

2-channel 40 V class-D digital input automotive power amplifier with diagnostics features and low voltage

LQFP64
(exposed pad up)

Features

- AEC-Q100 qualified
- Integrated 110 dB D/A conversion
- I²S and TDM digital input (3.3/1.8 V)
- Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz
- Full I²C bus driving (3.3/1.8 V) with 8 different I²C bus addresses
- EMI control for FM/AM compatibility
- EMI compliance evaluated following normative CISPR25 (class V)
- Low radiation function (LRF)
- Very low quiescent current
- Output low-pass filter included in the feedback allowing outstanding audio performances
- Wide operating supply range: target 5.5 V–40 V
- Supply voltage monitoring on I²C
- 60 dB S/N load current monitor
- MOSFET power outputs able to deliver 10 A peak pulse
- MOSFET power outputs providing high output power capability under stepped up voltage:
 - 2 x 170 Wrms (typ.) on 4 Ω at 40 V, 1 kHz THD = 1%
- Operation under standard car battery with high output power:
 - 2 x 23 Wrms (typ.) on 4 Ω at 14.4 V, 1 kHz THD = 1%
 - 2 x 37 Wrms (typ.) on 2 Ω at 14.4 V, 1 kHz THD = 1%
- Possibility to drive 2 Ω loads on 2 channels up to 25 V:
 - 2 x 110 Wrms (typ.) on 2 Ω at 25.5 V, 1 kHz THD = 1%
- Parallel mode
 - 1 Ω up to 25.5 V
 - 2 Ω up to 40 V
- Independent channel operation
- I²C bus diagnostics:
 - Short to V_{CC}/GND diagnostics (including soft shorts up to 1 kΩ)
 - DC load diagnostics
 - AC load diagnostics
- Digital impedance-meter (DIM)
- Integrated fault protection
- Input and output offset detector
- Clipping detector
- Legacy mode ('no I²C' mode)
- Short circuit and ESD integrated protections
- Package: LQFP64 exposed pad up

Product status link

[FDA902HP](#)

Product summary

Order code	Package	Packing
FDA902HP-VYY	LQFP64 (exp. pad up)	Tray
FDA902HP-VYT		Tape and reel

Description

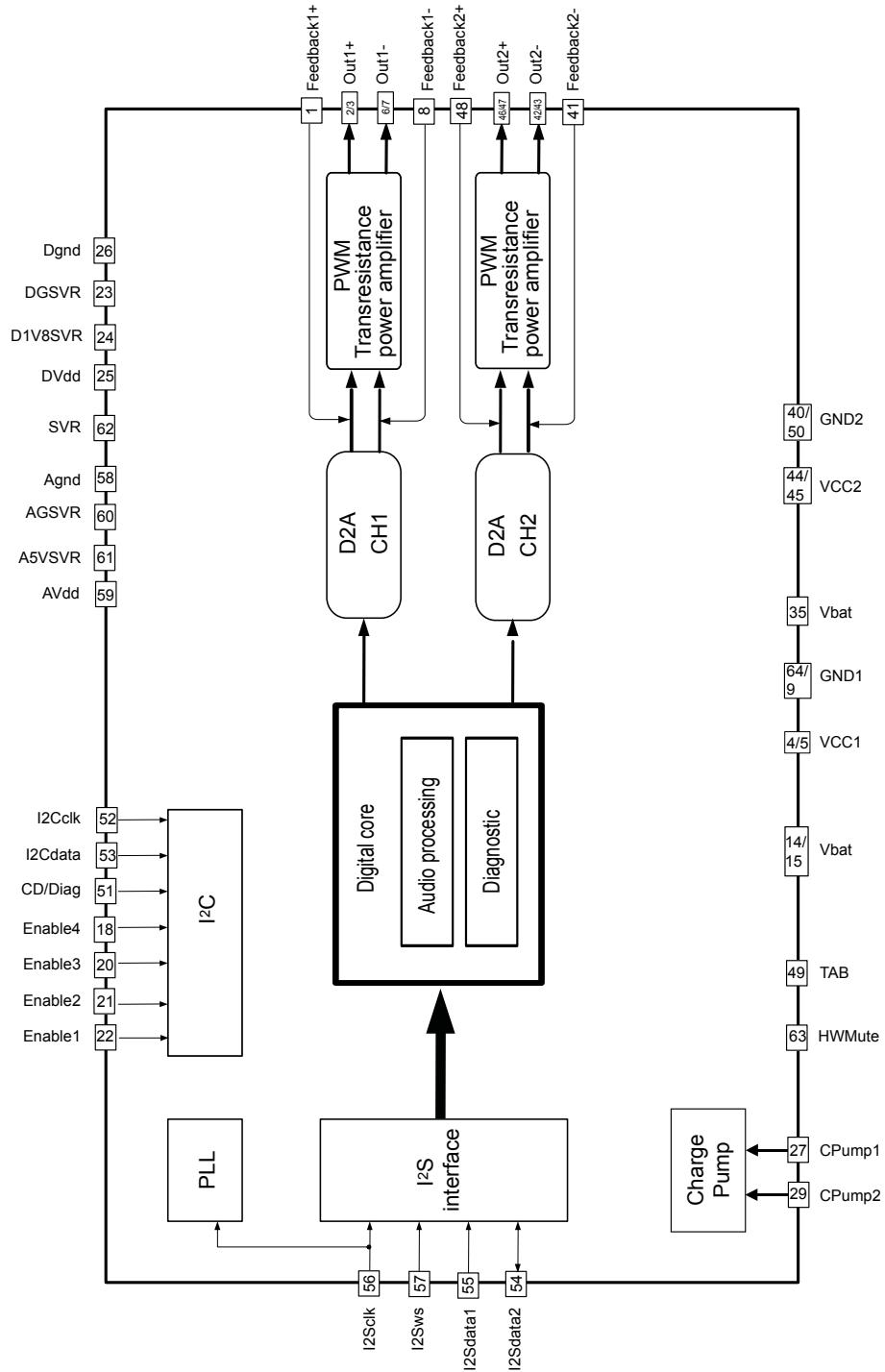
The FDA902HP is a dual bridge class-D amplifier, designed in the most advanced BCD technology expressly intended for car radio applications.

The FDA902HP integrates a high performance D/A converter together with powerful MOSFET outputs in class-D, to get an outstanding efficiency compared to the standard class AB amplifiers.

Thanks to the high-voltage MOSFET output stages it can operate both under standard car battery (6–18 V) and under boosted power supplies (up to 40 V) to deliver the highest possible power with an integrated solution.

The feedback loop includes the output LC low-pass filter, allowing superior frequency response linearity and lower distortion independently from the inductor and quality of the inductors and capacitors.

The FDA902HP is fully configurable through I²C bus interface and integrates a complete diagnostics array especially intended for automotive applications.


Thanks to the solutions implemented to solve EMI problems, the device is intended to be used in a standard single DIN car-radio enclosure, even when equipped with a tuner.

Moreover, FDA902HP is able to operate with a power supply as low as 5.5 V, thus supporting the most recent low voltage levels specified by car-makers (for example, for 'start-stop' compatibility).

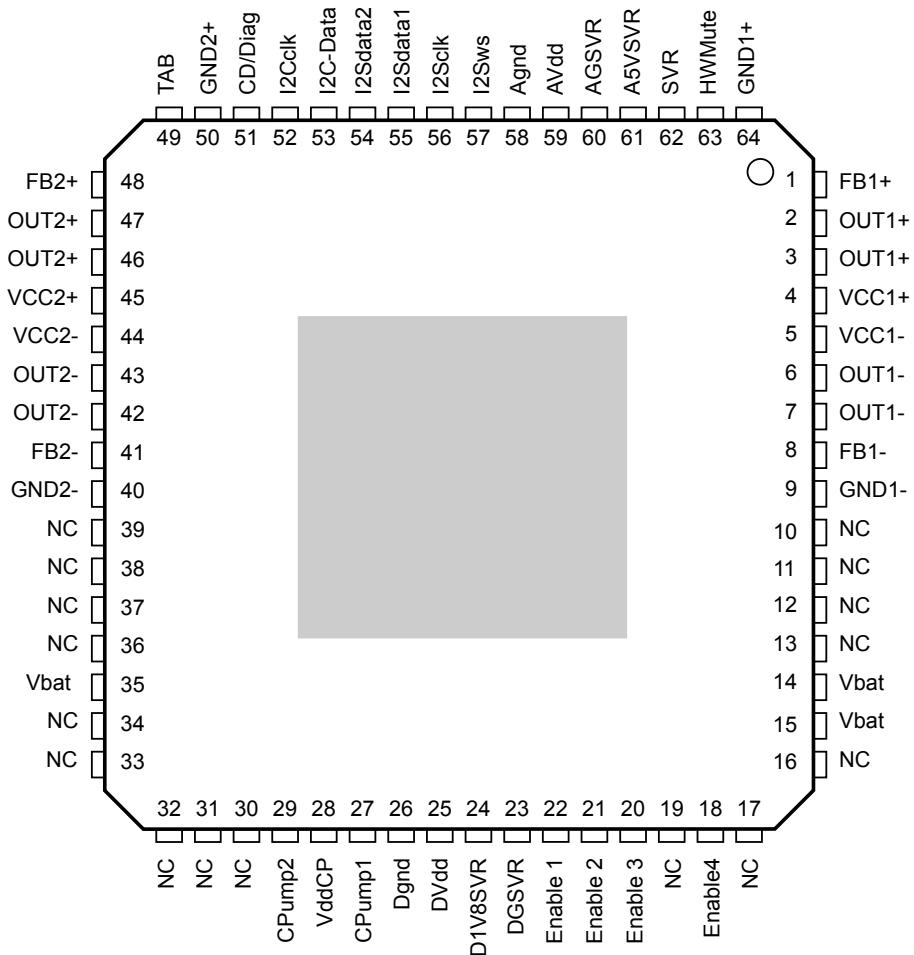
1 Block diagram and pins description

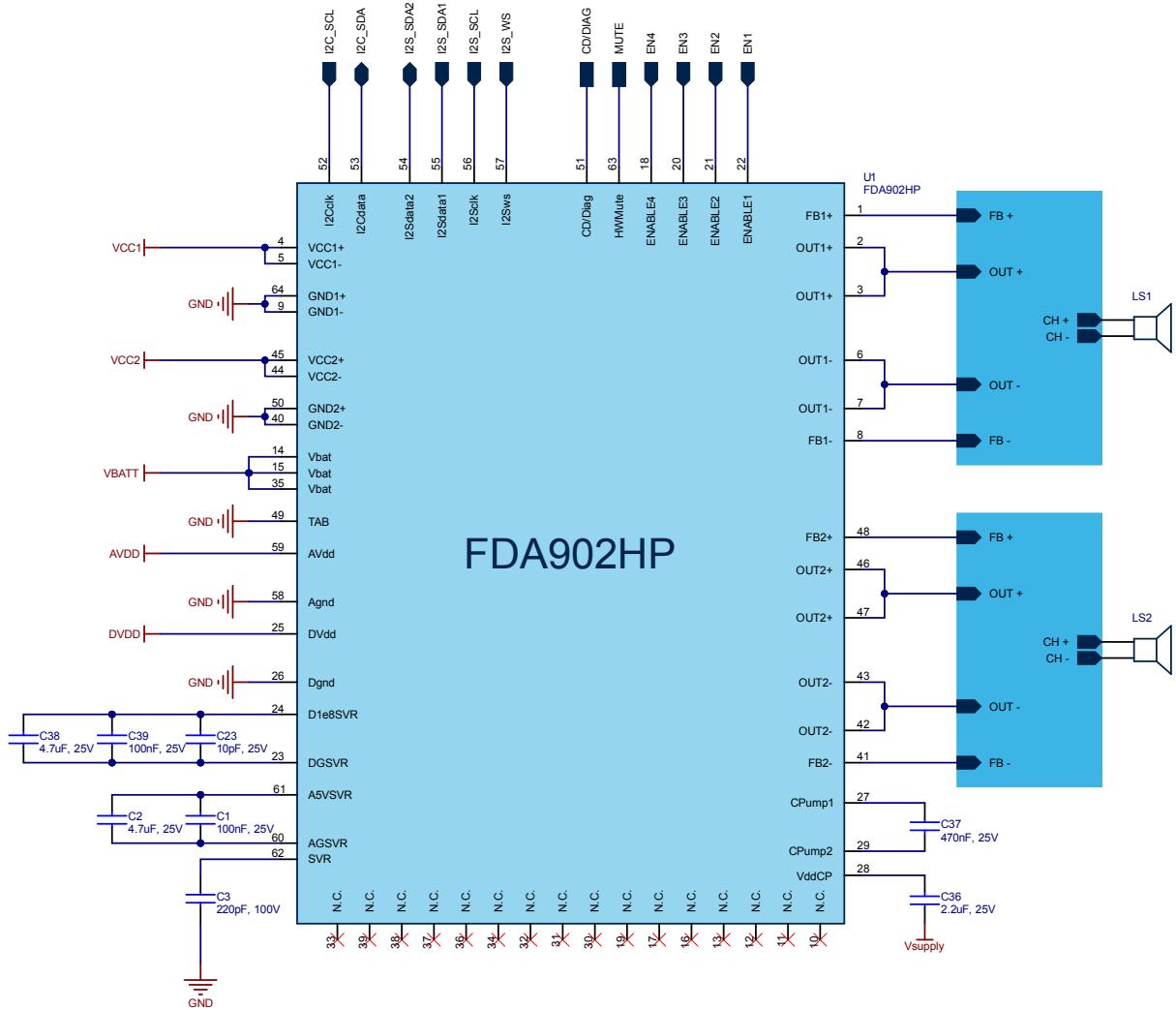
1.1 Block diagram

Figure 1. Block diagram

1.2 Pins description

Figure 2. Pins connection diagram




Table 1. Pins list description

N#	Pin	Function
1	FB1+	Channel 1, half bridge plus, feedback
2	OUT1+	Channel 1, half bridge plus, output
3	OUT1+	Channel 1, half bridge plus, output
4	VCC1+	Channel 1, half bridge plus, boosted power supply
5	VCC1-	Channel 1, half bridge minus, boosted power supply
6	OUT1-	Channel 1, half bridge minus, output
7	OUT1-	Channel 1, half bridge minus, output
8	FB1-	Channel 1, half bridge minus, feedback
9	GND1-	Channel 1, half bridge minus, power ground
10-13	N.C.	Not connected
14	Vbat	Main battery voltage
15	Vbat	Main battery voltage
16-17	N.C.	Not connected
18	Enable4	Chip enable 4

N#	Pin	Function
19	N.C.	Not connected
20	Enable3	Chip enable 3
21	Enable2	Chip enable 2
22	Enable1	Chip enable 1
23	DGSVR	Negative analog supply V(SVR) - 0.9 V (internally generated)
24	D1V8SVR	Positive digital supply V(SVR) + 0.9 V (internally generated)
25	DVdd	Digital supply
26	Dgnd	Digital ground
27	CPump1	Charge pump pin1
28	VddCP	Charge pump output voltage
29	CPump2	Charge pump pin2
30-34	N.C.	Not connected
35	Vbat	Main battery voltage
36-39	N.C.	Not connected
40	GND2-	Channel 2, half bridge minus, power ground
41	FB2-	Channel 2, half bridge minus, feedback
42	OUT2-	Channel 2, half bridge minus, output
43	OUT2-	Channel 2, half bridge minus, output
44	VCC2-	Channel 2, half bridge minus, boosted power supply
45	VCC2+	Channel 2, half bridge plus, boosted power supply
46	OUT2+	Channel 2, half bridge plus, output
47	OUT2+	Channel 2, half bridge plus, output
48	FB2+	Channel 2, half bridge plus, feedback
49	TAB	Device slug connection
50	GND2+	Channel 2, half bridge plus, power ground
51	CD/Diag	Clip detector / diagnostic pin (output, open drain)
52	I ² CClk	I ² C clock
53	I ² C-Data	I ² C data input
54	I ² Sdata2	I ² S/TDM data 2 (data input, NOT used in TDM mode)
55	I ² Sdata1	I ² S/TDM data 1(data input)
56	I ² Sclk	I ² S/TDM clock
57	I ² Sws	I ² S/TDM ws (frame sync input)
58	Agnd	Analog ground
59	AVdd	Analog supply
60	AGSVR	Negative analog supply V(SVR) - 2.5 V (internally generated)
61	A5VSVR	Positive analog supply V(SVR) + 2.5 V (internally generated)
62	SVR	Supply voltage ripple rejection capacitor
63	HWMute	Hardware mute pin
64	GND1+	Channel 1, half bridge plus, power ground

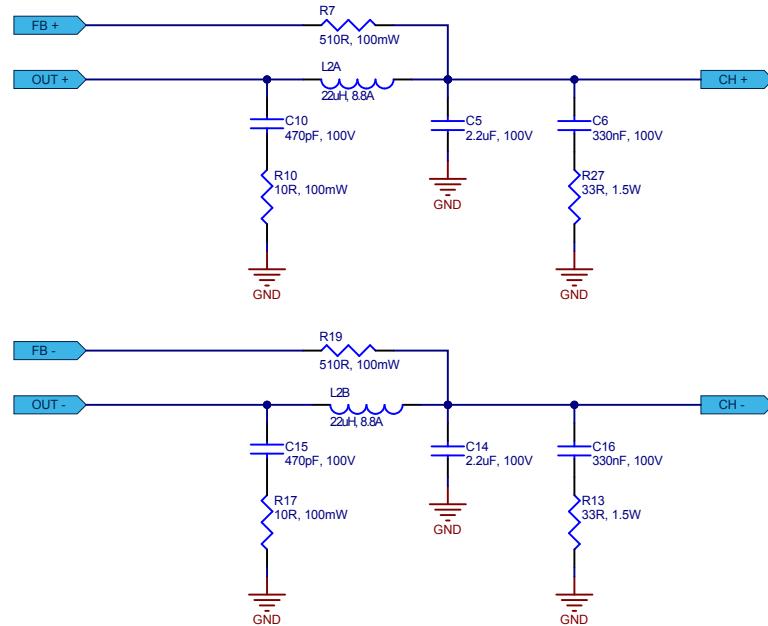

2 Application diagram

Figure 3. Application diagram



The figure here below is referred to the channel 2, but the same external components are also used for the channel 1.

Figure 4. Output stage

Figure 5. Power supply filter

3 Electrical specifications

3.1 Absolute maximum ratings

Table 2. Absolute maximum ratings

Symbol	Parameter	Value	Unit
VCC _{max} [VCC1+, VCC1-, VCC2+, VCC2-, AVdd, DVdd, V _{bat}]	DC supply voltage	-0.3 to 50 ⁽¹⁾	V
	Transient supply voltage (for t = 50 ms) not operating ramp time \geq 2 ms	57	V
GND _{max} [GND1+, GND1-, GND2+, GND2-, Agnd, Dgnd]	Ground pin voltage difference	-0.3 to 0.3	V
V _{i2C} [I2Cdata, I2Cclk]	I ² C bus pins voltage	-0.3 to 5.5	V
V _{i2S} [I2Sclk, I2Sws, I2Sdata1, I2Sdata2]	I ² S bus pins voltage	-0.3 to 5.5	V
V _{enable} [Enable1, Enable2, Enable3, Enable4]	Enable pins voltage	-0.3 to 5.5	V
V _{CD} [CD/Diag]	CD/DIAG pin	-0.3 to 5.5	V
V _{mute} [HWmute]	Hardware mute pin voltage	-0.3 to 5.5	V
I _o	Output current (repetitive f > 10 Hz)	Internally limited	A
T _{stg} , T _J	Storage and junction temperature	-55 to 150	°C
T _A	Ambient temperature	-40 to 105	°C
ESDHBM	ESD protection HBM ⁽²⁾	2000	V
ESDCDM	ESD protection CDM ⁽²⁾	500	V

1. Refer to the Load possibilities and operating range for I²C configuration of operating supply range.

2. Conforming to ESD international standard.

3.2 Maximum operating voltage

Table 3. Maximum operating voltage

Symbol	Parameter	Typ.	Unit
VCC _{max} [VCC1+, VCC1-, VCC2+, VCC2-, AVdd, DVdd, V _{bat}]	DC supply voltage	40	V
VI2C [I2Cdata, I2Cclk]	I ² C bus pins voltage	3.6	V
VI2S [I2Sclk, I2Sws, I2Sdata1, I2Sdata2]	I ² S bus pins voltage	3.6	V
V _{mute} [HWmute]	Hardware mute pin voltage	5.3	V
Enable [Enable1, Enable2, Enable3, Enable4]	Enable pins voltage	3.6	V
V _{CD} [CD/Diag]	CD/DIAG pin voltage	3.6	V

3.3 Thermal data

Table 4. Thermal data

Symbol	Parameter	Typ.	Unit
R _{thJC} ⁽¹⁾	Thermal resistance, junction-to-case	1.15	°C/W

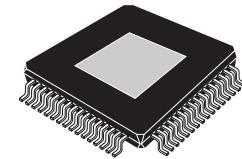
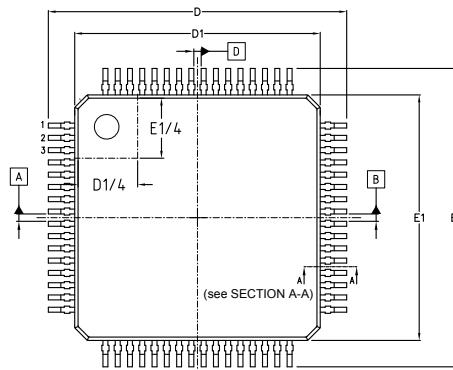
1. Thermal resistance junction to top case as per standard Jedec JESD51-12.01 with package top side (e-pad side) in ideal contact with a cold plate (infinite heat sink like).

4 General introduction

The FDA902HP is a fully digital single chip class-D amplifier with high immunity to the demodulation filter effects. The high integration level and the on-board signal processing allow excellent audio performance to be achieved. Thanks to the digital input and to the feedback strategy in the power stage that makes the amplifier immune from the output filter components non-linearity, the number and size of the external components are minimized.

A number of features is included to reduce EMI and the fully digital approach provides a very high immunity to GSM/RF interferences.

The FDA902HP includes: digital I²C and I²S interfaces, internal 24 bits DAC conversion, digital signal processing for interpolation and noise shaping, innovative self-diagnostic functions and automatic detection of wrong load connections or load variations, internal PLL for clock generation.



5 Package information

To meet environmental requirements, ST offers these devices in different grades of **ECOPACK** packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

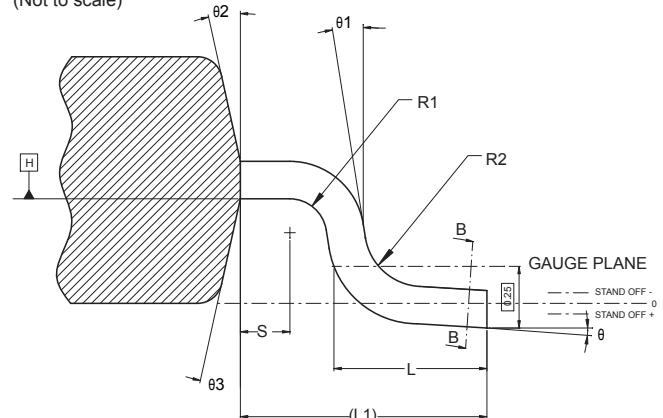
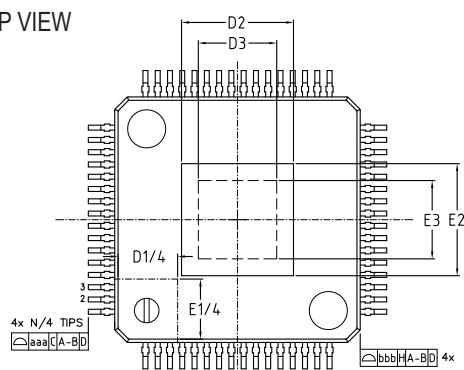
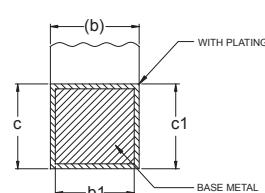

5.1 LQFP64 (10x10x1.4 mm exp. pad up) package information

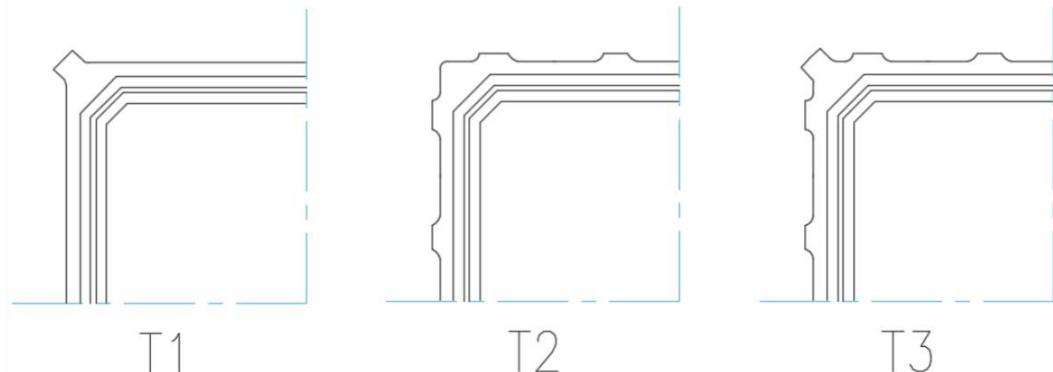
Figure 6. LQFP64 (10x10x1.4 mm exp. pad up) package outline


BOTTOM VIEW


SECTION A-A
(Not to scale)

TOP VIEW

SECTION B-B
(Not to scale)


Table 5. LQFP64 (10x10x1.4 mm exp. pad up) package mechanical data

Symbol	Dimensions in mm					
	Min.	Typ.	Max.			
Θ	0°	3.5°	6°			
Θ1	0°	-	-			
Θ2	10°	12°	14°			
Θ3	10°	12°	14°			
A	-	-	1.49			
A1	-0.04	-	0.04			
A2	1.35	1.40	1.45			
b	0.17	0.22	0.27			
b1	0.17	0.20	0.23			
c	0.09	-	0.20			
c1	0.09	0.127	0.16			
D	12.00 BSC					
D1 ⁽¹⁾⁽²⁾	10.00 BSC					
D2	See VARIATIONS					
D3	See VARIATIONS					
e	0.50 BSC					
E	12.00 BSC					
E1 ⁽¹⁾⁽²⁾	10.00 BSC					
E2	See VARIATIONS					
E3	See VARIATIONS					
L	0.45	0.60	0.75			
L1	1.00 REF					
N	64					
R1	0.08	-	-			
R2	0.08	-	0.20			
S	0.20	-	-			
Tolerance of form and position						
aaa	0.20					
bbb	0.20					
ccc	0.08					
ddd	0.08					
VARIATIONS						
Pad option 6.0x6.0 (T1-T3) ⁽³⁾						
D2	-	-	6.61			
E2	-	-	6.61			
D3	4.8	-	-			
E3	4.8	-	-			

1. Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusion is "0.25 mm" per side.
2. The Top package body size may be smaller than the bottom package size by much as 0.15 mm.

3. Number, dimensions and position of shown grooves are for reference only (see the [Figure 7](#)).

Figure 7. Grooves diagram

Revision history

Table 6. Document revision history

Date	Revision	Changes
13-Jan-2026	1	Initial release.

Contents

1	Block diagram and pins description	3
1.1	Block diagram	3
1.2	Pins description	4
2	Application diagram	6
3	Electrical specifications	8
3.1	Absolute maximum ratings	8
3.2	Maximum operating voltage	8
3.3	Thermal data	8
4	General introduction	9
5	Package information	10
5.1	LQFP64 (10x10x1.4 mm exp. pad up) package information	10
	Revision history	13

List of tables

Table 1.	Pins list description	4
Table 2.	Absolute maximum ratings	8
Table 3.	Maximum operating voltage	8
Table 4.	Thermal data	8
Table 5.	LQFP64 (10x10x1.4 mm exp. pad up) package mechanical data	11
Table 6.	Document revision history	13

List of figures

Figure 1.	Block diagram	3
Figure 2.	Pins connection diagram	4
Figure 3.	Application diagram	6
Figure 4.	Output stage	7
Figure 5.	Power supply filter	7
Figure 6.	LQFP64 (10x10x1.4 mm exp. pad up) package outline	10
Figure 7.	Groves diagram	12

IMPORTANT NOTICE – READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2026 STMicroelectronics – All rights reserved