

2x150 W/1x300 W class D digital input automotive power amplifier with diagnostics features and low voltage

LQFP64 10x10x1.4 mm (exposed pad up)

Features

- AEC-Q100 qualified
- Integrated 110 dB D/A conversion
- I²S and TDM digital input (3.3/1.8 V)
- Input sampling frequency: 44.1 kHz, 48 kHz, 96 kHz, 192 kHz
- Full I²C bus driving (3.3/1.8 V) with 8 different I²C bus addresses
- · EMI control for FM/AM compatibility
- EMI compliance evaluated following normative CISPR25 (class V)
- · Low radiation function (LRF)
- Very low quiescent current
- Output low-pass filter included in the feedback allowing outstanding audio performances
- Wide operating supply range: target 5.5 V-50 V
- Supply voltage monitoring on I²C
- MOSFET power outputs allowing high output power capability under step-up voltage:
 - 2x120 W /4 Ω at 35 V, 1 kHz THD = 1% (2x150 W /4 Ω at 35 V, 1 kHz THD = 10%)
 - 2x140 W /8 Ω at 50 V, 1 kHz THD = 1% (2x180 W /8 Ω at 50 V, 1 kHz THD = 10%)
 - 2x270 W /8 Ω at 50 V max output power
- Operation under standard car battery with high output power:
 - 2x22 W /4 Ω at 14 V, 1 kHz THD = 1% (2x28 W /4 Ω at 14 V, 1 kHz THD = 10%)
 - 2x37 W /2 Ω at 14 V, 1 kHz THD = 1% (2x46 W /2 Ω at 14 V, 1 kHz THD = 10%)
- Possibility to drive 2 Ω loads:
 - up to 18 V in normal mode
 - up to 35 V in parallel mode
- · Independent channel operation
- I²C bus diagnostics:
 - Short to V_{CC} /GND diagnostic (including soft shorts up to 1 k Ω)
 - DC load diagnostic
 - AC load diagnostic (working both with internally generated and externally generated tone)
- · Integrated fault protection
- · Input and output offset detector
- · Clipping detector
- Legacy mode ('no I²C' mode)
- Short circuit and ESD integrated protections
- Package: LQFP64 exposed pad up

Product status link FDA802A

Product summary			
Order code	Package	Packing	
FDA802A- VYY	LQFP64 (exp. pad up)	Tray	
FDA802A- VYT		Tape and reel	

Description

The FDA802A is a dual bridge class D amplifier, designed in the most advanced BCD technology specially intended for car radio applications.

The FDA802A integrates a high performance D/A converter together with powerful MOSFET outputs in class D, to get an outstanding efficiency compared with the standard class AB.

The integrated D/A converter allows to reach outstanding performances (115 dB S/N ratio with 110 dB of dynamic range).

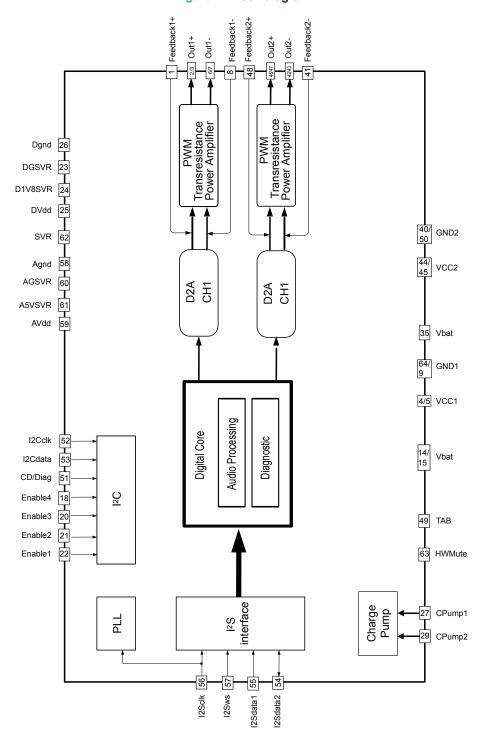
Thanks to the high-voltage MOSFET output stages it can operate both under standard car battery (6 -18 V) and under boosted power supply (up to 50 V) to reach the highest possible power with integrated solution.

The feedback loop includes the output L-C low-pass filter, allowing superior frequency response linearity and lower distortion independently from the inductor and capacitor quality.

FDA802A is fully configurable through I²C bus interface and integrates a complete diagnostics array specially intended for automotive applications.

Thanks to the solutions implemented to solve the EMI problems, the device is intended to be used in the standard single DIN car-radio box together with the tuner.

Moreover FDA802A is able to work with power supply as low as 5.5 V, thus supporting the most recent low voltage ('start-stop') car-makers specification.


DB4820 - Rev 1 page 2/15

1 Block and pins description diagrams

1.1 Block diagram

Figure 1. Block diagram

DB4820 - Rev 1 page 3/15

1.2 Pins description

I2C-Data A5VSVR SVR HWMute GND1+ CD/Diag 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 | FB1+ FB2+ □ OUT2+ 47 OUT1+ OUT2+ 46 Б⊓оυт1÷ VCC2+ 45 VCC1+ VCC2- □ VCC1-OUT2-OUT1-43 OUT2-OUT1-42 FB2- [FB1-GND2- [GND1-40 р ис NC [39 NC L 11 р ис NC L 12 h ис 37 NC [13 Бис 36 Vbat 14 │ Vbat 35 ☐ Vbat NC [34 15 □ ис NC | 33 16 32 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 Enable 3 DGSVR Enable 2 Enable4 NC S 9 9 9 CPump1 D1V8SVR Enable 1

Figure 2. Pins connection diagram

Table 1. Pins list description

N#	Pin	Function
1	FB1+	Channel 1, half bridge plus, feedback
2	OUT1+	Channel 1, half bridge plus, output
3	OUT1+	Channel 1, half bridge plus, output
4	VCC1+	Channel 1, half bridge plus, boosted power supply
5	VCC1-	Channel 1, half bridge minus, boosted power supply
6	OUT1-	Channel 1, half bridge minus, output
7	OUT1-	Channel 1, half bridge minus, output
8	FB1-	Channel 1, half bridge minus, feedback
9	GND1-	Channel 1, half bridge minus, power ground
10-13	N.C.	Not connected
14	Vbat	Main battery voltage (14 V)
15	Vbat	Main battery voltage (14 V)
16-17	N.C.	Not connected
18	Enable4	Chip enable 4
19	N.C.	Not connected
20	Enable3	Chip enable 3

DB4820 - Rev 1 page 4/15

N#	Pin	Function
21	Enable2	Chip enable 2
22	Enable1	Chip enable 1
23	DGSVR	Negative analog supply V(SVR)-0.9 V (internally generated)
24	D1V8SVR	Positive digital supply V(SVR)+0.9 V (internally generated)
25	DVdd	Digital supply
26	Dgnd	Digital ground
27	CPump1	Charge pump pin1
28	VddCP	Charge pump output voltage
29	CPump2	Charge pump pin 2
30-34	N.C.	Not connected
35	Vbat	Main battery voltage (14 V)
36-39	N.C.	Not connected
40	GND2-	Channel 2, half bridge minus, power ground
41	FB2-	Channel 2, half bridge minus, feedback
42	OUT2-	Channel 2, half bridge minus, output
43	OUT2-	Channel 2, half bridge minus, output
44	VCC2-	Channel 2, half bridge minus, boosted power supply
45	VCC2+	Channel 2, half bridge plus, boosted power supply
46	OUT2+	Channel 2, half bridge plus, output
47	OUT2+	Channel 2, half bridge plus, output
48	FB2+	Channel 2, half bridge plus, feedback
49	TAB	Device slug connection
50	GND2+	Channel 2, half bridge plus, power ground
51	CD/Diag	Clip detector / diagnostic pin (output, open drain)
52	I2CClk	I ² C clock
53	I2C-Data	I ² C data input
54	I2Sdata2	I ² S/TDM data 2 (data input, NOT used in TDM mode)
55	I2Sdata1	I ² S/TDM data 1(data input)
56	I2Sclk	I2S/TDM clock
57	I2Sws	I ² S/TDM ws (frame sync Input)
58	Agnd	Analog ground
59	AVdd	Analog supply
60	AGSVR	Negative analog supply V(SVR)-2.5 V (internally generated)
61	A5VSVR	Positive analog supply V(SVR)+2.5 V (internally generated)
62	SVR	Supply voltage ripple rejection capacitor
63	HWMute	Hardware mute pin
64	GND1+	Channel 1, half bridge plus, power ground

DB4820 - Rev 1 page 5/15

2 Application diagram

Figure 3. Application diagram Agnd AVdd AGSVR OUT2+ OUT1+ OUT2+ OUT1+ VCC2+ VCC1+ VCC2-VCC1-OUT2-OUT1-OUTI-OUT2-FB2-FB1-FDA802A GND1-N.C. N.C. N.C. N.C. Vbat Vbat N.C. 16 N.C. 17 N.C. N.C. 19 CPump1 Note: The SVR capacitor (C3) must be 220 pF (+/-10%)

This schematic does not include components needed for EMC/EMI optimization (i.e. battery filter)

C18 is optional: when VCC is higher than 25 V this capacitor should be added to reach up the customer requ

DB4820 - Rev 1 page 6/15

3 General introduction

FDA802A is a fully digital single chip class D amplifier with high immunity to the demodulation filter effects. The high integration level and the on-board signal processing allow excellent audio performance to be achieved.

Thanks to the digital input and to the feedback strategy in the power stage (that makes the amplifier immune from the output filter components non-linearity), the number and size of the external components are minimized.

A number of features is included to reduce EMI and the fully digital approach provides a very high immunity to GSM/RF interferences.

FDA802A includes: digital I²C and I²S interfaces, internal 24 bits DAC conversion, digital signal processing for interpolation and noise shaping, innovative self-diagnostic functions and automatic detection of wrong load connections or variation of the load, internal PLL for a clock generation.

DB4820 - Rev 1 page 7/15

4 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions and product status are available at: www.st.com. ECOPACK is an ST trademark.

4.1 LQFP64 (10x10x1.4 mm exp. pad up) package information

BOTTOM VIEW E1/4 В D1/4 SECTION A-A (see SECTION A-A 8888888888888888 H → U → b → ddd M AD GAUGE PLANE **TOP VIEW** D2 −D3· -S aaaddaadaadaaa **√** θ3 **SECTION B-B** E1/4 4x N/4 TIPS 888888888888888888 □ЫЫНА-ВО 4×

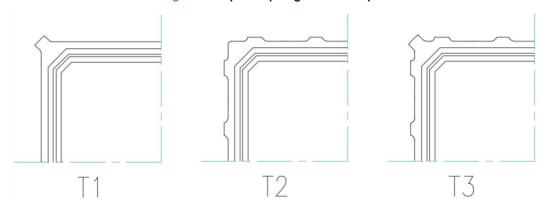
Figure 4. LQFP64 (10x10x1.4 mm exp. pad up) package outline

DB4820 - Rev 1 page 8/15

Table 2. LQFP64 (10x10x1.4 mm exp. pad up) package mechanical data

		Dimension in mm		
Symbol -	Min.	Тур.	Max.	
Θ	0°	3.5°	6°	
Θ1	0°	9°	12°	
Θ2	11°	12°	13°	
Θ3	11°	12°	13°	
A	-	-	1.49	
A1	-0.04	-	0.04	
A2	1.35	1.4	1.45	
b	-	-	0.27	
b1	0.17	0.20	0.23	
С	0.09	-	0.20	
c1	0.09	0.127	0.16	
D		12.00 BSC		
D1 ⁽¹⁾⁽²⁾	10.00 BSC			
D2	See VARIATIONS			
D3		See VARIATIONS		
е		0.50 BSC		
E		12.00 BSC		
E1 ⁽¹⁾⁽²⁾	10.00 BSC			
E2	See VARIATIONS			
E3		See VARIATIONS		
L	0.45	0.6	0.75	
L1	1.00 REF			
N	-	64	-	
R1	0.08	-	-	
R2	0.08	-	0.20	
S	0.20	-	-	
	Tolerance of f	orm and position		
aaa	-	0.20	-	
bbb	-	0.20	-	
ccc	-	0.08	-	
ddd	-	0.08	-	
	VAR	ATIONS		
	Pad option 6	5.0x6.0 (T1-T3) ⁽³⁾		
D2	-	-	6.61	
E2	-	-	6.61	
D3	4.8	-	-	
E3	4.8	-	-	

^{1.} Dimensions D1 and E1 do not include mold flash or protrusions. Allowable mold flash or protrusion is "0.25 mm" per side.


DB4820 - Rev 1 ______ page 9/15

^{2.} The Top package body size may be smaller than the bottom package size by as much as 0.15 mm.

3. Number, dimension and position of groves shown in Figure 5 are for reference only.

Figure 5. Exposed-pad groove's shapes

DB4820 - Rev 1 page 10/15

Revision history

Table 3. Document revision history

Date	Version	Changes
28-Sep-2022	1	Initial release.

DB4820 - Rev 1 page 11/15

Contents

1	Bloc	ck and pins description diagrams	3		
	1.1	Block diagram	3		
	1.2	Pins description	4		
2 Application diagram		lication diagram	6		
3	General introduction		7		
4 Package information		8			
	4.1	[Package name] package information	8		
Rev	vision	history	.11		

List of tables

Table 1.	Pins list description	4
Table 2.	LQFP64 (10x10x1.4 mm exp. pad up) package mechanical data	9
Table 3.	Document revision history	11

DB4820 - Rev 1 page 13/15

List of figures

Figure 1.	Block diagram	3
Figure 2.	Pins connection diagram	4
Figure 3.	Application diagram	6
Figure 4.	LQFP64 (10x10x1.4 mm exp. pad up) package outline	8
Figure 5.	Exposed-pad groove's shapes	C

DB4820 - Rev 1 page 14/15

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2022 STMicroelectronics – All rights reserved

DB4820 - Rev 1 page 15/15