

NFC Type 4/RFID tag IC with up to 2.0 Kbits flash, trusted product authentication and digitization

Product status link

ST25TA-E

Product summary		
Temperature range	-25 °C to 85 °C	
Package	Bumped and sawn inkless wafer	

Features

Includes state-of-the-art patented technology

Contactless interface

- Compliant with ISO/IEC 14443 Type A
- NFC Forum Type 4 tag certified by the NFC Forum
- Up to 106 kbps data-rate
- Internal tuning capacitance: 68 pF +/- 4 pF

Memory

- Up to 2048 bits (256 bytes) of user flash memory
- Support NDEF data structure
- Data retention: 25 years
- Minimum endurance: 500 k write cycles
- Page erase time down to 0.8 ms
- Chaining capability
- Augmented NDEF (contextual automatic NDEF message)
- 4-digit unique tap code
- 24-bit general purpose counter with antitearing

Data protection

- Permanent lock file protection for read/write access
- 64-bit password-based file protection for read/write access with diagnosis and mitigation services.

Chip identification and protection

- 7-byte unique identifier (UID)
- TruST25 digital signature (off-chip ECDSA)

Product authentication and digitization

- Up to 2-slot secure key storage
- Edge TruST25 digital signature (on-chip ECDSA)
- Compliant with blockchain-backed evidence of authenticity

Security features

- SESIP certified-ready with physical attacker resistance
- Active shield and protection against state-of-the-art attacks
- · A unique serial number on each die

Privacy

- Scalable NFC-enabled privacy modes
 - Kill mode and anonymous with untraceable UID (fixed or random ID)
 - Configurable kill mode for permanent deactivation of the tag

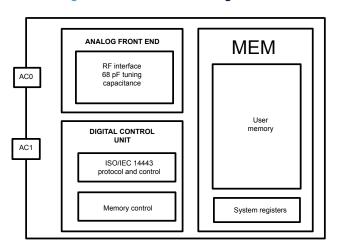
1 Description

The ST25TA-E devices are NFC/RFID tag ICs with solid security and privacy features.

The ST25TA-E devices hold a unique off-chip generated digital signature through TruST25 (a set of software and procedures) used to prove the origin of the chip UID in identification detection.

The ST25TA-E devices also generate on-chip digital signatures dynamically through Edge TruST25 services to prove the origin of the product in ownership detection and associated data. They also embed programmable and custom certificates for enrollment verification.

The Augmented NDEF feature is an automatic contextual NDEF message service that allows tags to react to dynamic content without user interaction.


The ST25TA-E devices have a configurable flash memory with 25 years of data retention and work with a 13.56 MHz short range RFID reader or an NFC phone.

The contactless interface is compliant with the ISO/IEC 14443 standard and NFC Forum Type 4 tag specification.

1.1 Block diagram

The ST25TA-E devices are depicted in the following block diagram:

Figure 1. ST25TA-E block diagram

00000

1.2 Package connections

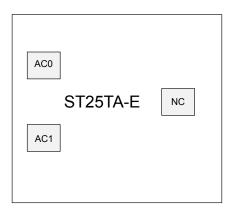

The ST25TA-E devices are provided in one delivery form: sawn and bumped wafer.

Table 1. ST25TA-E signal names

Signal name	Function	Direction	
AC0	Antenna coils	in-out	
AC1	Antenna coils	in-out	

DB5166 - Rev 7 page 2/62

Figure 2. ST25TA-E die connection for sawn and bumped wafer

DT73964V1

Signal descriptions

2.1 Antenna coil (AC0, AC1)

These inputs are used to connect the ST25TA-E device to an external coil exclusively. It is advised not to connect any other DC or AC path to neither AC0 nor AC1.

When correctly tuned, the coil is used to access the devices using NFC Forum Type 4 tag commands.

DB5166 - Rev 7 page 4/62

3 Memory management

The ST25TA-E devices are organized as a file system, and they support the NDEF tag application as defined in the NFC Forum Type 4 tag specification. The ST25TA-E devices are composed of several files:

- CC (capability container) file
- NDEF file
- ANDEF file: an ST proprietary file.

The CC, NDEF, and ANDEF files are dedicated to the NDEF tag application.

Other elementary files that are not included into the CC file are defined as ST proprietary files, and are dedicated to the TruST25 and Edge-TruST25 services and ST25TA-E programmable services:

- MSG file
- SIG file
- CA file
- CFG file

A configuration file provides some information for handling the main features. The CFG file is located into the system configuration memory. The NDEF tag application and the TruST25 and Edge-TruST25 services or configuration files reside under the NFC application DF file. The MF master file is the root of the file system.

One object file, called xparam, is dedicated for customization of personalization. This file is located at MF level and useful with custom pre-personalization. This custom pre-personalization is required when a customized personalization is requested.

The custom pre-personalization service is controlled by STMicroelectronics.

Note: Contact your sale officer for more information.

MF FID=3F0 OF DF (xparam) Referenced Data EF EF EF EF EF EF EF (CA) (MSG) (SIG) (CFG) (CC) (ANDEF (NDEF **Blockchain-based application** NFC application - compliant with NFC specification System configuration memory User memory

Figure 3. ST25TA-E file system organization

The file identifier is the value used in the ${\tt SelectFile}$ command to select a file.

 File identifier
 Meaning

 0xE101
 CFG file

 0xE103
 CC file

 0xE104
 NDEF file

 0xE105
 ANDEF file

Table 2. File identifier

DB5166 - Rev 7 page 5/62

File identifier	Meaning
Other identifiers	Contact your STMicroelectronics sales officer for more information.

Selecting the NDEF tag application with a specific AID (application identifier) handles most of the commands, which are authorized in the SELECTED APP state. Refer to State machine.

Selecting the MF file handles a few commands, authorized in the PROTOCOL state. Refer to State machine.

Note:

In PROTOCOL and SELECTED APP states, the ST25TA-E behaves in accordance with the ISO/IEC 14443-4 part. The ST25TA-E devices exit from PROTOCOL state and enter SELECTED APP state when a valid SelectApplication command is successfully received.

The table below lists the elementary files located in the user memory and the CFG file located in the system configuration memory. They are accessed with the <code>UpdateBinary</code> and <code>ReadBinary</code> commands.

Table 3. List of user files

File name	Access rights	
CFG file	read/write	
CC file	read only	
NDEF file	read/write	
ANDEF file	read/write	
CA file		
MSG file	Contact your STMicroelectronics sales officer for more information.	
SIG file		

On factory delivery, the file system is not protected. Passwords can be setup to protect read and/or write access to elementary file, except for the CC file that is always readable. Most of the elementary files can have individual read and/or write access permissions. Refer to File protection.

DB5166 - Rev 7 page 6/62

File ID

FLEN: Maximum NDEF file

size in bytes

Read access permission

Write access permission

T Field

File ID

FLEN: Maximum ANDEF file

size in bytes

Read access permission

Write access permission

3.1 CC (capacity container) file layout

0x0009

0x000B

0x000D

0x000E

0x000F

0x0010

0x0011

0x0013

0x0015

0x0016

The CC file gives some information about the ST25TA-E and the NDEF or ANDEF files. This file is a read-only file for the RF host and cannot be modified by issuing an <code>UpdateBinary</code> command.

File offset Meaning Value Comments 0x0000 Length CC file 0x0017 0x0002 0x20 Mapping version Version 2.0 Mle: Maximum number of 0x0003 0x00FF bytes that can be read Mlc: Maximum number of 0x0005 0x0075 bytes that can be written 0x0007 0x04 T Field 0x0008 0x06 L Field

NDEF file control TLV

ANDEF file control TLV

Table 4. CC file layout

0xE104

0x0100

0x00

0x00

0x05

0x06

0xE105

0x002C

0x00

0x00

3.2 NDEF file layout

The NDEF file provides the NDEF message that contains user data. The RF host can read and write data. The first two bytes, named *NDEF message length*, define the size of the NDEF message.

 File offset
 Field
 Meaning

 0x0000
 NLEN
 NDEF message length

 0x0002
 ...
 User data
 NDEF message

 ...
 0x00FF

Table 5. NDEF file layout

Note: The NLEN gives the size of the NDEF message (up to 0x00FE).

DB5166 - Rev 7 page 7/62

3.3 ANDEF file layout

The ANDEF file provides the ANDEF custom message that contains user data for Augmented NDEF support. The RF host can read and write data. The first two bytes, named *ANDEF message length*, define the size of the ANDEF message.

Table 6. ANDEF file layout

File offset	Field	Meaning	
0x0000	ANLEN	ANDEF message length	
0x0002			
	User data	ANDEF message	
		7. NDET THOSOUGE	
0x002B			

Note: ASCII valid values should be used into the ANDEF message.

Note: The ANLEN gives the size of the message (0x002A).

3.4 CA file layout

The CA file is used by the Edge-TruST25 services. For further information, contact your STMicroelectronics sales officer.

3.5 MSG file layout

The MSG file is used by the TruST25 and Edge-TruST25 services. For further information, contact your STMicroelectronics sales officer.

3.6 SIG file layout

The SIG file is used by the TruST25 and Edge-TruST25 services. For further information, contact your STMicroelectronics sales officer.

3.7 CFG file layout

The CFG file specifies the configuration of the ST25TA-E devices. The RF host can read and may write configuration register fields: configuration fields can either be RFU, read-only, or read and write. The first two bytes, named *CFG message length*, define the size of the CFG configuration fields.

Table 7. CFG file layout

File offset	Field	Meaning
0x0000	CFGLEN	CFG message length
0x0002	RFU	00h00h
0x0007		00h00h
0x0008	System data	
		Configuration register field
		Configuration register field

DB5166 - Rev 7 page 8/62

In addition to the user memory including all previous EF files, the system configuration memory includes the CFG EF file, where a set of registers are located. Registers are read during the boot sequence and define the basic ST25TA-E behavior.

The table below lists the configuration registers of the ST25TA-E device. They are accessed with the <code>UpdateBinary</code> and <code>ReadBinary</code> commands.

Depending on the configuration register, when its content is updated during an RF session, the effect of the new value is activated either immediately or at the start of the next RF session.

Register information stored in the CFG EF file is structured as follows (MSB first):

Table 8. List of configuration registers

Name	Offset	Bytes	Access type	Activation time ⁽¹⁾	Section
CFG_UID	0008h	7	Read only	-	Refer to Product identifier: Unique identifier (UID)
CFG_MEM_SIZE	000Fh	2	Read only	-	Refer to Product
CFG_IC_REF	0011h	1	Read only	-	information
CFG_PRIV_NUID	0012h	3	Read write	В	Refer to
CFG_PRIV	0015h	1	Read write	В	Anonymous mode description
CFG_GP_CNT_LIMIT	0016h	3	Read write	I	
CFG_GP_CNT_CFG	0019h	1	Read only, write (once)	I	
CFG_GP_CNT_OFFSET_ADD	001Ah	2	Read write	I	Refer to
OFO OR OUT FM	00401-	Ch 3 Read write EN[23]	CFG_GP_CNT	Remote monitoring	
CFG_GP_CNT_EN	001Ch		Read write	CFG_GP_CNT_	
CFG_ANDEF_BYTE_OFFSET	001Fh	1	Read write	В	
CFG_ANDEF_CFG	0020h	1	Read write	I	Refer to
CFG_ANDEF_SEP	0021h	1	Read write	I	Augmented NDEF feature
CFG_ANDEF_DIAG_CFG	0022h	1	Read write	I	(ANDEF)
CFG_ANDEF_EN	0024h	1	Read write	В	
CFG_PWD_LOCK	002Dh	3	Read only, write (once)	I	Refer to Permanent password lock

^{1. &#}x27;I' means Immediate, 'B' means on the next RF boot.

Note:

The UpdateBinary command may execute burst write access only if all registers to be written are tagged as "writable-ready". If one register in the burst is tagged as RO or RFU (refer to Table 7, address range [0x0002:0x0007]), no update is performed and the whole burst write operation is aborted. Registers tagged "write once" or "write (once)" may be included into a burst since they are masked automatically by the ST25TA-E device. Note that the tag "write once" is applied on all the bits of a field into a register whereas the tag "write (once)" is applied on some bits of the field into a register.

Note:

Authorization and value validity are checked during the update operation for each register. If the verification failed, the whole burst write is aborted.

DB5166 - Rev 7 page 9/62

4 Specific features

4.1 File protection

Each elementary file can have individual read and/or write access permissions to prevent unauthorized reading from or writing to a file.

The ST25TA-E devices support a lock feature that provides read and write protection of each elementary file in user and/or system configuration memory; the lock feature can be permanent or reversible.

- The permanent lock file mechanism that permanently changes the memory content to be readable or writable and makes it impossible to read or change the content after it has been written. This is achieved by changing the file permissions. The effect of a permanent lock file operation cannot be reverted.
- The reversible lock file protection mechanism is based on password-based authentication. This mechanism can restrict use of some ST25TA-E features/commands and prevent read and/ or write access to data stored in each elementary file of user or system configuration memory.

4.1.1 Permanent lock file protection

Each EF file, except the CC file, can be individually locked in read or write access from each other with the <code>EnablePermanentRequirement</code> command. Thus, data in the locked EF file cannot be accessed (permanent state):

- A write-protect lock command prevents the content of a file from being altered.
- A read-protect lock command prevents any user from reading or accessing the data in the file.

File name Permanent read lock Permanent write lock CFG file ves ves CC file n/a NDEF file yes yes ANDEF file yes yes MSG file SIG file For further information, contact your STMicroelectronics sales officer. CA file

Table 9. Lis of permanent read/write lock protection

The effect of a permanent lock file operation cannot be reverted.

Note: Open or close a security session is still possible even if permanent lock protection is enabled for a file.

Note: The permanent write CFG lock protection prevents the access to the configuration registers of the CFG file. It also prevents disabling the reversible lock of any file.

DB5166 - Rev 7 page 10/62

4.1.2 Reversible lock file protection

The ST25TA-E devices provide reversible protection using the password protection for user and system configuration elementary files.

Table 10. List of read/write password protection

File name	Reversible read lock	Reversible write lock	
CFG file	yes	yes	
CC file	n/a	n/a	
NDEF file	yes	yes yes	
ANDEF file	yes		
MSG file	For further information, contact your STMicroelectronics sales officer.		
SIG file			
CA file			

Each EF file can be individually locked (respectively unlocked) from each other with the <code>Enable</code> <code>VerificationRequirement</code> command (respectively <code>DisableVerificationRequirement</code> command) in read and/or write access

Once enabled, access to data into a file is controlled by a security session based on passwords. On successful (respectively failed) presentation of a password, a security session is open (respectively not open or closed) and grants (respectively denies) access to the protected files.

Table 11. Security session type

Security session	Open by presenting	Rights granted when the session is open	
		Write access to configuration registers of CFG file.	
		Enable/disable reversible lock of any file.	
	PWD_CFG_WR	Enable permanent lock of any file.	
		Revert GP counter.	
CFG file		Check CFG write lock status.	
		Update PWD_CFG_WR value.	
		Read access to configuration registers of CFG file.	
	PWD_CFG_RD	Check CFG lock status.	
		Update PWD_CFG_RD value.	
		Write access to NDEF file.	
	PWD_NDEF_WR	Check NDEF write lock status.	
NDEE SI-		Update PWD_NDEF_WR value.	
NDEF file	PWR_NDEF_RD	Read access to NDEF file.	
		Check NDEF read lock status.	
		Update PWD_NDEF_RD value.	
		Write access to ANDEF file.	
	PWD_ANDEF_WR	Check ANDEF write lock status.	
ANDEE SI-		Update PWD_ANDEF_WR value.	
ANDEF file		Read access to ANDEF file.	
	PWD_ANDEF_RD	Check ANDEF read lock status.	
		Update PWD_ANDEF_RD value.	

DB5166 - Rev 7 page 11/62

Once enabled, the status of the protection can be retrieved by issuing a Verify command and by decoding sw1-sw2 status, as mentioned in the previous section.

Data access to a protected file is performed by issuing a Verify command with adequate security attributes and with an adequate obfuscated password presentation (refer to Cover coding), followed by the ReadBinary or UpdateBinary commands.

The obfuscated password presentation with the <code>Verify</code> command opens a security session on an EF file with the corresponding password identifier and valid encrypted password. To close the security session corresponding to a password identifier, the user can choose one of the following options:

- Remove the tag from the RF field.
- DeSelect the tag.
- Use the Verify command with the same password identifier, and an invalid password value.
- Open a security session corresponding to a different password identifier. Opening a new security session automatically closes the previously opened one (even if the open operation fails).
- Select the MF master file.

The following figure describes the mechanism to open/close the security sessions.

Out of RF field RF Field On RF Field OFF RF Field OFF **ALL Security** Session closed, Any other Present pwd(x) OK Present any pwd not RF Field OFF OK or deselect MF Security session x Any other command opened (y Present any pwd not closed) OK or deselect MI Present pwd(x) OK "Present pwd(y) OK Security session y opened (x closed) Any other command

Figure 4. ST25TA-E security session management

4.1.3 Permission status and permission interaction

Once enabled, the permission status can be retrieved by issuing a Verify command and by decoding SW1 and SW2 status, as follows:

DB5166 - Rev 7 page 12/62

7,000

Table 12. List of read protection status

Status	Verify (P2 [b0]= 1) R-APDU	Description
RD authorized	9000h	Read access w/o any security (delivery state)
RD protected	6300h	Read access protected by a password
RD forbidden	6984h	Read access forbidden (persistent state)

Table 13. List of write protection status

Status	Verify (P2 [b1]= 1) R-APDU	Description
WR authorized	9000h	Write access w/o any security (delivery state)
WR protected	6300h	Write access protected by password
WR forbidden	6984h	Write access forbidden (persistent state)

When the read (respectively write) permanent lock is enabled and applied to an authorized access, the permanent lock operation is successfully enabled. Data in the locked EF file cannot be accessed: any read (respectively write) access in a read (respectively write) locked file is ignored. Once successfully enabled, the permission status returns the read (respectively write) forbidden status.

When the read (respectively write) permanent lock is enabled and applied to a read (respectively write) protected access, the permanent lock operation is successfully enabled. Data in the locked EF file cannot be accessed and any password-based read (respectively write) access in a read (respectively write) locked file is ignored, even if the security session is or can be opened or closed. Once successfully enabled, the permission status returns the read (respectively write) forbidden status.

When password-protected read (respectively write) reversible lock is enabled and applied to an authorized access, the reversible lock operation is successfully enabled. Access to data in a protected file is controlled by a security session based on passwords: any read (respectively write) access is protected by the read (respectively write) password presentation. Once successfully enabled, the permission status returns a read (respectively write) protected status.

When password-protected read (respectively write) reversible lock is enabled and applied to a read (respectively write) locked access, the reversible lock operation is successfully ignored and an error is returned during the activation of the reversible lock operation for all EF files except for the write CFG locked file. Refer to the note into the Permanent lock file protection. Data in the locked EF file cannot be accessed: Any read (respectively write) access in a read (respectively write) locked file is ignored. Any read (respectively write) protected access in a read (respectively write) locked file is ignored too. Once successfully enabled, the permission status returns read (respectively write) protected status. In other cases (ignored), the permission status returns read (respectively write) forbidden status.

DB5166 - Rev 7 page 13/62

4.2 Password management

The password management addresses all stages of the password, including generation, conveyance, and storage or cyclic upgrade and offers several password protection mechanisms.

The ST25TA-E devices can support several passwords for different purposes:

- Security session mechanism
- Command or feature protection

Note: The ST25TA-E devices do not permit password-protected commands to be executed unless they are accompanied by the correct password.

By 'accompanied', it is understood that:

- the password is present into the payload of the command, or
- the password is presented by issuing the verify command (security session) prior the command execution.

Each of the ST25TA-E passwords is 64-bit long and the default factory password value is 000000000000000.

Factory activation **Passwords** Size Passwords index Applied to PWD_CFG_WR 00h CFG file PWD_CFG_RD 01h PWD_NDEF_WR 02h NDEF file 8-byte no PWD NDEF RD 03h PWD_ANDEF_WR 04h ANDEF file PWD ANDEF RD 05h

Table 14. List of file passwords

Table 15. List of feature passwords

Password	Size	Password index	Factory activation	Applied to
PWD_PRIV	8-byte	0Ch	yes	Privacy feature
PWD_XPARAM_WR	8-byte	2Eh	yes	Perso object file

Note: In addition to the file-related passwords, the PWD_PRIV password (with 0Ch password index) is used with the ManageBasicLogicalChannel command for privacy modes.

Note: In addition to the file-related passwords, the xparam password (with 2Eh password index) is used prior to executing the SetSystemInformation command for custom personalization.

DB5166 - Rev 7 page 14/62

4.2.1 Cover coding

The ST25TA-E device applies an obfuscation mechanism, also called cover coding mechanism. This scheme is used to transmit obfuscated password values in the password-referenced data field of the following command frames:

Table 16. List of password-related command frames

Command	Meaning
Verify	Present password
ChangeReferenceData	Update the password value
ManageBasicLogicalChannel	Change the tag state (normal state against privacy state)
EnableVerificationRequirement	Enable password lock mechanism
DisableVerificationRequirement	Disable password lock mechanism

Note: The password-referenced data field in a request frame shall be computed as follows: password verification data = XOR (CHALLENGE 8B, PASSWORD 8B)

The requester produces the cipher text by applying an exclusive-or (XOR) operation of the 8-byte password and an 8-byte random value and sends the cipher text defined as the password-referenced data field of the password-related commands, to the ST25TA-E device. The ST25TA-E device applies the XOR operation to recover the plain text and the password and check if it matches with the internal reference value. The ST25TA-E devices initiate the generation of an 8-byte random number and retain this number for use in a subsequent password-related command.

This mechanism requires that a call to the <code>GetChallenge</code> command has been issued since the latest boot of the ST25TA-E device, otherwise the password-related commands fail. Additionally, if the latest call to a password-related command failed because of an invalid value of the password-referenced data field, it is required that a call to the <code>GetChallenge</code> command is issued before attempting a new call to either of these commands.

4.2.2 Permanent password lock

4.2.2.1 Password Lock description

The ST25TA-E devices provide password lock processing, which allows a user to lock each password individually or globally: a locked password can no longer be modified with the <code>ChangeDataReference</code> command. The effect of a password lock operation cannot be reverted.

4.2.2.2 Password lock registers

DB5166 - Rev 7 page 15/62

CFG_PWD_LOCK

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
					אפאפואפת					2	Г Б	L	ANDEP KD	ANDEE WD		() ()	כד פ א			L L L	וא ריים אין	L	NDEF WR
	RWO																						

Note: RWO: Read and write once. The RWO access attribute helps the password value not to be reverted.

Address: 002Dh for register range [23:16], 002Eh for register range [15:8], 002Fh for register range [7:0]

Reset: 555 555h

Description: Lock password value

[23:14]	Reserved
[13:12]	PRIV:Lock privacy password
	01b: privacy password value is unlocked.
	10b: privacy password value is locked.
[11:10]	ANDEF RD: Lock ANDEF read password
	01b: ANDEF read password value is unlocked.
	10b: ANDEF read password value is locked.
[9:8]	ANDEF WR: Lock ANDEF write password
	01b: ANDEF write password value is unlocked.
	10b: ANDEF write password value is locked.
[7:6]	CFG RD: Lock CFG read password
	01b: CFG read password value is unlocked.
	10b: CFG read password value is locked.
[5:4]	CFG WR: Lock CFG write password
	01b: CFG write password value is unlocked.
	10b: CFG write password value is locked.
[3:2]	NDEF RD: Lock NDEF read password
	01b: NDEF read password value is unlocked.
	10b: NDEF read password value is locked.
[1:0]	NDEF WR: Lock NDEF write password
	01b: NDEF write password value is unlocked.
	10b: NDEF write password value is locked.

4.3 Augmented NDEF feature (ANDEF)

4.3.1 ANDEF description

The Augmented NDEF (ANDEF) feature is a contextual automatic NDEF message service, allowing the tag to provide dynamic content without an explicit update of the NVM memory by the end user.

The ANDEF feature is enabled or disabled by issuing an UpdateBinary command, applied on the CFG EF file with the adequate security attributes.

The feature is enabled (respectively disabled) when the value of register CFG_ANDEF_EN is 1b (respectively 0b) during the latest RF boot sequence. When the feature is enabled, user memory data at byte addresses ranging from ANDEF_START to ANDEF_END is replaced by the content of a virtual memory ANDEF_MEM in the response to ReadBinary requests in the NDEF file. Byte addresses ANDEF_START and ANDEF_END depend on the ANDEF_BYTE_OFFSET field configuration during the last RF session.

DB5166 - Rev 7 page 16/62

Figure 5. NDEF read data response when the ANDEF feature is disabled/enabled

Note: ANDEF_START is defined by the CFG_ANDEF_BYTE_OFFSET value.

ANDEF_END is the minimum value between END_NDEF_FILE and (ANDEF_START + ANDEF_LEN -1) with END_NDEF_FILE, is the last address available in the NDEF file, and NDEF_LEN is the number of bytes available in the virtual ANDEF_MEM dedicated to the ANDEF feature.

Once enabled, the ANDEF feature has no effect on the <code>UpdateBinary</code> requests in this address range <code>[ANDEF_START: ANDEF_END]</code>. The incoming data, to be written, is directly written to the user NDEF file at the requested offset addresses but cannot be read by issuing a <code>ReadBinary</code> command when the ANDEF feature is enabled.

The content of a virtual ANDEF_MEM memory depends on the selected ANDEF contextual fields, enabled by the CFG_ANDEF_CFG register . The content of ANDEF_MEM is the result of the concatenation of ANDEF fields.

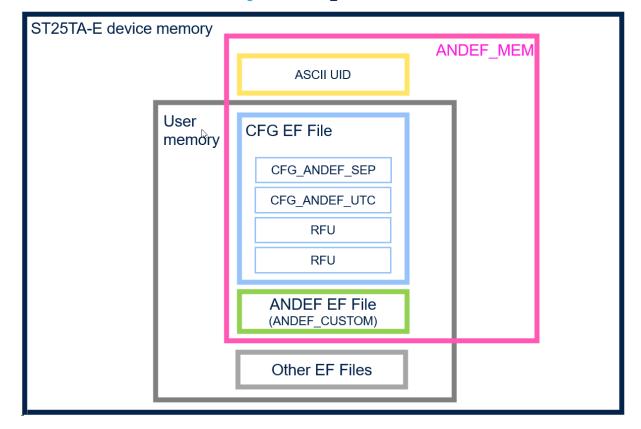


Figure 6. ANDEF MEM content

Each field corresponds to a configuration register and may be enabled individually. A separator tag, defined by the CFG_ANDEF_SEP register, is inserted between each ANDEF field when conditions are met. The order of appearance, the content, and condition of presence of each field are listed in the below table.

The ANDEF elementary file is one of the ANDEF field, called ANDEF_CUSTOM field in the below table.

DB5166 - Rev 7 page 17/62

Table 17. Concate	nated ANDEF fields in	the ANDEF MEM
Content ⁽¹⁾	Byte length	Condition o

Order	Content ⁽¹⁾	Byte length	Condition of presence
1	ANDEF_UID	14 (2)	When CFG_ANDEF_UID_EN =1b
2	ANDEF_SEP	1	When CFG_ANDEF_SEP_EN =1b and CFG_ANDEF_UTC_EN = 1b
3	ANDEF_UTC	4	When CFG_ANDEF_UTC_EN = 1b
4	ANDEF_SEP	1	When CFG_ANDEF_SEP_EN =1b and any ANDEF_DIAG bits = 1b
5	ANDEF_DIAG	For further information, contact your STMicroelectronics sales officer.	-
6	ANDEF_SEP	1	When ANDEF_SEP_EN =1b and CFG_ANDEF_CUSTOM_EN =1b
7	ANDEF_CUSTOM(3)	42	When ANDEF_CUSTOM_EN =1b

- 1. When a register value is coded on several bytes, it is copied in LSB to MSB bytes order in the ANDEF MEM memory.
- 2. UID field is 14-byte long when CFG_ANDEF_UID_EN is only set to 1b.
- 3. ANDEF_CUSTOM field is the representation of the payload of the ANDEF file. The two first ANLEN bytes of the ANDEF file are not included into the ANDEF_MEM.

On factory delivery, the CFG_ANDEF_EN register is disabled and the CFG_ANDEF_CFG register is set to 10h.

4.3.2 ANDEF registers

CFG_ANDEF_BYTE_OFFSET

7	6	5	4	3	2	1	0
			Ц	- I			
			,	, - -			
			Щ	1			
			<u>`</u>	-) 			
				I)			
			NA				
			RI	N			

Address: 001Fh
Reset: 00h

Description: ANDEF message start into an elementary file

[7:0] ANDEF_BYTE_OFFSET: Offset the value into an elementary file to compute the start address of the ANDEF

DB5166 - Rev 7 page 18/62

CFG_ANDEF_CFG

7	6	5	4	3	2	1	0
	Unused		ANDEF_SEP_EN	ANDEF_CUSTOM_EN	ANDEF_DIAG_EN	ANDEF_UTC_EN	ANDEF_UID_EN
	R		RW	RW	RW	RW	RW

Address: 0020h Reset: 10h

Description: ANDEF display configuration

[7: 5]	Unused: Reading this field returns 0.								
[4]	ANDEF_SEP_EN: Activation of the SEP field in the ANDEF message display.								
	Ob: field is disabled.								
	• 1b: field is enabled.								
[3]	ANDEF_CUSTOM_EN: Activation of the CUSTOM field in the ANDEF message display.								
	Ob: Field is disabled.								
	1b: Field is enabled.								
[2]	ANDEF_DIAG_EN: Activation of the DIAG field in the ANDEF message display.								
	Ob: Field is disabled.								
	1b: Field is enabled.								
[1]	ANDEF_UTC_EN: Activation of the UTC field in the ANDEF message display.								
	Ob: Field is disabled.								
	1b: Field is enabled								
[0]	ANDEF_UID_EN: Activation of the UID field in the ANDEF message display.								
	Ob: Field is disabled.								
	1b: Field is enabled.								

CFG_ANDEF_SEP

7	6	5	4	3	2	1	0
			Ü				
			ω				
			ND				
			۹				
			RW				

Address: 0021h Reset: 78h

Description: ANDEF separator field value

[7:0] ANDEF_SEP: Separator value into the ANDEF message, in ASCII format.

DB5166 - Rev 7 page 19/62

CFG ANDEF EN

7	6	5	4	3	2	1	0
			Unused				ANDEF_EN
			R				RW

 Address:
 0024h

 Reset:
 00h

Description: Activation of ANDEF feature.

[7:1] **Unused**: Reading this field returns 0.

[0] ANDEF_EN: Activation of ANDEF feature.

0b: feature is disabled. 1b: feature is enabled.

4.4 Smart authentication

To successfully ensure the protection of all key elements of a IoT solution, the TruST25 services deliver one smart service, which ensures that the UID of the NFC/RFID devices is genuine and can contribute to attest a smart authentication of the chip if the TruST25 services is coupled with other security mechanisms at system level and through the ANDEF feature.

The TruST25 solution encompasses the secure industrialization process and the tools deployed by STMicroelectronics to generate, store, and check the signature in the ST25TA-E device.

For further information, contact your STMicroelectronics sales officer.

4.5 Strong authentication

To ensure a successful protection of all the key elements of an IoT solution, the Edge-TruST25 services deliver one safe service, which ensures that the NFC/RFID tag devices are genuine and if bond with the physical asset is unique and tamper proof, can prove physical asset authenticity.

The Edge-TruST25 solution encompasses secure industrialization processes and tools deployed by STMicroelectronics to generate, store, and check the sensitive assets in the device.

For further information, contact your STMicroelectronics sales officer.

4.6 Monitoring and diagnosis

Monitoring may be enabled in the ST25TA-E devices for operation tracking. ST25TA-E GP counter defines the main component for remote monitoring.

4.6.1 Remote monitoring

4.6.1.1 General purpose counter description

Remote monitoring by applicative counter in the ST25TA-E devices can help for tracking operation.

The general purpose (GP) counter is identified as a key feature for the monitoring process. This is a 24-bit counter that can track up to 2^{24} read/write events on one of the EF files. It benefits from an antitearing mechanism that ensures consistency of the counter, even if there is an electrical problem during its increment.

The general purpose counter can be configured, activated, and read or reverted to its initial value or decremented by one, with the adequate security attributes. Once activated, a reset to factory operation on this counter is possible with a PWD_CFG_WR password presentation prior to the RevertGPcounter command.

The GP counter is activated by issuing an <code>UpdateBinary</code> command in the CFG_GP_CNT_EN register of the CFG EF file with the adequate security attributes and is effective on the next RF session.

DB5166 - Rev 7 page 20/62

All fields of the CFG_GP_CNT registers, except the GP_CNT_DEC_DIS field, are locked as soon as the counter is activated.

Note:

No increment is performed if the CFG_GP_CNT_EN register is updated with an invalid file index. Only the index among the authorized seven file indexes is valid.

The GP_CNT_INC_CALL field of the CFG_GP_CNT_CFG register can be programmed to restrict the increment only to the read access (or only write access) in any address of the selected user file.

The GP_CNT_INC_RANGE field can be programmed to restrict the increment to access only into a specific address of the user file. This specific address is configured by the CFG_GP_CNT_OFFSET_ADD register. The GP_CNT_INC_CALL, GP_CNT_INC_RANGE configurations can be combined.

If the GP_CNT_INC_CALL field and the GP_CNT_INC_RANGE field are set to 0 into the CFG_GP_CNT_CFG register, the increment is performed by any successful read or write access into any address of the user file.

Once activated, the GP counter is automatically incremented by a successful access into the address range of the user file. If the GP counter reached the GP_CNT_LIMIT value, the GP counter is blocked at the maximum value. On factory delivery. The CFG_GP_CNT_LIMIT register is set to the FFFFFh value.

Note:

If the CFG_GP_CNT_LIMIT register needs to be updated to a lower value, it shall be set before the GP counter activation.

The GP counter value can be read by issuing the <code>GetGPcounter</code> command at any time after the protocol activation. The GP counter value can be reverted to its preceding values by issuing a <code>RevertGPcounter</code> command only if the decrement operation is enabled.

Note:

The GP counter decrement is disabled by issuing an <code>UpdateBinary</code> command into the CFG_GP_CNT_EN register of the CFG EF file and is effective immediately. The GP counter decrement/revert deactivation is permanent.

The GP counter is always incremented by one whereas the decrement of the GP counter is decremented by one or is programmed to its reset value '000000h' (roll-over to initial value). The programmable dec value (decrement by -1 or return initial value) for the decrement is programmed with the P1/P2 parameter of the RevertGPcounter command.

4.6.1.2 GP CNT registers

CFG_GP_CNT_LIMIT

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											Ė												
											2	≧ ⊒.											
											Ę	-											
											ć	5											
											٥	D											
											R'	W											
											R'	W											

Address: 0016h
Reset: FFFFFh

Description: Limit the value of the general-purpose counter.

[23:0] **GP CNT LIMIT:** Authorized limit value of the GP counter.

DB5166 - Rev 7 page 21/62

CFG_GP_CNT_CFG

7	6	5	4	3	2	1	0
	Unised			GP_CNT_INC_RANGE	GP_CNT_INC_CALL		GP_CNT_DEC_DIS
	R	2		RW	RW	1	RWO

Note: RWO: read and write once

Address: 0019h
Reset: 00h

Description: General-purpose counter configuration.

[7:4]	Unused: Reading this field returns 0.
[3]	GP_CNT_INC_RANGE: Range format where the increment is applied
	0b: any access in the elementary file selected by the CFG_GP_CNT_EN register.
	 1b: any access at the address offset specified in the CFG_GP_CNT_OFFSET_ADD register.
[2:1]	GP_CNT_INC_CALL: The event by which the increment is issued
	00b: first access (read or write) of the current RF field, increments the GP counter.
	 01b: first read access of the current RF field, increments the GP counter.
	 10b: first write access of the current RF field, increments the GP counter.
[0]	GP_CNT_DEC_DIS: Deactivation of the decrement/revert feature of the GP counter
	0b : deactivation of the decrement/revert feature is disabled
	1b: deactivation of the decrement/revert feature is enabled

CFG_GP_CNT_OFFSET_ADD

15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
							5	j							
							∀	1							
							Ŭ L	-							
							Ğ) 							
							2) _.							
							מ	5							
							R	N							

Address: 001Ah Reset: 0000h

Description: Address offset value for general-purpose counter range configuration

[15:0] **GP_CNT_OFFSET_ADD:** Address the offset value used by the CFG_GP_CNT_CFG register.

DB5166 - Rev 7 page 22/62

CFG_GP_CNT_EN

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
GP_CNT_EN								Onused											COLUMN FILE IDX				
RW								R											R	N			

Address: 001Ch for register range [23:16]

001Dh for register range [15:8] 001Eh for register range [7:0]

Reset: 000001h

Description: Address and configuratin on the general-purpose counter

[23] **GP_CNT_EN:** Activation of the GP_CNT counter.

0b: GP counter is disabled.

1b: GP counter is enabled.

[22:8] Unused: Reading this field returns 0.

[7:0] GP_CNT_FILE_IDX: File index of the selected elementary file where the GP counter is applied. Authorized file index:

00h: cfg file

01h: ndef file

02h: andef file

08h: cc file

4.7 Privacy

The two privacy modes, called *kill* and *anonymous*, offer consumer privacy capabilities, which are required by the GDPR European regulation.

4.7.1 Kill mode description

Kill mode is the entry-level privacy mode. When the ST25TA-E device is in KILLED state, all incoming RF requests are ignored during the current RF session and on the further RF sessions. The users can configure, intentionally the ST25TA-E device in KILLED state in two manners:

- On a successful ManageBasicLogicalChannel command with P1=10h and P2= 5Ah. In this case, the privacy password is used (user usage, immediate action).
- By issuing an UpdateBinary command into the CFG EF file, setting the CFG_PRIV register at the 5Ah value. In this case, the control CFG write-password is used (admin usage, no immediate action).

Once the ST25TA-E device has entered the KILLED state, it can only switch between the power-off and killed state.

The kill commands are enabled/disabled when the DIS_KILL attribute has respectively, 00h/FFh value during the latest boot sequence. The update of the DIS_KILL attribute is effective on the next RF boot sequence. On factory delivery, the DIS_KILL attribute is set to 00h. If the DIS_KILL attribute is active (FFh), the two kill commands, ManageBasicLogicalChannel and UpdateBinary return respectively the error code 6985h and 6A80h as the SW1SW2 code response.

STMicroelectronics fully controls the DIS_KILL attribute configuration during the EWS operation. For selection of an active DIS_KILL attribute, contact your STMicroelectronics sales office in case of the default prepersonalization. With a custom pre-personalization, the DIS_KILL attribute can be controlled by updating the XPARAM object file with the password protected SetSystemInformation command.

DB5166 - Rev 7 page 23/62

Note:

Note:

Note:

4.7.2 Anonymous mode description

Anonymous mode is the second privacy mode. When the ST25TA-E device is in UNTRACEABLE state, all incoming RF requests and features are handled except the following:

- The ANDEF feature is forbidden. The ANDEF enable control configuration is ignored and the ANDEF message is not appended to the NDEF file during the NDEF read.
- The ANDEF custom file is forbidden.
- The GetSystemInformation command and SetSystemInformation command return an error code (6985h).

Note: Forbidden files (ANDEF file) are considered as invalid file (when issuing the SelectFile command) and the SelectFile command should return 6985h as SW1SW2 error code.

All invalid files already selected before entering in anonymous (with their security sessions already opened), close their security session as soon as the anonymous mode is successfully configured, and the NFC application DF file is selected.

The ST25TA-E device enters the UNTRACEABLE state in two manners:

- On a successful ManageBasicLogicalChannel command with P1=80h and leaves the UNTRACEABLE state on a successful ManageBasicLogicalChannel command with P1=20h. In this case, the privacy password is used (user usage, immediate action).
- By issuing an UpdateBinary command into the CFG EF file, setting the CFG_PRIV register at F0h value and leaves the UNTRACEABLE state, with 00 value of the CFG_PRIV register. In this case, the control CFG write-password is used (admin usage, no immediate action).

Once the ST25TA-E device has entered the UNTRACEABLE state, it can switch between the power-off, KILLED state, PROTOCOL state, and UNTRACEABLE state. The action is immediate.

Note: In the UNTRACEABLE state, the UID used in request and response frames is a random or fixed value. In this case, the ISO/IEC 14443-3 standard allows only a single 4-byte UID: In case of nonunique fixed value, the first byte of UID (UID0) is '5Fh' and in case of random value, the first byte of UID (UID0) is '08h'. In an UNTRACEABLE state, the UID size is updated in the ATQA parameter and SAK1 parameter when the random UID is used

The 4-byte UID mode (nonunique fixed number or random) is selected by PRIV_UID attribute. ST fully controls the PRIV_UID attribute configuration during EWS operation. For selection of nonunique fixed UID, contact your STMicroelectronics sales office in case of the default pre-personalization. With the custom per-personalization, the PRIV_UID attribute can be controlled by updating the XPARAM object file with the password protected SetSystemInformation command..

The 3 LSB bytes of the nonunique fixed UID number can be updated by users. This is done with the 3-byte CFG_PRIV_NUID register, by issuing an UpdateBinary command into the CFG EF file.

4.7.3 Privacy registers

CFG PRIV NUID register

23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
											_	2											
											=	<u>.</u>											
											≥	_ <u>≥</u>											
											0	_											
											R'	W											
											- ' '	• •											

Address: 0012h for register range [23:16]

0013h for register range [15:8]0014h for register range [7:0]

Reset: 029A00h

Description: 3-byte value of the 4-byte nonunique UID, used in anonymous mode (privacy mode).

DB5166 - Rev 7 page 24/62

[23:0]	PRIV_NUID: LSB value of the nonunique UID.	
--------	--	--

CFG_PRIV register

7	6	5	4	3	2	1	0
				!			
			<u> </u>	i			
			P. S.	; •			
			RV	V			

Address: 0015h Reset: 00h

Description: Privacy configuration by default at the beginning of each RF session when enabled once.

[7:0] PRIV_DFLT: The device boots in privacy or normal mode according to the field value

- 00h: in/out mode. The device boots in PROTOCOL state when the device left the previous RF session in PROTOCOL state. The device boots in UNTRACEABLE state when the device left the previous RF session in UNTRACEABLE state.
- F0h: anonymous by default mode. The device boots always in UNTRACEABLE state at the beginning of each RF session when enabled once.
- 5Ah: kill by default-the device is in KILLED state in further RF sessions.

4.8 Security

In order to prevent an unauthorized use of the device or a fraudulent access to data, the ST25TA-E devices implement a set of hardware security mechanisms, including a dedicated protection for counter monotonicity and for sensitive assets. Security requirements at applicative level, are also available in the ST25TA-E Security Guidance and operational manual document, and must be applied in some conditions.

4.8.1 Antitearing

The ST25TA-E devices benefit from an antitearing mechanism that ensures the consistency of each counter even if there has been an electrical problem during its increment. In the case of tearing, data is recovered.

Antitearing on counters

The antitearing mechanism is applied on the following counters:

GP counter

Data is recovered with new data. New data is equal or higher than the preceding value.

This antitearing mechanism is also applied on the password values during password update. Data is recovered with preceding data before tearing.

4.8.2 Physical protection: Active shield and laser detection

The ST25TA-E devices are protected by active shields and laser detections.

4.8.3 Nonvolatile memory protection

The ST25TA-E devices protect nonvolatile memory from erase/write operations with data integrity mechanisms.

DB5166 - Rev 7 page 25/62

5 RF operations

5.1 RF communications

This section describes the principle of communication between an RF host and the ST25TA-E devices.

ST25TA-E devices are NFC Type 4 tags. The communication principle of this type of tag is based on the NFC-A technology specification. The RF host generates the RF field and the RF commands.

Responses and commands are transmitted using respectively OOK modulation and ASK 100% modulation of a 13.56 MHz carrier wave transmitted by the PCD reader. Responses are transmitted using backscattering of the same carrier wave.

Both commands and responses are transmitted at 106 kbps.

ST25TA-E devices follow an activation, anticollision and selection process allowing one-to-one communication in the presence of several tags.

5.2 State machine

The state diagram specifies all possible state transitions in NFC-A and ISO DEP.

In addition to the standardized states specified in the NFC-A and the ISO DEP, the ST25TA-E devices support three custom states:

- SELECTED APP
- UNTRACEABLE
- KILLED

Transitions with these states are specified in the figure below.

In PROTOCOL state, the ST25TA-E devices behave in accordance with ISO DEP.

DB5166 - Rev 7 page 26/62

From any state Out of RF field RF OFF In RF field NFC_A IDLE HALTA/SLP_REQ REQA/SENS_REQ WUPA/ALL_REQ . WUPA/ALL_REQ RFADY SELECT/SEL_REQ READY_A READY* SELECT/SEL_REQ READY_A* TA/SLP_REQ Other SELECT/SEL_REQ SELECT/SEL_REQ Boots in Kill mode ACTIVE ACTIVE_A

RATS/PPS

PROTOCOL(*)

Switch Privacy/

PROTOCOL CARD EMULATION 4A STATES (STD & CUSTOM)

Switch in

anonymous/

Enter in Kill mode

RATS/PPS

Other

IINTRACEARIE

KILLED

PRIVACY

Figure 7. ST25TA-E RF FSM

Protocol state

S(DESELECT)

In PROTOCOL state, the ST25TA-E shall must respond only to the following commands:

- SelectApplication
- GetChallenge
- ManageBasicLogicalChannel

Oth

SELECTED API

APPLICATION

ACTIVE_A*

S(DESELECT)

- SetSystemInformation
- GetSystemInformation
- GetGPCounter

In PROTOCOL state, the ST25TA-E devices enter the SELECTED APP state after it has received a valid SelectApplication command.

In PROTOCOL state, the ST25TA-E devices enter HALT/Sleep A state after it has received a valid <code>DeSelect</code> command.

DB5166 - Rev 7 page 27/62

In PROTOCOL state, the ST25TA-E devices enter KILLED state or in UNTRACEABLE state after it has received a valid ManageBasicLogicalChannel command with enabling, respectively, the kill mode or anonymous mode option.

Selected App state

In SELECTED APP state, the ST25TA-E must respond to all commands described in RF command set and to the DeSelect command.

In SELECTED APP state, the ST25TA-E enter PROTOCOL state after it received a valid MF master file selection by issuing a SelectFile command.

In SELECTED APP state, the ST25TA-E devices enter HALT/Sleep A state after it has received a valid DeSelect command.

In SELECTED APP state, the ST25TA-E devices enter KILLED state or in UNTRACEABLE state after it has received a valid ManageBasicLogicalChannel command with enabling, respectively, the kill mode or anonymous mode option.

Untraceable state

In UNTRACEABLE state, the ST25TA-E device must respond to all commands described in Anonymous mode description .

In UNTRACEABLE state, the ST25TA-E devices enter PROTOCOL state after it received a valid ManageBasicLogicalChannel command with disabling the anonymous mode option and if the MF master file is selected during the UNTRACEABLE state or before the UNTRACEABLE state.

In UNTRACEABLE state, the ST25TA-E devices enter SELECTED APP state after it received a valid ManageBasicLogicalChannel command with disabling the anonymous mode option and if the DF or an authorized file is selected during the UNTRACEABLE state or if an invalid file is selected before the UNTRACEABLE state.

Note:

When an invalid file is already selected before entering in UNTRACEABLE state, the NFC application DF file is automatically selected.

In UNTRACEABLE state, the ST25TA-E devices enter HALT/Sleep A state after it has received a valid <code>DeSelect</code> command.

Killed state

In KILLED state, the ST25TA-E must behave as described in Kill mode description and ignore all incoming commands.

5.3 RF protocol

The transmission protocol (or simply named 'the protocol') defines the mechanism used to exchange instructions and data between the PCD (proximity coupling device) and the PICC (proximity integrated circuit card) in both directions. It is based on the concept of 'PCD first talk'. The ST25TA-E device acts as a PICC.

This means that a ST25TA-E does not start transmitting unless it has received and properly decodes an instruction sent by the PCD. The protocol is based on exchange of commands, which consists of in request/response transactions between the PCD and the ST25TA-E device:

- A request is sent from the PCD to the ST25TA-E
- A response to this request is sent from the ST25TA-E to the PCD.

There are four command families:

- The NFC-A activation, anticollision, and selection process command set
- The NFC Forum Type 4 tag command set
- The ISO/IEC 7816-4 command set
- The ST-proprietary command set

The following table lists the request command sets with a brief description of each of the commands.

DB5166 - Rev 7 page 28/62

Table 18. RF command sets

Family command set	Command name	Brief description			
	ALL_REQs,SENS_REQs, SDD_REQ, SEL_REQ,SLP_REQ	Anticollision command set			
NFC-A activation, anticollision	RATS	TA4 Tag activation			
	PPS	Protocol and parameter selection			
	DeSelect	Tag desactivation			
	SelectApplication	NDEF tag application select			
NFC Forum T4T	SelectFile	EF file select			
NFC FOIUIII 141	ReadBinary	Read data from file			
	UpdateBinary	Write or erase data to an EF file			
	GetChallenge	Retrieve a challenge generated by the device			
ISO/IEC 7816-4	Verify	Check the right access or present a password			
100/120 7010 4	ChangeReferenceData	Changes a read or write password value			
	EnableVerificationRequirement	Activates a reversible file protection			
	DisableVerificationRequirement	Disable a reversible file protection			
	EnablePermanentRequirement	Activate a permanent file protection			
	ManageBasicLogicalChannel	Activate or disable privacy mode			
ST-proprietary	SetSystemInformation	Update system information [xparam object file]			
	GetSystemInformation	Retrieve system information			
	GetGPcounter	Retrieve GP counter value			
	RevertGPcounter	Revert or initialize the GP counter.			

The different command families use different kinds of data formats, the most frequently based on what are called blocks:

- I-block (Information block): to exchange the command and the response
- R-block (Receive ready block): to exchange positive or negative acknowledgment
- S-block (Supervisory block): to use either the DeSelect command or the frame waiting eXtension (WTX) command or response

The following subsections describe the structure of I-block, R-block, and S-block.

5.3.1 I-block format

The NFC Forum Type 4 tag command-set and the ISO/IEC 7816-4 command-set use the I-Block format. The I-block is used to exchange data between the PCD and the ST25TA-E devices. It is composed of three fields as detailed in the table below.

Table 19. I-block format

Name -	Start	ofData	Payload	EndOfData
	РСВ	CID	- Payload	CRC
Length	1 byte	1 byte	1 to 251 bytes	2 bytes
PCB field				
CID field				
RF host to tag C-APDU o	or tag R-APDU			

DB5166 - Rev 7 page 29/62

Name	Starto	ofData	Payland	EndOfData
	РСВ	CID	Payload	CRC
Length	1 byte	1 byte	1 to 251 bytes	2 bytes
2 CRC bytes				

Table 20. PCB field of the I-Block format

	b7-b6	b5	b4	b3	b2	b1	b0
	0b00	0b	0b	Х	0b	1b	Х
I-block							
RFU							
Must be set to	0b						
CID field is pres	sent if this bit is	set to 1b		'			
Must be set to	0b						
Must be set to	1b						
Block number							

Note: Block numbering notes:

PCD rules

- The PCD device block number shall be initialized to 0.
- When an I-block or an R(ACK) block with a block number equal to the current block number is received, the PCD device shall toggle the current block number before optionally sending a block to the ST25TA-E.

ST25TA-E rules

- The ST25TA-E block number shall be initialized to 1 at activation.
- When an I-block is received, the ST25TA-E must toggle its block number before sending a block.

Note:

TheST25TA-E may check if the received block number is not in compliance with PCD rules to decide neither to toggle its internal block number or to send a response block

• When an R(ACK) block with a block number not equal to the current ST25TA-E block number is received, the ST25TA-E must toggle its block number before sending a block.

Note:

There is no block number toggling when an R(NAK) block is received.

When the PCD device sends a command to the ST25TA-E, the format of the payload is the C-APDU. When the ST25TA-E device sends a command to the RF host, the format of the payload is the R-APDU.

C-APDU: payload format of a command

The C-APDU format is used by the RF host to send a command to the ST25TA-E. The table below describes its format.

Table 21. C-APDU format

Name	Payload field											
Name	CLA	INS	P1	P2	Lc	Data	Le					
Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	1 byte					
Class byte: 0x0 command 0xA2 command												
Instruction byte	9											
Parameter byte	e 1											
Parameter byte	e 2			-								

DB5166 - Rev 7 page 30/62

Name	Payload field										
Name	CLA	INS	P1	P2	Lc	Data	Le				
Length	1 byte	Lc bytes	1 byte								
Number of bytes of the data field											
Data bytes											
Number of bytes to be read in ST25TA-E memory											

R-APDU: payload format of a command

The ST25TA-E devices use the I-Block format to reply to a command that has used the I-Block format. The table below describes its format.

Table 22. R-APDU format

Name	Payload field				
Name	Data (optional)	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
Data					
Status word 1					
Status word 2					

5.3.2 R-block format

The R-Block is used to convey positive or negative acknowledgment between the PCD and the ST25TA-E devices. The table below describes its format.

Table 23. R-block format

Name	Starto	StartofData		EndOfData			
ivallie	РСВ	CID	Payload	CRC			
Length	1 byte	1 byte	0 byte	2 bytes			
R(ACK) without CID field	: 0xA2 or 0xA3						
R(ACK) with CID field: 02	xAA or 0xAB						
R(NAK) without CID field	: 0xB2 or 0xB3						
R(NAK) with CID field: 02	xBA or 0xBB						
CID field (optional)							
2 CRC bytes							

There are two kinds of R-Blocks:

- R(ACK): the acknowledgment block sent by the PCD or by the ST25TA-E device.
- R(NAK): the non-acknowledgment block sent by the PCD device.

Table 24. PCB field of the R-Block format

	b7-b6	b5	b4	b3	b2	b1	b0
	0b00	0b	0b	Х	0b	1b	Х
R-block							
Must be set to	1b						

DB5166 - Rev 7 page 31/62

	b7-b6	b5	b4	b3	b2	b1	b0	
	0b00	0b	0b	Х	0b	1b	Х	
0b: ACK1b: NACI								
CID field is present if this bit is set to 1b								
Must be set to 0	Ob							
Must be set to 1b								
Block number								

5.3.3 S-block format

The S-Block is used to exchange control information between a PCD and the ST25TA-E device.

Table 25. S-block format

Name	Starto	ofData	– Payload	EndOfData			
Name	РСВ	CID	rayioau	CRC			
Length	1 byte	1 byte	1 byte	2 bytes			
S(DES) without CID field	: 0xC2						
S(DES) with CID field: 0x	(CA						
S(WTX) without CID field	l: 0xF2						
S(WTX) with CID field: 0:	xFA						
CID field (optional)							
WTX field (optional) ⁽¹⁾							
2 CRC bytes							

^{1.} This field is present when b5-b4 bits are set to b11 (S-block is a WTX). See Table 26. PCB field of the S-Block format.

There are two requests using the S-Block format:

- S(DES): the DeSelect command.
- S(WTX): the waiting frame eXtension command or response.

Note:

A waiting time eXtension request occurs in RF when the operating time needed by the ST25TA-E is greater than 65.536 ms. The WTX field indicates the increase time factor to be used in this command execution (FDTtemp = WTX * 65.536 ms). WTX depends on FWI.

Table 26. PCB field of the S-Block format

	b7-b6	b5-b4	b3	b2	b1	b0
	0b00	x	Х	0b	1b	0b
S-block						
• 0b00: Des • 0b11: WT						
CID field is prese	ent if this bit is set to	o 1b				
Must be set to 0)					
Must be set to 1)					
Must be set to 18)					

5.3.4 CRC of an RF frame

The two CRC bytes check the data transmission between the PCD and the ST25TA-E devices.

DB5166 - Rev 7 page 32/62

For the RF frame, the CRC is computed on all the data bits in the frame, excluding parity bits, SOF and EOF, and the CRC itself. The CRC is as defined in ISO/IEC 13239. The initial register content shall be 0x6363 and the register content shall not be inverted after calculation.

5.3.5 Return code list

A command is acknowledged by SW1 and SW2, giving the status of the command execution. The table below lists the SW1-SW2 codes into the ST25TA-E devices.

Table 27. SW1-SW2 codes into the ST25TA-E devices

SW1	SW1-SW2 Execution and error status		Description
90	00	Processing completed – no error	Normal processing – fully executed
63	00	Warning processing	Password is required
65	81	Processing aborted- execution error	Memory failure: unsuccessful update
66	00	Processing aborted- execution error	Security-related issues
67	00	Processing aborted- checking error	Wrong frame length
69	81	Processing aborted- checking error	Incompatible command with the file structure
69	82	Processing aborted- checking error	Security status not satisfied
69	84	Processing aborted- checking error	Forbidden file access
69	85	Processing aborted- checking error	Condition not satisfied
6A	80	Processing aborted- checking error	Incorrect payload parameters
6A	82	Processing aborted- checking error	EF or DF not found
6A	86	Processing aborted- checking error	Incorrect P1 or P2 parameters
6A	88	Processing aborted- checking error	Referenced data not found
6D	00	Processing aborted- checking error	Instruction code not supported or invalid
6E	00	Processing aborted- checking error	Class not supported

DB5166 - Rev 7 page 33/62

5.4 RF command set

The ST25TA-E device supports the following RF command set:

Table 28. RF command sets

Class	opcode	Command name	Brief description	
	A4h	SelectApplication		
	A4h	SelectFile	Refer to NFC T4T command-	
	B0h	ReadBinary	set	
	D6h	UpdateBinary		
0.00	84h	GetChallenge		
0x00	20h	Verify		
	24h	ChangeReferenceData	Refer to ISO/IEC 7816-4	
	28h	EnableVerificationRequireme nt	command-set	
	26h	DisableVerificationRequireme nt		
	28h	EnablePermanentRequireme nt		
	70h	ManageBasicLogicalChannel		
0xA2	B6h	GetSystemInformation	Refer to ST proprietary command set	
	C4h	GetGPcounter	Command Set	
	D4h	RevertGPcounter	1	
	F6h	SetSystemInformation		

Commands are described in the following sections.

5.4.1 NFC T4T command-set

The ST25TA-E command set is built to easily support the NFC Forum Type 4 tag protocol.

5.4.1.1 SelectApplication command

When receiving the NDEF tag application select request, the ST25TA-E devices switch to SELECTED APP state by selecting the NDEF tag application identifier, defined in the NFC Forum digital protocol.

Syntax: 00 A4 04 00 07 Data-in

Type: IN

Instruction inputs: provide 7-byte Data-In value matching with NFC application ID

(NFC AID = D2 76 00 00 85 01 01h)

Instruction outputs: Instruction fully executed or error status. Refer to Table 27. SW1-SW2 codes into the

ST25TA-E devices.

Note: The Le field is optional and may be absent from this C-APDU.

Table 29. With C-APDU format

	SalactAnn				Payload field			
SelectApp	CLA	INS	P1	P2	Lc	Data	Le	
	Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	1 byte/-
	00)h	A4h	A4h	00h	07h	D2 76 00 00 85 01 01h	00h/-

DB5166 - Rev 7 page 34/62

Table 30. With R-APDU format

SelectApp	Payload field				
SelectApp	Data	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
-		Status byte 1	Status byte 2		

5.4.1.2 SelectFile command

When receiving the SelectFile request, the ST25TA-E devices switch to the selected file. Before sending a SelectFile command, the ST25TA-E devices should be in SELECTED APP state.

Syntax: 00 A4 00 0C 02 Data-in

Type: IN

Instruction inputs: provide 2-byte *Data-In* value matching with one of the following FID (file identifier) values:

- (NFC CC FID = E1 03h)
- (NFC NDEF FID = E1 04h)
- (NFC ANDEF FID = E1 05h)
- (EF CFG FID = E1 01h)
- (MF FID = 3F 00h)

Instruction outputs: Instruction fully executed or error status. Refer to Table 27. SW1-SW2 codes into the ST25TA-E devices.

Table 31. With C-APDU format

SalaatEila			Payload field				
SelectFile (CLA	INS	P1	P2	Lc	Data	Le
Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	0 byte
00)h	A4h	00h	0Ch	02h	FID	-

Table 32. With R-APDU format

SoloctFile	Payload field				
SelectFile	Data	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
	•	Status byte 1	Status byte 2		

5.4.1.3 ReadBinary command

When receiving the ReadBinary request, the ST25TA-E devices read the requested memory field in a selected EF file and send back its value in the R-APDU response. Before sending a ReadBinary command, the ST25TA-E devices should be in SELECTED APP state and a file should be selected by using the EF file identifier.

Syntax: 00 B0 Offset-in Le-in

Type: OUT

Instruction inputs:

- Provide a 2-byte Offset-in value in the file selected matching with the start address of the requested memory field.
- Provide a 1-byte Le-in value matching with the number of bytes to read, between (0x00 <= Le <= max (selected file length, 0xFF)

Instruction outputs:

- Retrieve Le-byte data matching with the requested memory field in a selected file.
- Instruction fully executed or error status. Refer to SW1-SW2 codes into the ST25TA-E devices.

DB5166 - Rev 7 page 35/62

Note:

If the Le field contains only bytes set to '00', then all the bytes until the end of the file should be read within the limit of 256 for a short Le field.

The response of the <code>ReadBinary</code> command is successful when the data to be read is within the selected file; in other words, when the sum of Offset-in and Le-in fields is equal to or lower than the selected file length. When (Offset+Le) overflows the size of the file, the exact number of available data bytes is returned and the SW1 SW2 '9000' with the truncated data

If the file RD authentication is enabled, the RD password of this EF file shall be presented prior to reading the requested file.

Table 33. With C-APDU format

ReadBinary	Payload field						
Reaubiliary	CLA	INS	P1	P2	Lc	Data	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	1 byte
00h		B0h	Offset-in[15:8]	Offset-in[7:0]	-	-	Nb of bytes

Table 34. With R-APDU format

	Payload field				
ReadBinary	Data	SW1	SW2		
	Le bytes	1 byte	1 byte		
Memory fil	le content	Status byte 1	Status byte 2		

5.4.1.4 UpdateBinary command

When receiving the <code>UpdateBinary</code> request, the ST25TA-E devices update the requested memory field in a selected EF file and returns the R-APDU response. Before sending an <code>UpdateBinary</code> command, the ST25TA-E devices should be in SELECTED APP state and a file should be selected by using an EF file identifier.

Syntax: 00 D6 Offset-in Lc-in Data-in

Type: IN

Instruction inputs:

- Provide a 2-byte Offset-in value in the file selected matching with the start address of the requested memory field.
- Provide a 1-byte *Lc-in* value matching with the number of bytes to be written, between (0x00 <= Lc <= max (selected File Length, Mlc for NDEF file).
- Provide an Lc-byte *Data-in* matching with the requested memory field to be written in a selected file.

Instruction outputs: Instruction fully executed or error status. Refer to SW1-SW2 codes into the ST25TA-E devices.

Note:

If the file WR authentication is enabled, the WR password of this EF file must be presented prior to updating the requested file.

Table 35. With C-APDU format

	UpdateBinary	Payload field						
		CLA	INS	P1	P2	Lc	Data	Le
	Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	0 byte
	00h		D6h	Offset-in [15:8]	Offset-in [7:0]	Nb of bytes	Data to be written	-

DB5166 - Rev 7 page 36/62

Table 36. With R-APDU format

	Payload field				
UpdateBinary	Data	SW1	SW2		
	Le bytes	1 byte	1 byte		
-		Status byte 1	Status byte 2		

5.4.2 ISO/IEC 7816-4 command-set

The ST25TA-E command supports the applicative command set, such as the ISO7816-4 command set once the RF session is open.

5.4.2.1 GetChallenge command

When receiving the <code>GetChallenge</code> request, the ST25TA-E devices generate and return an 8-byte random value. Before sending a <code>GetChallenge</code> command, the ST25TA-E devices can be in PROTOCOL state or in <code>SELECTED</code> APP state.

Syntax: 00 84 00 00 08

Type: OUT

Instruction inputs: - Instruction outputs:

- Retrieve 8-byte Data-out value matching with a new random value used by the cover coding process and in subsequent password related commands.
- Instruction fully executed or error status. Refer to Table 27. SW1-SW2 codes into the ST25TA-E devices.

Table 37. With C-APDU format

GC				Payload field			
GC	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	1 byte
00)h	84h	00h	00h	-	-	08h

Table 38. With R-APDU format

GC				Payload field			
GC	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	1 byte
00)h	84h	00h	00h	-	-	08h

5.4.2.2 Verify command

When receiving the $\ensuremath{\texttt{Verify}}$ request, the ST25TA-E devices check if a password is required to access the EF file (no L_C field) or present a password and check that the password embedded in the $\ensuremath{\texttt{Verify}}$ command allows the access to the memory (the L_C field = 8h). Before sending a $\ensuremath{\texttt{Verify}}$ command, the ST25TA-E devices should be in SELECTED APP state.

Syntax: 00 20 00 *Id-in* or 00 20 00 *Id-in* 08 *Data-in*

Type: IN

Instruction inputs:

DB5166 - Rev 7 page 37/62

- Provide a 1 byte id-in identification value matching with the requested password identification to be presented or checked.
 - (CFG WR ID 00h)
 - (CFG RD ID 01h)
 - (NDEF WR ID 02h)
 - (NDEF RD ID 03h)
 - (ANDEF WR ID 04h)
 - (ANDEF RD ID 05h)
 - (PRIV ID 0Ch)
 - (XPARAM WR ID 2Eh)
- Provide 8-byte Data-in Xored password value matching with the requested password value to be presented.

Note:

The MF file must be selected prior to verifying the xparam password. The DF file must be selected prior to verifying the PRIV password (status check). The EF file must be selected prior to verifying the CFG/NDEF/ANDEF passwords.

The 8-byte data-in must follow the cover coding rules (obfuscation mechanism with Xor algorithm and an 8-byte challenge). Refer to Cover coding. If required, the <code>GetChallenge</code> command must be requested prior to presenting the password.

Payload field Verify CLA INS P1 **P2** Lc Data-in Le 0 byte/ 1 0 byte/Lc 1 byte 1 byte 0 byte Length 1 byte 1 byte byte bytes -/8h byte Data 00h 20h 00h ld-in -/8h in

Table 39. With C-APDU format

Table 40. With R-APDU format

Vorify	Payload field			
Verify	Data-out	SW1	SW2	
Length	Le bytes	1 byte	1 byte	
-		Status byte 1	Status byte 2	

5.4.2.3 ChangeReferenceData command

When receiving the <code>ChangeReferenceData</code> request, the ST25TA-E devices replace the current embedded password value with a new data-in value. Before sending a <code>ChangeReferenceData</code> command, the ST25TA-E devices should be in the <code>SELECTED</code> APP state.

Syntax: 00 24 01 Id-In 08 Data-in

Type: IN

Instruction inputs:

DB5166 - Rev 7 page 38/62

- Provide a 1 byte *Id-in* identification value matching with the requested password to be changed.
 - (CFG WR ID 00h)
 - (CFG RD ID 01h)
 - (NDEF WR ID 02h)
 - (NDEF RD ID 03h)
 - (ANDEF WR ID 04h)
 - (ANDEF RD ID 05h)
 - (PRIV ID 0Ch)
 - (XPARAM WR ID 2Eh)
- Provide 8-byte Data-in Xored password value matching with the requested password value to be presented.

Note:

The 8-byte data-in must follow the cover coding rules (obfuscation mechanism with Xor algorithm and an 8-byte challenge). Refer to Cover coding. If required, the <code>GetChallenge</code> command must be requested prior to changing the password value.

Password must be presented prior to changing the password.

The requested file must be selected prior to changing the password associated to the requested EF file.

The MF file must be selected prior to verifying the xparam password.

The DF file must be selected prior to verifying the PRIV password.

The EF file must be selected prior to verifying the CFG/NDEF/ANDEF/MSG passwords.

Payload field **CRD** CLA INS P2 **P1** Lc Data-in Le 1 byte 1 byte 1 byte 1 byte 0 byte Length 1 byte Lc bytes 00h 24h 01h ID-in 08h Data-In

Table 41. With C-APDU format

Table 42. With R-APDU format

CRD	Payload field				
CRD	Data-out	SW1	SW2		
Length	Length Le bytes		1 byte		
-		Status byte 1	Status byte 2		

5.4.2.4 EnableVerificationRequirement command

When receiving the <code>EnableVerificationRequirement</code> request, the ST25TA-E devices activate the password authentication on an EF file. Before sending an <code>EnableVerificationRequirement</code> command, the ST25TA-E devices should be in the <code>SELECTED</code> APP state.

Syntax: 00 28 01 id-in 08 Data-in or 00 28 00 id-in

Type: IN

Instruction inputs:

DB5166 - Rev 7 page 39/62

- Provide a 1 byte *Id-in* identification value matching with the requested password to be activated.
 - (CFG WR ID 00h)
 - (CFG RD ID 01h)
 - (NDEF WR ID 02h)
 - (NDEF RD ID 03h)
 - (ANDEF WR ID 04h)
 - (ANDEF RD ID 05h)
 - (PRIV ID 0Ch)
- Provide 8-byte Data-in Xored password value matching with the requested password value to be checked and then activated.

Note:

The 8-byte Data-in shall follow the cover-coding rules (obfuscation mechanism with Xor algorithm and an 8-byte challenge). Refer to Cover coding. If required, the <code>GetChallenge</code> command shall be requested prior to activating the password authentication.

If CFG WR authentication is enabled, the CFG WR password shall be presented prior to activating any password authentication.

The CFG file shall be selected prior to activating any password authentication.

Authentication with (PRIV ID=0Ch) password ID is enabled by default and cannot be deactivated with this command.

Other values of P1/P2 parameters are RFU and the error code should be returned.

Payload field **EVR** P1 P2 CLA INS Data-in Le Lc 0 byte/Lc Length 1 byte 1 byte 1 byte 1 byte 0 byte/1 byte 0 byte bytes -/8-byte Data-00h 28h 00/01h ID-in -/8h Invalue

Table 43. With C-APDU format

Table 44. With R-APDU format

EVR	Payload field			
EVK	Data-out	SW1	SW2	
Length Le bytes		1 byte	1 byte	
-		Status byte 1	Status byte 2	

5.4.2.5 Disable Verification Requirement command

When receiving the <code>DisableVerificationRequirement</code> request, the ST25TA-E devices deactivate the password authentication on an EF file. Before sending a <code>DisableVerificationRequirement</code> command, the ST25TA-E devices should be in the <code>SELECTED</code> APP state.

Syntax: 00 26 01 id-in 08 Data-in or 00 26 00 id-in

Type: IN

Instruction inputs:

DB5166 - Rev 7 page 40/62

- Provide a 1 byte Id-in identification value matching with the requested password to be activated.
 - (CFG WR ID 00h)
 - (CFG RD ID 01h)
 - (NDEF WR ID 02h)
 - (NDEF RD ID 03h)
 - (ANDEF WR ID 04h)
 - (ANDEF RD ID 05h)
- Provide 8-byte *Data-in* Xored password value matching with the requested password value to be checked and then activated.

Note:

The 8-byte Data-in shall follow the cover coding rules (obfuscation mechanism with Xor algorithm and an 8-byte challenge). Refer to Cover coding. If required, the <code>GetChallenge</code> command shall be requested prior to deactivating the password authentication.

If CFG WR authentication is enabled, the CFG WR password shall be presented prior to deactivating any password authentication.

The CFG file shall be selected prior to deactivating any password authentication.

Authentication with (PRIV ID 0Ch) password ID is enabled by default and cannot be deactivated with this command.

Other values of P1/P2 parameters are RFU and the error code should be returned.

Payload field **DVR** CLA INS **P1** P2 Lc Data-in Le 0 byte/Lc 0 byte/1 byte Length 1 byte 1 byte 1 byte 1 byte 0 byte bytes -/8-byte data-00h 26h 00/01h ID-in -/8h in value

Table 45. With C-APDU format

Table 46. With R-APDU format

DVR	Payload field			
DVK	Data-out	SW1	SW2	
Length	Le bytes	1 byte	1 byte	
-		Status byte 1	Status byte 2	

5.4.3 ST proprietary command set

The ST25TA-E command supports the specific command set once the RF session is open.

5.4.3.1 EnablePermanentRequirement command

When receiving the EnablePremanentRequirement request, the ST25TA-E devices lock any EF file permanently. Before sending an EnablePremanentRequirement command, the ST25TA-E devices should be in the SELECTED APP state.

Syntax: A2 28 01 Id-in

Type: IN

Instruction inputs:Provide 1 byte *Id-in* value matching with EF file index with read or write access rights types.

DB5166 - Rev 7 page 41/62

- (CFG WR ID 00h)
- (CFG RD ID 01h)
- (NDEF WR ID 02h)
- (NDEF RD ID 03h)
- (ANDEF WR ID 04h)
- (ANDEF RD ID 05h)
- (XPARAM WR ID 2Eh)

Note:

If the CFG WR authentication is enabled, the CFG WR password must be presented prior to forbidding (CFG/NDEF/ANDEF RD/WR and XPARAM WR) access. The CFG file must be selected prior to locking these EF files.

Table 47. With C-APDU format

EPR				Payload field			
EFK	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	0 byte
A	2h	28h	01h	ld-in	-	-	-

Table 48. With R-APDU format

EPR	Payload field				
EPK	Data	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
-		Status byte 1	Status byte 2		

5.4.3.2 ManageBasicLogicalChannel command

When receiving the ManageBasicLogicalChannel request, the ST25TA-E devices switch on and off privacy modes. Before sending a ManageBasicLogicalChannel command, the ST25TA-E devices can be in PROTOCOL state or in SELECTED APP state.

Syntax: A2 70 mode-in access-in 08 Data-in

Type: IN

Instruction Inputs:

- Provide 1-byte *mode-in* operation value matching with the requested operation to be activated/disabled.
 - (ENABLE PRIV-ANONYMOUS 80h)
 - (DISABLE PRIV-ANONYMOUS 20h)
 - (ENABLE PRIV-KILL 10h) (warning: permanent kill operation)
- Provide 1-byte access-in value matching with the requested operation to be authorized.
 - Authorize PRIV-KILL mode 5Ah
 - Authorize PRIV--ANONYMOUS 00h
- Provide 8-byte *Data-in* Xored value matching with PRIV password.

Instruction outputs: Instruction fully executed or error status. Refer to SW1-SW2 codes into the ST25TA-E devices.

Note:

The 8-byte Data-in must follow the cover coding rules (obfuscation mechanism with Xor algorithm and an 8-byte challenge). Refer to Cover coding. If required, the <code>GetChallenge</code> command must be requested prior to activating the password authentication.

DB5166 - Rev 7 page 42/62

Table 49. With C-APDU format

MBC				Payload field			
IVIBC	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	1 byte
А	2h	70h	Mode-in	Access-in	08h	Data-in	-

Table 50. With R-APDU format

MBC	Payload field				
MBC	Data-out	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
-		Status byte 1	Status byte 2		

5.4.3.3 GetSystemInformation command

When receiving the <code>GetSystemInformation</code> request, the ST25TA-E devices send back system information in the response. Before sending a <code>GetSystemInformation</code> command, the ST25TA-E devices can be in <code>SELECTED</code> APP state or in PROTOCOL state.

Syntax: A2 B6 P-Id 00 Lc Data-in Le

Type: IN/OUT Instruction inputs:

• Provide 1 byte *P-id* value matching with the number of requested groups.

(01h: one group)

(02h: two groups)

(03h: three groups)

- Provide Lc value matching with the requested byte-data length. Each requested group needs 2 bytes (group ID index byte followed by the byte of the mask value in this group).
- Provide Lc-byte Data-in value matching with data Information per requested group ID: First byte with:
 - (01h system public information)
 - (02h extended public information)
 - (03h xparam system information)

Second byte= Mask data byte of selected data into the group.

The different public group IDs are defined as follows:

Table 51. System information group

Bit	System information	Length (bytes)
bO	0: UID not requested	7
	1: UID requested	
b1	0: IC Ref not requested	1
D1	1: IC Ref requested	1
b2	0: Usr Memory size not requested	2
02	1: Usr Memory size requested	2
b3	Reserved	1
b4	Reserved	1
b5	0: Fixed UID not requested	4
Do	1: Fixed UID requested	4
b6	Reserved	1

DB5166 - Rev 7 page 43/62

Table 52. Extended system information group

Bit	Extended system information	Length (bytes)
b0	0: Product code not requested	2
50	1: Product code requested	2
b1	0: Revision not requested	1
D1	1: Revision requested	1
b2	0: Dedicated revision not requested	2
DZ	1: Dedicated revision requested	2
b3	0: Full revision (or SoC revision)	4
D3	1: Full revision requested	4

Table 53. xparam system information group

Bit	Xparam system information	Length (bytes)
b0	0: PRIV_UID xparam not requested 1: PRIV_UID xparam requested	1
b1	0: DIS_KILL xparam not requested 1: DIS_KILL xparam requested	1

Instruction Outputs:

- Retrieve Le-byte Data-out value matching with system information response or extended system information response.
- Instruction fully executed or error status. Refer to SW1-SW2 codes into the ST25TA-E devices.

Note:

The response of the get system information command is successful when the data to be read is within the well-known group ID; in other words when the second or next group ID is not valid, the exact number of available data bytes are returned and the SW1 SW2 '9000' with the truncated data.

If the Le field contains only bytes set to '00', then all the bytes of the selected data information should be read.

Table 54. With C-APDU format

GSI				Payload field			
GSI	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	1 byte
A2	2h	B6h	P-ID	00h	(P1+P2)*2	Data information per group ID	Data length

Table 55. With R-APDU format

GSI	Payload field			
G 51	Data-out	SW1	SW2	
Length	Length Le bytes		1 byte	
System information		Status byte 1	Status byte 2	

5.4.3.4 SetSystemInformation command

When receiving the <code>SetSystemInformation</code> request, the ST25TA-E devices update the requested xparam attribute into the xparam object file and returns the R-APDU response. Before sending a <code>SetSystemInformation</code> command, the ST25TA-E devices should be in PROTOCOL state and the MF file is selected prior to presenting the xparam WR password and to updating the xparam attributes.

DB5166 - Rev 7 page 44/62

Syntax: A2 F6 Offset-In Lc-In Data-In

Type: IN

Instruction Inputs:

- Provide a 2-byte Offset-In value in the xparam object file matching with the start address of the requested attribute
- Provide a 1-byte Lc-in value matching with the number of bytes to be written, between (0x00 <= Lc <= max object lentgh).
- Provide an Lc-byte Data-in matching with the requested memory field to be written in a selected object file.

Instruction Outputs: Instruction fully executed or error status. Refer to SW1-SW2 codes into the ST25TA-E devices.

Note:

The 2-byte offset-in values are described into the following table

Table 56. xparam system information offset

xparam attribute		Offset-In(P2)	Data-in	Length (bytes)
DIS_KILL	45h	00h	00h: Kill operation is enabled FFh: Kill operation is disabled	1
PRIV_UID	46h	02h	00h:4-byte random UID is used in privacy mode FFh:4-byte fixed UID is used in privacy mode	1

Table 57. With C-APDU format

SSI	Payload field						
331	CLA	INS	P1	P2	Lc	Data	Le
Length	1 byte	1 byte	1 byte	1 byte	1 byte	Lc bytes	0 byte
A2h	1	F6h	Offset_in[15:8]	Offset_in[7:0]	Nb of bytes	Data to be written	-

Table 58. With R-APDU format

	Payload field			
SSI	Data-out	SW1	SW2	
	Le bytes	1 byte	1 byte	
		Status byte 1	Status byte 2	

5.4.3.5 GetGPCounter command (Get general purpose counter)

When receiving the <code>GetGPCounter</code> request, the ST25TA-E devices send back GP counter value. Before sending a <code>GetGPCounter</code> command, the ST25TA-E devices can be in <code>SELECTED</code> APP state or PROTOCOL state.

Syntax: A2 C4 00 00 03

Type: OUT

Instruction inputs:Instruction outputs:

- Retrieve 3-byte data-out value matching with general purpose counter value.
- Instruction fully executed or error status. Refer to Table 27. SW1-SW2 codes into the ST25TA-E devices.

DB5166 - Rev 7 page 45/62

Table 59. With C-APDU format

GGC				Payload field			
GGC	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	1 byte
A	2h	C4h	00h	00h	-	-	03h

Table 60. With R-APDU format

GGC	Payload field				
GGC	Data-out	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
GP counter		Status byte 1	Status byte 2		

5.4.3.6 RevertGPCounter command (Revert general purpose counter)

When receiving the RevertGPCounter request, the ST25TA-E devices revert to the expected General Purpose counter value. Before sending a RevertGPCounter request, the ST25TA-E devices should be in the SELECTED APP state.

Syntax: A2 D4 Op-In 00

Type: IN

Instruction inputs:

Provide 1 byte *Op-in* value matching with the revert operation to be executed:

• (00h: decrement by one)

• (01h: reset to initial value)

Instruction outputs:

Instruction fully executed or error status. Refer to Table 27. SW1-SW2 codes into the ST25TA-E devices.

Note: If the CFG WR authentication is enabled, the CFG WR password must be presented prior to reverting to the expected GP counter value.

Note: The CFG file must be selected prior to reverting to the expected GP counter value.

Table 61. With C-APDU format

RGC				Payload field			
RGC	CLA	INS	P1	P2	Lc	Data-in	Le
Length	1 byte	1 byte	1 byte	1 byte	0 byte	0 byte	0 byte
A	 2h	D4h	Op-In	00h	-	-	-

Table 62. With R-APDU format

RGC	Payload field				
RGC	Data-out	SW1	SW2		
Length	Le bytes	1 byte	1 byte		
-		Status byte 1	Status byte 2		

5.4.4 ISO14443-4 / NFC-A command- set

The ST25TA-E command supports the specific command set, once the RF session is open.

DB5166 - Rev 7 page 46/62

5.4.4.1 Anticollision command set

The table below lists the commands that can be issued only by the RF host. The format of these commands is described in the NFC Forum Digital Protocol specification.

Table 63. Commands issued by the PCD

Family command-set	Command name	Instruction
	ALL_REQs	52h
	SENS_REQs	26h
NFC-A technology	SDD_REQ	93h or 95h
	SEL_REQ	9370h or 9570h
	SLP_REQ	50h

The parameter values for ISO/IEC 14443 activation and selection, used by the ST25TA-E device can be summarized by as follows:

Table 64. Anticollision and activation parameters

Family command-set			Command name	Instruction
ATQA	SENS_REQ or ALL- REQ	52h or 26h	0042h or 0002h(*)	(*): Random UID
SAK1	SEL_REQ	93h	04h or 20h(*)	(*): Random UID
SAK2	SEL_REQ	95h	20h	-

ATQA value is 0042h, which denotes a double size (7 bytes) UID. However, ST25TA-E offers a configuration of random ID, which is single size (4 bytes). If the random ID feature is enabled, then the ATQA is changed to 0002h.

According to ISO/IEC 14443-3, the ATQA bytes are transmitted as LSB first. The value of SAK1, for double size UID, in cascade level 1 is 04h, indicating that the UID is not complete. SAK2 in cascade level 2 is 20h, indicating UID complete and supporting ISO/IEC 14443-4.

For single size UID, which is used in the random ID case, the value of SAK is 20h, indicating UID complete and supporting ISO/IEC 14443-4.

5.4.4.2 RATS command and ATS response

RATS command and ATS response are used for NFC Forum Type 4A Tag Platform Device Activation (as defined in the NFC Forum Digital Protocol specification).

The table below details the RATS command. This command shall be sent after the anticollision process and expects an ATS response from the ST25TA-E device.

Table 65. RATS command

Name	INS	Payload		CRC
Byte field	0x0E	1 byte		2 bytes
Bit field	-	b7-b4	b3-b0	2 bytes
Instruction code				
FSDI				
DID (0<=DID <=14)				
2 CRC bytes			,	

The FSDI field codes the FSD that defines the maximum size that the PCD is able to receive. The table below gives the conversion from FSDI to FSD.

DB5166 - Rev 7 page 47/62

Table 66. Conversion from FDSI to FSD

FDSI	0x0	0x1	0x2	0x3	0x4	0x5	0x6	0x7	0x8	0x9-0xE	0xF
FSD	16	24	32	40	48	64	96	128	256	RFU	256

The DID (Dynamic ID, optionally affected to the ST25TA-E by the host to address ST25TA-E in all commands) field defines the value of the addressed ST25TA-E.

If DID is not '0', the ST25TA-E ignore the command if it contains a DID different from the one affected to ST25TA-E during RATS.

Table 67. ATS response

Name	TL	T0	TA(1)	ТВ	(1)	TC(1)	CRC
Byte field	0x05	0x77	0x80	0x	81	0x2	2 bytes
Bitfield	-	-	-	b7-b4	b3-b0	-	-
Length of the A	TS response						
FSCI=7, FSC=	128 bytes						
	ascending data i ending data rate		The				
FWI field (FWI= 8 -> FWT = 77.3 ms)							
SFGI field (SFGI = 1 -> SFGT = 604 us)							
The DID is supported							
2 CRC bytes	2 CRC bytes						

5.4.4.3 PPS command and response

PPS (protocol and parameter selection) command and response are defined in ISO/IEC 14443-4, in the protocol activation of PICC Type A.

The PPS command allows the user to change the ascending (PCD to ST25TA-E device) and descending (ST25TA-E to PCD) data rates. Usage of this command is optional, as the ST25TA-E devices only support 106 Kbit/s in both directions.

Table 68. PPS command

Name	INS (PPSs)		PPS0		PPS1		CRC
Byte field	0xDx		0x11		1 byte		2 bytes
Bitfield	b7-b4, b3-b0			b7-b4	b3-b2	b1-b0	-
Description	Instruction code	DID	PPS1 is present	RFU	Descending data rate (106 kbps) = 0b00	Ascending data rate (106 kbps) =0b00	CRC

The ascending and descending data rates shall be coded as described in the table below.

Table 69. Ascending and descending data rate coding

Value	0b00	0b01	0b10	0b11
Data rate	106 kbps	RFU	RFU	RFU

When the ST25TA-E devices receive a PPS request as described in Table 68. PPS command, they return the following response. The data rate of this response is 106 kbps. The table below provides the details of the PPS response.

DB5166 - Rev 7 page 48/62

Table 70. PPS response

Name	Respons	CRC	
Byte field	0xDx	-	2 bytes
Bitfield	b7-b4	B3-b0	-
Description	Response code	DID field	CRC

5.4.4.4 DeSelect command

The DeSelect command and response are defined in ISO/IEC 14443-4, in the protocol deactivation of PICC Type A. This command makes it possible to put the tag in standby power mode (this state can also be reached by a shutdown of the RF field.) It consists of an S(DES) request block (see S-block format) sent by the RF host and an S(DES) response sent as acknowledge by the tag.

DB5166 - Rev 7 page 49/62

6 Product identification and user information

6.1 Product identifier: Unique identifier (UID)

Each ST25TA-E device is uniquely identified by a 7-byte unique identifier (UID). The UID is compliant with ISO/IEC 14443-A and ISO/IEC 7816-6. The UID is a read-only code and comprises:

- The 1-byte IC manufacturer code (0x02 for STMicroelectronics).
- A device number which is an 6-byte unique device value.

The table below describes the UID format.

Table 71. UID format

UID0	UID1:UID6
b55-b48	b47-b0
0x02	6 bytes
IC manufacturer	
Unique device number	

6.2 Product identifier: Untraceable UID and nonunique ID (NUID)

The support of random ID feature is implemented according to ISO/IEC14443-3 standard, it allows only single 4-byte UID to be a nonunique fixed number or a random UID with respectively, UID0= xFh and UID0= 08h.

Note:

In anonymous mode, the UID size is updated in the ATQA parameter and SAK1 parameter when the nonunique UID is used.

Table 72. Random UID information

UID0	UID1:UID3
b31-b24	b23-b0
80x0	3 bytes
Single-NUID	
Device number	-

Table 73. NUID information

UID0	UID1:UID3
b31-b24	b23-b0
0x5F	3 bytes
Single-NUID	
Device number	-

Note:

The usage of the NUID and random UID are detailed in Anonymous mode description.

The CFG_UID register contents the 7-byte UID (refer to UID format) except when the ST25TA-E devices meet either of the following conditions:

- The current RF session started in UNTRACEABLE state.
- The current state is UNTRACEABLE state.

Then the content of the CFG_UID register (refer to CFG file layout) is overwritten immediately with null value. When the ST25TA-E devices exit from the UNTRACEABLE state, the content of the register is reverted immediately to the 7-byte UID value.

DB5166 - Rev 7 page 50/62

Note:

Product identifier UID cannot be retrieved by issuing <code>GetSystemInformation</code> command or by issuing a <code>ReadBinary</code> command in the selected CFG file in UNTRACEABLE state whereas the product identifier UID can be retrieved with the two manners when the device exit from privacy mode.

When the ST25TA-E devices meet the following conditions:

- The current RF session started in PROTOCOL state and switch in UNTRACEABLE state.
- A power-off is issued prior to a Select command.

Then the 4-byte random or fixed UID is delivered in the next RF session.

When the ST25TA-E devices meet the following conditions:

- The current RF session started in PROTOCOL state and switch in UNTRACEABLE state.
- A DeSelect command is issued prior to a select.

Then the 7-byte unique UID is delivered in the current RF session even if the ST25TA-E devices are in UNRTACEABLE state.

6.3 Product information

The IC product code if the ST25TA-E device is identified by the 1-byte unique identifier (IC ref).

Table 74. IC REF information

User information	Value
IC ref	0x9A

The Mem Size of the ST25TA-E device is identified by the 2-byte field and defined the user memory size of the 2 Kbits NDEF file.

Table 75. Memsize information

User information	Value
Mem size	0x00FF

Note:

Both product information can be retrieved by issuing <code>GetSystemInformation</code> command or by issuing a <code>ReadBinary</code> command in the selected CFG file.

DB5166 - Rev 7 page 51/62

7 Device parameters

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the devices in RF mode.

The parameters in the DC and AC characteristics tables that follow are derived from tests performed under the measurement conditions summarized in the relevant tables.

Designers should check that the operating conditions in their circuit match the measurement conditions when relying on the guoted parameters.

7.1 Absolute maximum ratings

Stressing the device above the ratings listed in Table 76. Absolute maximum ratings. Absolute maximum ratings may permanently damage it. These are stress ratings only and operation of the device, at these or any other conditions above those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect the device reliability. Refer also to the STMicroelectronics SURE program and other relevant quality documents.

Symbol	Description	Min	Max	Unit
T _A	Ambient operating temperature	-25	+85	°C
T _{STG}	Storage temperature	-40	+125	°C
t STG	Storage duration	-	9 ⁽¹⁾	months
V _{esd} AC0, AC1	Electrostatic discharge voltage product according to JESD22-A114(human body model)	-	4000	V
V _{max carrier}	Maximum input voltage (pins AC0, and AC1)	-	+/- 5.7	V
S _{max} ⁽²⁾	Carrier signal maximum rising and falling slope	-	+/- 1.59	V/ns

Table 76. Absolute maximum ratings

- Counted from ST production date
- 2. Refer to figure below Smax failing slope = Vac/(t2-t1)Smax rising slope= Vac/(t4-t3)

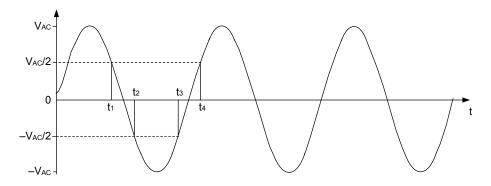
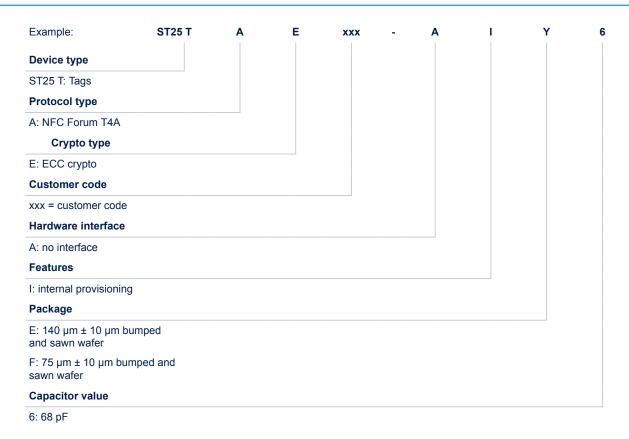


Figure 8. Carrier signal waveform

DB5166 - Rev 7 page 52/62

8 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.


8.1 Sawn and bumped wafer

Contact your STMicroelectronics sales office to get the die description document.

DB5166 - Rev 7 page 53/62

9 Ordering information

Note:

For a list of available options (speed, package, etc.) or for further information on any aspect of this device, contact your nearest STMicroelectronics sales office.

DB5166 - Rev 7 page 54/62

Revision history

Table 77. Document revision history

Date	Revision	Changes
01-Dec-2023	1	Initial release.
19-Mar-2024	2	Updated the following: Section Features Section 1: Description
02-Apr-2024	3	Document scope change.
19-Jun-2024	4	General data brief update.
26-Jul-2024	5	Minor editorial changes. First public version.
31-Jan-2025	6	Updated the following: Section 3.1: CC (capacity container) file layout Section 3.3: ANDEF file layout Section 3.7: CFG file layout Section 4.3.1: ANDEF description CFG_GP_CNT_OFFSET_ADD CFG_PRIV_NUID register Section 5.2: State machine Section 5.4.3.2: ManageBasicLogicalChannel command Section 5.4.4.2: RATS command and ATS response Section 6.2: Product identifier: Untraceable UID and nonunique ID (NUID) Section 4.7.1: Kill mode description Section 9: Ordering information
15-Jul-2025	7	Updated: Cover image Features Section 1: Description Section 3: Memory management Section 3.1: CC (capacity container) file layout Section 4.1.2: Reversible lock file protection Section 4.2: Password management Section 4.7.1: Kill mode description Section 4.7.2: Anonymous mode description Section 5.2: State machine Section 5.3: RF protocol Section 5.4: RF command set Section 5.4.1.3: ReadBinary command Section 5.4.1.4: UpdateBinary command Section 5.4.2.2: Verify command Section 5.4.2.3: ChangeReferenceData command Section 5.4.2.4: EnableVerificationRequirement command Section 5.4.2.5: DisableVerificationRequirement command Section 5.4.3.1: EnablePermanentRequirement command Section 5.4.3.2: ManageBasicLogicalChannel command Section 5.4.3.3: GetSystemInformation command Section 6.2: Product identifier: Untraceable UID and nonunique ID (NUID) Added: Section 5.4.3.4: SetSystemInformation command

DB5166 - Rev 7 page 55/62

Glossary

Native operation Operation running on the operating system of the reader device, communicating with the tag, without any external software layers such as mobile custom application. Only the NFC T4T command-set is used in this native operation.

Tap action Action that allows to detect NFC devices, exchange NFC messages or digital content, and connect electronic devices, such as smartphone, with a touch. NFC exchanges are short range (from a touch to a few centimeters) and require the devices to be in close proximity.

DB5166 - Rev 7 page 56/62

Contents

1	Desc	cription .		2		
	1.1	Block d	iagram	2		
	1.2	Packag	e connections	2		
2	Sign	al descr	riptions	4		
	2.1		a coil (AC0, AC1)			
3	Mem	nory mar	nagement	5		
	3.1		pacity container) file layout			
	3.2		ile layout			
	3.3					
	3.4	•				
	3.5	·				
	3.6		layout			
	3.7		e layout			
4	Spec		cures			
	4.1		tection			
		4.1.1	Permanent lock file protection			
		4.1.2	Reversible lock file protection			
		4.1.3	Permission status and permission interaction			
	4.2	Passwo	ord management	14		
		4.2.1	Cover coding	15		
		4.2.2	Permanent password lock	15		
	4.3	Augmei	nted NDEF feature (ANDEF)	16		
		4.3.1	ANDEF description	16		
		4.3.2	ANDEF registers	18		
	4.4	Smart a	authentication	20		
	4.5	4.5 Strong authentication				
	4.6	Monitor	ing and diagnosis	20		
		4.6.1	Remote monitoring	20		
	4.7	Privacy		23		
		4.7.1	Kill mode description	23		
		4.7.2	Anonymous mode description	24		
		4.7.3	Privacy registers	24		
	4.8	Security	y	25		
		4.8.1	Antitearing	25		
		4.8.2	Physical protection: Active shield and laser detection	25		

		4.8.3	Nonvolatile memory protection	25
5	RF o	peration	າຣ	26
	5.1	RF com	ımunications	26
	5.2	State m	achine	26
	5.3	RF prot	ocol	28
		5.3.1	I-block format	29
		5.3.2	R-block format	31
		5.3.3	S-block format	32
		5.3.4	CRC of an RF frame	32
		5.3.5	Return code list	33
	5.4	RF com	nmand set	34
		5.4.1	NFC T4T command-set.	34
		5.4.2	ISO/IEC 7816-4 command-set	37
		5.4.3	ST proprietary command set	41
		5.4.4	ISO14443-4 / NFC-A command- set	46
6	Prod	uct iden	ntification and user information	50
	6.1	Product	tidentifier: Unique identifier (UID)	50
	6.2	Product	tidentifier: Untraceable UID and nonunique ID (NUID)	50
	6.3	Product	information	51
7	Devi	ce parar	neters	52
	7.1	•	e maximum ratings	
8	Pack		ormation	
	8.1		nd bumped wafer	
9			ormation	
		_	·····	
		-		
List	of fia	ures		61

List of tables

Table 1.	S1251A-E signal names	. 2
Table 2.	File identifier	. 5
Table 3.	List of user files	. 6
Table 4.	CC file layout	. 7
Table 5.	NDEF file layout	. 7
Table 6.	ANDEF file layout	. 8
Table 7.	CFG file layout	. 8
Table 8.	List of configuration registers	. 9
Table 9.	Lis of permanent read/write lock protection	10
Table 10.	List of read/write password protection	11
Table 11.	Security session type	11
Table 12.	List of read protection status	13
Table 13.	List of write protection status	13
Table 14.	List of file passwords	14
Table 15.	List of feature passwords	14
Table 16.	List of password-related command frames	
Table 17.	Concatenated ANDEF fields in the ANDEF MEM	
Table 18.	RF command sets	29
Table 19.	I-block format	29
Table 20.	PCB field of the I-Block format	30
Table 21.	C-APDU format	
Table 22.	R-APDU format	
Table 23.	R-block format	
Table 24.	PCB field of the R-Block format	
Table 25.	S-block format	
Table 26.	PCB field of the S-Block format	
Table 27.	SW1-SW2 codes into the ST25TA-E devices	
Table 28.	RF command sets	
Table 29.	With C-APDU format	
Table 30.	With R-APDU format	
Table 31.	With C-APDU format	
Table 32.	With R-APDU format	
Table 33.	With C-APDU format	
Table 34.	With R-APDU format	
Table 35.	With C-APDU format	
Table 36.	With R-APDU format	
Table 37.	With C-APDU format	
Table 38.	With R-APDU format	
Table 39.	With C-APDU format	38
Table 40.	With R-APDU format	
Table 41.	With C-APDU format	
Table 42.	With R-APDU format	
Table 43.	With C-APDU format	
Table 44.	With R-APDU format	
Table 45.	With C-APDU format	
Table 46.	With R-APDU format	
Table 47.	With C-APDU format	
Table 48.	With R-APDU format	
Table 49.	With C-APDU format	
Table 50.	With R-APDU format	
Table 50.	System information group	
Table 51.	Extended system information group	
Table 52.	xparam system information group	
	- Appliant 0,000 millionidit 9100p	. T

ST25TA-E

List of tables

Table 54.	With C-APDU format	44
Table 55.	With R-APDU format	. 44
Table 56.	xparam system information offset	45
Table 57.	With C-APDU format	45
Table 58.	With R-APDU format	45
Table 59.	With C-APDU format	46
Table 60.	With R-APDU format	46
Table 61.	With C-APDU format	46
Table 62.	With R-APDU format	
Table 63.	Commands issued by the PCD	47
Table 64.	Anticollision and activation parameters	47
Table 65.	RATS command	47
Table 66.	Conversion from FDSI to FSD	. 48
Table 67.	ATS response	. 48
Table 68.	PPS command	. 48
Table 69.	Ascending and descending data rate coding	. 48
Table 70.	PPS response	49
Table 71.	UID format	. 50
Table 72.	Random UID information	. 50
Table 73.	NUID information	. 50
Table 74.	IC REF information	
Table 75 .	Memsize information	. 51
Table 76.	Absolute maximum ratings	. 52
Table 77	Document revision history	55

List of figures

Figure 1.	ST25TA-E block diagram	. 2
Figure 2.	ST25TA-E die connection for sawn and bumped wafer	. 3
Figure 3.	ST25TA-E file system organization	. 5
Figure 4.	ST25TA-E security session management	12
Figure 5.	NDEF read data response when the ANDEF feature is disabled/enabled	17
Figure 6.	ANDEF_MEM content	17
Figure 7.	ST25TA-E RF FSM	27
Figure 8.	Carrier signal waveform	52

DB5166 - Rev 7 page 61/62

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

DB5166 - Rev 7 page 62/62