

Aerospace 2 x 40 A - 45 V Schottky rectifier

SMD.5

The upper metallic lid is not internally connected to any pin, nor to the IC die inside the package

The upper metallic lid is not internally connected to any pin, nor to the IC die inside the package

Features

- Forward current: 2 x 40 A
- Repetitive peak voltage: 45 V
- · Low forward voltage drop
- · Monolithic dual die common cathode
- · Hermetic package
- TID and SEE characterized
- Package mass: 0.92 g
- ESCC qualification in progress

Description

The STPS80A45CHR is package and screened to comply with the ESCC5000 specification for aerospace products. It is a dual monolithic Schottky rectifier assembled in an SMD.5 hermetic package and characterized in total dose at high dose rate and in single event effect to be used in aerospace applications. It is intended to get ESCC qualified.

The complete ESCC specification for this device is available from the European Space Agency web site. ST guarantees full compliance of qualified parts with the ESCC detailed specification.

Product status link	
STPS80A45CHR	

Product summary				
I _{F(AV)}	2 x 40 A			
V _{RRM}	45 V			
T _j (max)	175 °C			
V _{F(max)} at 2 x 40 A / 125 °C	0.74 V			

1 Characteristics

1.1 Absolute maximum ratings

The absolute maximum ratings are limiting values at 25°C, per diode unless otherwise notified. Values provided in Table 1. Absolute maximum ratings shall not be exceeded at any time during use or storage.

Table 1. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V _{RRM}	Repetitive peak reverse voltage	45	V
I _O ⁽¹⁾	Average output rectified current per diode per package	40 80	А
I _{FSM} ⁽²⁾	Forward surge current	200	Α
T _{op}	Operating temperature range (case temperature)	-65 to +175	°C
T _j ⁽³⁾	Maximum junction temperature	+175	°C
T _{stg}	Storage temperature range	-65 to +175	°C
T _{sol} ⁽⁴⁾	Soldering temperature	+245	°C

^{1.} $T_{case} > +xx$ °C, derate linearly to 0 A at +175 °C.

- 3. $(dP_{tot}/dT_j) < (1/R_{th(j-a)})$ condition to avoid thermal runaway for a diode on its own heatsink.
- 4. Duration 5 seconds maximum with at least 3 minutes between consecutive temperature peaks.

1.2 Thermal parameters

Table 2. Thermal parameters

Symbol	Parameter	Typ. value	Max. value	Unit	
D (1)	Thermal resistance, junction to case	Per diode	-	3.2	°C/M
R _{th(j-c)} (1)	mermanesistance, junction to case	Per package	-	2.8	°C/W

1. When only 1 diode is used, the dissipation is made from a part of the die, hence to a higher thermal resistance.

DB3784 - Rev 1 page 2/9

^{2.} Sinusoidal pulse of 10ms duration

1.3 Electrical characteristics

Limiting value per diodes, unless otherwise specified.

Table 3. Static electrical characteristics

Symbol	Parameter	MIL-STD-750 test method	Test conditions ⁽¹⁾		Min.	Тур.	Max.	Unit
I _R	Reverse leakage current	4016	DC method, V _R = 45 V	T _j = 25 °C	-	4.0	25	μΑ
'R	Neverse leakage current	4010	Do metriou, VR = 45 V	T _j = 125 °C	-	6.0	18	mA
				T _j = -55 °C	-	0.55	0.59	
			I _F = 5 A	T _j = 25 °C	-	0.47	0.51	
			T _j = 125 °C	-	0.36	0.40		
				T _j = -55 °C	-	0.59	0.63	
		I _F :		T _j = 25 °C	-	0.53	0.57	
				T _j = 125 °C	-	0.44	0.49	
			$T_j = -t$	T _j = -55 °C	-	0.65	0.70	
V _F ⁽²⁾	Forward voltage drop	4011	I _F = 20 A	T _j = 25 °C	-	0.62	0.67	V
				T _j = 125 °C	-	0.55	0.61	
				T _j = -55 °C	-	0.71	0.76	
		I _F = 30 A	T _j = 25 °C	-	0.69	0.75		
			T _j = 125 °C	-	0.62	0.68		
				T _j = -55 °C	-	0.76	0.82	μA mA
			I _F = 40 A	T _j = 25 °C	-	0.76	0.82	
				T _j = 125 °C	-	0.67	0.74	

- 1. Measurement per diode
- 2. Pulse width 680 μ s, duty cycle \leq 2%

Table 4. Dynamic electrical characteristics

Symbol	Parameter	Т	est conditions	Min.	Тур.	Max.	Unit
C ⁽¹⁾	Junction capacitance	T _j = 25 °C	V _R = 10 V, F = 1 MHz	-	-	610	pF
dv/dt ⁽²⁾	Critical rate of rise of reverse voltage	T _j = 25 °C		-	-	10000	V/µs

- 1. Guaranteed by sampling. In case the sampling acceptance criteria is not met, guaranteed by a 100% test
- 2. Guaranteed by design, characterization and wafer lot acceptance test on 10 pieces. Not tested in production.

DB3784 - Rev 1 page 3/9

2 Radiation

The technology of the STMicroelectronics Rad-Hard rectifier's diodes is intrinsically highly resistant to radiative environments.

The product radiation hardness assurance is supported by a total ionisation dose (TID) test at high dose rate and a single effect event (SEE) characterization.

2.1 Total dose radiation (TID) testing

A characterization in Total Ionizing Dose has been done at high dose rate on 12 parts housed in SMD1, 4 parts unbiased, 4 parts reverse biased and 4 parts forward biased.

The irradiation has been done according to the ESCC 22900 specification, standard window.

Both pre-irradiation and post-irradiation performances have been tested using the same circuitry and test conditions for a direct comparison can be done (T_{amb} = 22 ±3 °C unless otherwise specified).

The following parameters were measured:

- · Before irradiation
- After irradiation at final dose 3 Mrad (Si)
- After 168 hrs at room temperature
- after 168 hrs at 100 °C anneal

Based on this characterization, the device is deemed able to sustain 3 Mrad(Si) while maintaining all its parameters within its specifications.

2.2 Single event effect

The Single Event Effect (SEE) relevant to power rectifiers are characterized, i.e. the Single Event Burnout (SEB). The tests are performed as per ESCC 25100, each one on 3 pieces from 1 wafer at room temperature.

The accept/reject criteria are:

SEB (Destructive mode):

The diode is reverse biased during irradiation. The test is stopped as soon as a SEB occurs or when the reverse leakage current is above the specification or when the overall fluency on the component reaches 1E7 cm².

Post irradiation stress test (PIST):

After the irradiation, a stress is applied to the diode in order to reveal any latent damage on the irradiated devices.

The reverse voltage value is increased from 0 V to 100% of V_R max. and then decreased from 100% of the V_R max. to 0 V. At each step, the reverse leakage current value is measured.

Table 5. Radiation hardness assurance summary

Туре	Conditions	Result
Total ionisation dose	High dose rate 4 reverse biased + 4 forward biased + 4 unbiased	Immune up to 3 Mrad(Si)
Single effect burnout	LET : 61.2 MeV.cm/mg V _r : 30 V	No burnout

DB3784 - Rev 1 page 4/9

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: www.st.com. ECOPACK® is an ST trademark.

3.1 SMD.5 package information

Figure 1. Surface mount SMD.5 package outline (3-terminal)

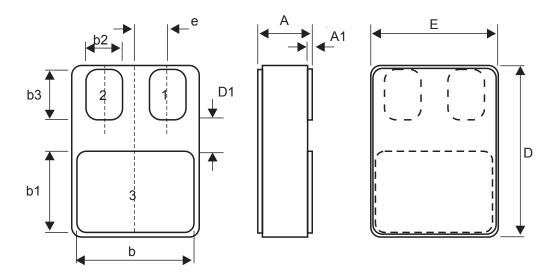


Table 6. SMD.5 package mechanical data

Symbols	Dimensions (mm)		Di	mensions (inch	es)	
Symbols	Min.	Min. Typ. Max. Min.		Тур.	Max.	
Α	2.84		3.15	0.112		0.124
A1	0.25		0.51	0.010		0.200
b	7.13		7.39	0.281		0.291
b1	5.58		5.84	0.220		0.230
b2 ⁽¹⁾	2.28		2.54	0.090		0.100
b3	2.92		3.18	0.115		0.125
D	10.03		10.28	0.395		0.405
D1	0.76			0.030		
E	7.39		7.64	0.291		0.301
е		1.91 BSC			0.075	

1. 2 locations

DB3784 - Rev 1 page 5/9

4 Ordering information

Table 7. Ordering information

Order codes	ESCC detail specification	Quality level	Package	Lead finishing	Marking	Weight	Packing
STPS80A45CS1	-	engineering model	SMD.5	Gold	STPS80A45CS1	0.92 g	Strip pack
STPS80A45CSG ⁽²⁾	TBD	Flight model			TBD		

- 1. Specific marking only. The full marking includes in addition:
 - For the Engineering Models: ST logo, date code, country of origin (FR)
 - For flight parts: ST logo, date code, country of origin (FR), ESA logo, serial number of the part within the assembly lot
- 2. In development

DB3784 - Rev 1 page 6/9

5 Other information

5.1 Traceability information

The date code in formation is structured as described in the table below.

Table 8. Date codes

Model	Date code ⁽¹⁾
EM	3yywwN
ESCC	yywwN

^{1.} yy = year, ww = week number, N = lot index in the week.

5.2 Documentation

Each product shipment includes a set of associated documentation within the shipment box. This documentation depends on the quality level of the products, as detailed in the table below.

The documentation is provided on printed paper in a dedicated envelop.

Table 9. Default documentation provided with the parts

Quality level	Documentation			
Engineering Model	Certificate of Conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Reference data sheet Reference to TN1180 on engineering models ST Rennes assembly lot ID			
ESCC Flight	Certificate of Conformance including: Customer name Customer purchase order number ST sales order number and item ST part number Quantity delivered Date code Serial numbers Reference of the applicable ESCC Qualification maintenance lot Reference to the ESCC detail specification ST Rennes assembly lot ID Radiation verification test report ⁽¹⁾			

^{1.} Report of the ESCC22900 test supporting the delivered parts

DB3784 - Rev 1 page 7/9

Revision history

Table 10. Document revision history

Date	Revision	Changes
07-Dec-2018	1	First issue.

DB3784 - Rev 1 page 8/9

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2018 STMicroelectronics - All rights reserved

DB3784 - Rev 1 page 9/9