The second participation of th			01, 02	3.3	3.3	2		
		Bus B		01, 02	2.5	2.5	1.6		
				01, 02	1.8	1.8	1.17		
					1.65	1.65	1.07		
,,				01, 02	3.3	3.3		0.8	
V _{IL}	Low-level input voltage	Bus A		01, 02	2.5	2.5		0.7	V
				01, 02	1.8	1.8		0.63	

DS11681 - Rev 9 page 7/19

Symbol	Parameter	Test conditions	s	Туре	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
		Bus A		02	1.65	1.65		0.57	
				01, 02	3.3	3.3		0.8	
V_{IL}	Low-level input voltage	D D		01, 02	2.5	2.5		0.7	V
		Bus B		01, 02	1.8	1.8		0.63	
				02	1.65	1.65		0.57	
lін	Input leakage current high	On nDIR and \overline{G} : For input under test: $V_{IN} = V_{IN}$	01, 02	3.6	2.7		5		
I _{IL}	Input leakage current low	On nDIR and \overline{G} : For input under test: $V_{IN} = V_{IN}$	01, 02	3.6	2.7	-5			
I _{CCH}	Quiescent current, output high	For Bus A, V _{IN} = V _{CCA} or G	DIR and $\overline{G} = V_{CCB}$ or GND: For Bus A, $V_{IN} = V_{CCA}$ or GND For Bus B, $V_{IN} = V_{CCB}$ or GND			3.6		100	
I _{CCL}	Quiescent current, output low	DIR and $\overline{G} = V_{CCB}$ or GND For Bus A, $V_{IN} = V_{CCA}$ or G For Bus B, $V_{IN} = V_{CCB}$ or G	01, 02	3.6	3.6		100		
ΔI _{CC}	Quiescent current delta, TTL input levels	For input under test: V _{IH} = V _{CC} - 0.6 V For all other inputs: V _{IN} = V _{CC} or GND		01, 02	3.6	3.6		750	μА
I _{CCZ}	Quiescent current, output three- state	DIR and \overline{G} = V _{CCB} or GND: For Bus A, V _{IN} = V _{CCA} or GND For Bus B, V _{IN} = V _{CCB} or GND		01, 02	3.6	3.6		100	
I _{OZH}	Three-state output leakage current high	$V_{IN} = V_{IH} \text{ min. or } V_{IL} \text{ max,}$ $V_{OUT} = V_{CC} \text{ or GND}$		01, 02	3.6	2.7		5	
I _{OZL}	Three-state output leakage current low	$V_{IN} = V_{IH}$ min. or V_{IL} max, $V_{OUT} = V_{CC}$ or GND		01, 02	3.6	2.7	-5		
I _{OFF}	Power-off leakage current (cold spare)	DIR and \overline{G} = GND to 3.6 V. For Bus A, V_{IN} = V_{CCA} to 3 For Bus B, V_{IN} = V_{CCB} to 3	.6 V	01, 02	0	0	-10	10	
		V _{IN}	A = 0.57 V	02	1.65	1.65	23		
		V _{IN}	A = 1.07 V	02	1.65	1.65		-23	μΑ
		V _{IN}	A = 0.7 V	01, 02	2.3	1.65	45		
		V _{IN}	A = 1.6 V	01, 02	2.3	1.65		-45	
I _{I(HOLD)}	Input hold current	Bus A V _{IN}	_A = 0.8 V	01, 02	3	1.65	75		
()		V _{IN}	A = 2 V	01, 02	3	1.65		-75	·
			A = 0.8 V	01, 02	3	2.3	75		
		$V_{INA} = 0.8 \text{ V}$ $V_{INA} = 2 \text{ V}$		01, 02	3	2.3		-75	
			A 0 to 3.6 V	01, 02	3.6	2.7		±500	

DS11681 - Rev 9 page 8/19

Symbol	Parameter	Test cond	itions	Туре	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
			V _{INB} = 0.57 V	02	1.65	1.65	23		
			V _{INB} = 1.07 V	02	1.65	1.65	-23		
			V _{INB} = 0.57 V	01, 02	2.3	1.65	25		
		Bus B	V _{INB} = 1.07 V	01, 02	2.3	1.65		-25	
I _{I(HOLD)}	Input hold current		V _{INB} = 0.57 V	01, 02	3	1.65	25		μA
			V _{INB} = 1.07 V	01, 02	3	1.65		-25	
			V _{INB} = 0.7 V	01, 02	3	2.3	45		
			V _{INB} = 1.6 V	01, 02	3	2.3		-45	
			V _{INB} 0 to 2.7 V	01, 02	3.6	2.7		±500	
C _{IN}	Input capacitance			01, 02	GND	GND		10	
C _{OUT}	Output capacitance	Top = 25 °C ⁽¹⁾		01, 02	GND	GND		12	
	Power dissipation capacitance,		a (1)						pF
C _{PD}	1 MHz	F = 1 MHz, Top = 25 °	C (1)	01, 02	3.3	2.5		20	
		$V_{IN} = V_{IH}$ min. or V_{IL} max. $V_{IN} = 0.91$ V min. or 0.49 V max.		01, 02	3.6	1.8			
_	Functional tests			01, 02	2.7	2.3	L	Н	_
				02	1.4	1.4			
t _{PHL1}	Propagation delay time mAn to			01, 02	2.5	1.8		6	
and t _{PLH1}	mBn	$C_L = 30 \text{ pF min., } R_L =$	500 Ω	01, 02	3.3	1.8		5.5	
YPLHI	PLH1			01, 02	3.3	2.5			
t _{PHL2}	Propagation delay time mBn to	C_L = 30 pF min., R_L = 500 Ω		01, 02	2.5	1.8		7.5	
and t _{PLH2}	mAn			01, 02	3.3	1.8		7	
				01, 02	3.3	1.8		7	
4				01, 02	2.5	1.8		10	
t _{PZL1}				01, 02	3.3	1.8 2.5		10 7	-
	Propagation delay time, output enable, m G to mBn	C_L = 30 pF min., R_L =	500 Ω	01, 02	2.5	1.8		10	ns
t _{PZH1}				01, 02	3.3	1.8		10	
47ZM1				01, 02	3.3	2.5		7	
				01, 02	2.5	1.8	1	8.5	
t _{PZL2}				01, 02	3.3	1.8		8.5	
	Propagation delay time, output	0 00	500.0	01, 02	3.3	2.5		8	
	enable, m G to mAn	C _L = 30 pF min., R _L =	500 Ω	01, 02	2.5	1.8		8.5	
t _{PZH2}				01, 02	3.3	1.8		8.5	
				01, 02	3.3	2.5		8	
				01, 02	2.5	1.8		6	
t _{PLZ1}				01, 02	3.3	1.8		6	
	Propagation delay time, output	C _L = 30 pF min., R _L =	500 O	01, 02	3.3	2.5		5.5	, no
	disable, m G to mBn	ου ρι πιπι., π <u>τ</u> =	000 12	01, 02	2.5	1.8		6	ns
t _{PHZ1}				01, 02	3.3	1.8		6	
				01, 02	3.3	2.5		5.5	

DS11681 - Rev 9 page 9/19

Symbol	Parameter	Test conditions	Туре	V _{CCA} (V)	V _{CCB} (V)	Min.	Max.	Unit
	Propagation delay time, output disable, m G to mAn	C_L = 30 pF min., R_L = 500 Ω	01, 02	2.5	1.8		7.5	ns
t _{PLZ2}			01, 02	3.3	1.8		7	
			01, 02	3.3	2.5	1	7	
			01, 02	2.5	1.8		7.5	
t _{PHZ2}			01, 02	3.3	1.8		7	
			01, 02	3.3	2.5		7	

^{1.} C_{IN}, C_{OUT}, and C_{PD} are measured only for initial qualification and after process or design changes which may affect capacitance. C_{IN} and C_{OUT} are measured between the designated terminal and GND at a frequency of 1 MHz. This test may be performed at 10 MHz and guaranteed, if not tested, at 1 MHz. The DC bias for the pin under test (V_{BIAS}) = 2.5 V or 3.0 V. For C_{IN}, C_{OUT}, and C_{PD}, all applicable pins are tested on five devices with zero failures. Power dissipation capacitance (C_{PD}) determines both the power consumption (PD) and dynamic current consumption (IS), where: PD = (C_{PD} + C_L) (V_{CC} x V_{CC}) f + (I_{CC} x V_{CC}) + (n x d x ΔI_{CC} x V_{CC}), IS = (C_{PD} + C_L) V_{CC} f + I_{CC} + n x d x ΔI_{CC}. For both P_D and I_S, n is the number of device inputs at TTL levels, d is the duty cycle of the input signal, f is the frequency of the input signal, and C_L is the external output load capacitance.

DS11681 - Rev 9 page 10/19

4 Radiations

Total dose:

The 54VCXH163245 is RHA QML-V, tested and characterized in full compliance with the MIL-STD-883 specification, in high-dose-rate only (full CMOS technology), between 50 and 300 rad/s.

All parameters provided in Table 5. Electrical characteristics apply to both pre- and post-irradiation, as follows:

All tests are performed in accordance with MIL-PRF-38535 and test method 1019 of MIL-STD-883 for total ionizing dose (TID).

The initial characterization is performed in qualification only on both biased and unbiased parts.

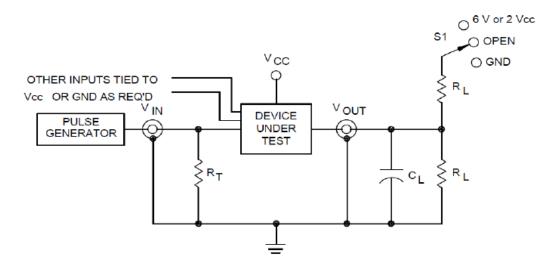
Each wafer lot is tested at high dose rate, in the worst bias case condition, based on the results obtained during the initial qualification.

Heavy-ions:

The behavior of the product when submitted to heavy ions is not tested on qualification lots only. Heavy-ion trials are not performed in production.

Table 6. Radiations

Type	Features	Value	Unit
TID (1)	High-dose rate (50 to 300 rad (Si) per sec.)	300	krad
SFI (2)(3)	With a particle angle of 60 ° at 125 °C and a fluence of 1 x 10 ⁷ ions/cm ²	110	
SEL (E)(6)	With a particle angle of 0 ° at 125 °C and a fluence of 1 x 10 ⁷ ions/cm ²	55	MeV.cm²/mg
OFT/OFH (3)(4)	SEU immune up to:	10.5	wev.cm /mg
SET/SEU (3)(4)	$(V_{CC} = 1.4 \text{ V}, 25 \text{ °C}, \text{ and a fluence of } 1 \text{ x } 10^6 \text{ ions/cm}^2)$	18.5	


- 1. A total ionizing dose (TID) of 300 krad(Si) is equivalent to 3000 Gy(Si), (1 gray = 100 rad).
- 2. SEL: single event latch-up.
- 3. Fluence: number of ions on a specified area (cm²). 1x10⁷ ions/cm² is equivalent to 10 Million ions per cm².
- 4. SET/SEU: single event transient / single event upset.

DS11681 - Rev 9 page 11/19

5 Test circuit

Figure 5. Test circuit

- 1. C_L = 50 pF or equivalent (includes jig and probe capacitance), R_T = Z_{OUT} of pulse generator (typically 50 Ω), V_{REF} = 0.5 V_{DD} . I_{SRC} is set to -1.0 mA and I_{SNK} is set to 1.0 mA for t_{PHL} and t_{PLH} measurements. Input signal from pulse generator: V_I = 0.0 V to V_{DD} ; f = 10 MHz; t_r = 1.0 V/ns ±0.3 V/ns; t_f = 1.0 V/ns ±0.3 V/ns; tr and tf are measured from 0.1 V_{DD} to 0.9 V_{DD} and from 0.9 V_{DD} to 0.1 V_{DD} respectively.
- 2. When measuring t_{PLH} and t_{PHL} : S1 = open
- 3. When measuring t_{PLZ} and t_{PZL} : S1 = $2V_{CC}$ for V_{CC} = 1.8 V and V_{CC} = 2.3 V to 2.7 V; S1 = 6.0 V for V_{CC} = 3.0 V to 3.6 V.
- 4. When measuring t_{PHZ} and t_{PZH} : S1 = GND.
- 5. The t_{PZL} and t_{PZH} reference waveform is for the output under test with internal conditions set so that the output is low at V_{OL} except when disabled by the output enable control. The t_{PZL} and t_{PZH} reference waveform is for the output under test with internal conditions set so that the output is high at V_{OH} except when disabled by the output enable control.
- 6. $C_L = 30 pF minimum or equivalent (includes test jig and probe capacitance)$
- 7. $R_T = 50 \Omega$ or equivalent, $R_L = 500 \Omega$ or equivalent
- 8. Input signal from pulse generator: $V_{IN} = 0.0 \text{ V to } V_{IH}$; PRR = 1 MHz; $ZO = 50 \Omega$; tr = 2.0 ns; tf = 2.0 ns; tr and tf are measured from 10 % of V_{IH} to 90 % of V_{IH} and from 90 % of V_{IH} to 10 % of V_{IH} , respectively; duty cycle = 50 percent.
- 9. Timing parameters are tested at a minimum input frequency of 1 MHz

Table 7. Voltage points for measurements

Symbol	Parameter	V _{CC}				
Syllibol	raidilletei	1.8 V and 2.3 V to 2.7 V	3 V to 3.6 V			
V _{IH}	High-level input voltage	V _{CC}	2.7 V			
V _M	Middle threshold voltage point	V _{CC} /2	1.5 V			
V _X	Low threshold voltage point	V _{OL} + 0.15 V	V _{OL} + 0.3 V			
V _Y	High threshold voltage point	V _{OH} - 0.15 V	V _{OH} - 0.3 V			

DS11681 - Rev 9 page 12/19

 V_{OH}

 V_{OL}

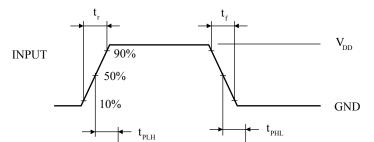


Figure 6. Propagation delay

Figure 7. Enable and disable times

50%

50%

OUTPUT

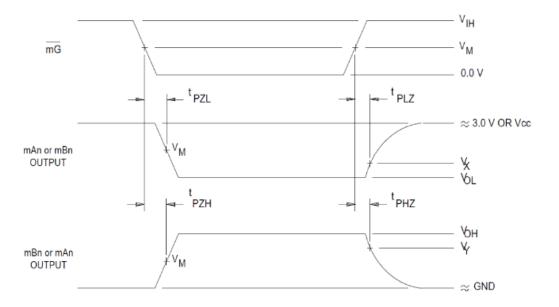
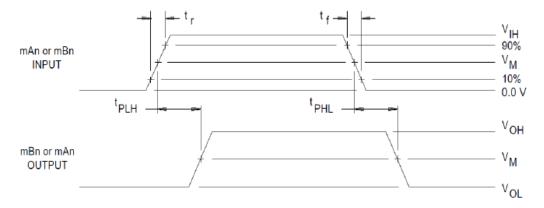



Figure 8. Propagation delay times

DS11681 - Rev 9 page 13/19

6 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

6.1 Ceramic Flat-48 package information

Pin 1 identifier

(N-2 places)

(N places)

Figure 9. Ceramic Flat-48 package outline

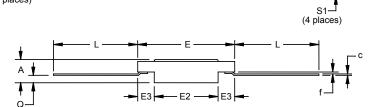


Table 8. Ceramic Flat-48 mechanical data

	Dimensions								
Ref.		mm		Inches					
	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	2.18	2.47	2.72	0.086	0.097	0.107			
b	0.20	0.254	0.30	0.008	0.010	0.012			
С	0.12	0.15	0.18	0.005	0.006	0.007			
D	15.57	15.75	15.92	0.613	0.620	0.627			
E	9.52	9.65	9.78	0.375	0.380	0.385			
E2	6.22	6.35	6.48	0.245	0.250	0.255			
E3	1.52	1.65	1.78	0.060	0.065	0.070			
е		0.635			0.025				
f		0.20			0.008				
L	6.85	8.38	9.40	0.270	0.330	0.370			
Q	0.66	0.79	0.92	0.026	0.031	0.036			
S1	0.25	0.43	0.61	0.010	0.017	0.024			

DS11681 - Rev 9 page 14/19

Ordering information

Table 9. Order code

Order code	SMD ⁽¹⁾	Device type	Qualification level	Package	Lead finish	Marking ⁽²⁾	Packing	
RHFXH163245K1	-	As per device type 01	Engineering Model	Flat-48		RHFXH163245K1		
RHFXH163245K01V	5962F11207	01	QML-V Flight	Flat-48		5962F1120701VXC		
RHFXH163245K03V	5962F11207	01	QML-V Flight	Flat-48 with grounded-lid	Gold	5962F1120701VYC	Conductive strip pack	
RHFXH163245K05V	5962F11207	02	QML-V Flight	Flat-48 with grounded-lid		5962F1120702VYC		
RHFXH163245K07V	5962F11207	02	QML-V Flight	Flat-48		5962F1120702VXC		

- 1. Standard micro circuit drawing.
- 2. Specific marking only. Complete marking includes the following:
 - ST logo
 - Date code (date the package was sealed) in YYWWA (year, week, and lot index of week)
 - Country of origin (FR= France)

DS11681 - Rev 9 page 15/19

8 Other information

8.1 Date code

The date code (date the package was sealed) is structured as follows:

- Engineering model: 3yywwz
- Flight model: yywwz

Where:

yy = last two digits of the year, ww = week digits, z = lot index of the week

8.2 Product documentation

Each product shipment includes a set of associated documentation within the shipment box. This documentation depends on the quality level of the products, as detailed in the table below.

The certificate of conformance is provided on paper whatever the quality level. For QML parts, complete documentation, including the certificate of conformance, is provided on a CDROM.

Table 10. Product documentation

Quality level	Item
Engineering model	Certificate of conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Reference to ST datasheet Reference to TN1181 on engineering models ST Rennes assembly lot ID
QML-V Flight	Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Serial numbers Group C reference Reference to applicable SMD ST Rennes assembly lot ID
	Quality control inspection (groups A, B, C, D, E) Screening electrical data in/out summary Precap report PIND (particle impact noise detection) test SEM (scanning electronic microscope) inspection report X-ray plates

DS11681 - Rev 9 page 16/19

Revision history

Table 11. Document revision history

Date	Revision	Changes		
27-Jul-2016	1	Initial release		
15-Sep-2016	2	Table 4: "Absolute maximum ratings": updated V_{IA} value and added G/DIR parameter. Table 5: "Operating conditions": updated V_{I} value		
29-Sep-2016	3	Section 1.1: "Cold spare": updated text Section 1.2: "Power-up": updated footnotes of Figure 3: "Power-up"		
30-Nov-2017	4	Updated Heavy ions value Table 7: "Radiations"		
17-Sep-2018	5	Updated Figure 3. Power supply domain and Section 1.2 Power-up and operating,		
		Section 1.3 Pin connections and description and Section 7 Ordering information.		
		Minor text changes		
13-Jul-2021	6	Updated Section Features and Section 1.2 Power-up and operating.		
14-Sep-2021	7	Updated Section Description.		
06-Mar-2024	8	Updated figure and features on the cover page.		
		Updated Section 1.2: Power-up and operating, V_{CCA} , V_{CCB} value in Table 4 and Table 9. Order code.		
		Added footnote in Table 4.		
		Minor text changes.		
28-Jul-2025	9	Updated title, features and description on the cover page.		
		Updated parameter and values in Table 3, Table 4, Table 5.		
		Updated Section 4: Radiations and Table 9.		

DS11681 - Rev 9 page 17/19

Contents

1	Functional description			
	1.1	Cold spare		
	1.2	Power-up and operating	4	
	1.3	Pin connections and description	5	
2	Abs	solute maximum ratings and operating conditions	6	
3	Elec	ctrical characteristics		
4	Radiations			
5	Test circuit			
6	Pac	kage information	14	
	6.1	Ceramic Flat-48 package information	14	
7	Ord	ering information	15	
8	Oth	er information	16	
	8.1	Date code	16	
	8.2	Product documentation		
Rev	/ision	history		

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DS11681 - Rev 9 page 19/19