
EV-VN7008AJ

VN7008AJ Evaluation Board

Data brief

Features

Max transient supply voltage	V _{CC}	40 V
Operating voltage range	V _{CC}	4 to 28 V
Typ. on-state resistance (per Ch)	R _{ON}	8.5 mΩ
Current limitation (typ)	I _{LIMH}	96 A
Stand-by current (max)	I _{STBY}	0.5 μΑ

- Simple single IC application board dedicated for VN7008AJ
- Provides electrical connectivity and thermal heat-sinking for easy prototyping
- General device features
 - Single channel smart high-side driver with CurrentSense analog feedback
 - Very low standby current
 - Compatible with 3 V and 5 V CMOS outputs
- Diagnostic functions
 - Dedicated high precision proportional load current sense
 - Overload and short to ground (power limitation) indication

- Thermal shutdown indication
- OFF-state open-load detection
- Output short to VCC detection
- Sense enable/ disable
- Protections
 - Undervoltage shutdown
 - Overvoltage clamp
 - Load current limitation
 - Self limiting of fast thermal transients
 - Configurable latch-off on overtemperature or power limitation with dedicated fault reset pin
 - Loss of ground and loss of VCC
 - Reverse battery with external components
 - Electrostatic discharge protection

Applications

Specially intended for Automotive Smart Power Distribution, Glow Plug, Heating Systems, DC Motors, Relay replacement and high power resistive and inductive actuators.

Description

This board provides you an easy way to connect STMicroelectronics[®] VIPower[®] M0-7 technology into your existing system.

Table 1. Device summary

Order Code	Reference
EV-VN7008AJ	VN7008AJ Evaluation Board

Overview EV-VN7008AJ

1 Overview

The board comes pre-assembled with VN7008AJ high-side driver. On board minimum set of electrical components (as for device datasheet recommendation) is enabling the user to directly connect the load, the power supply and the microcontroller without any additional effort in external component design and connection.

The VN7008AJ is a single channel high-side driver manufactured using ST proprietary VIPower technology and housed in PowerSSO-16 package. The device is designed to drive 12 V automotive grounded loads through a 3 V and 5 V CMOS-compatible interface, providing protection and diagnostics.

The device integrates advanced protective functions such as load current limitation, overload active management by power limitation and overtemperature shutdown with configurable latch-off.

A FaultRST pin unlatches the output in case of fault or disables the latch-off functionality.

A sense enable pin allows OFF-state diagnosis to be disabled during the module low-power mode as well as external sense resistor sharing among similar devices.

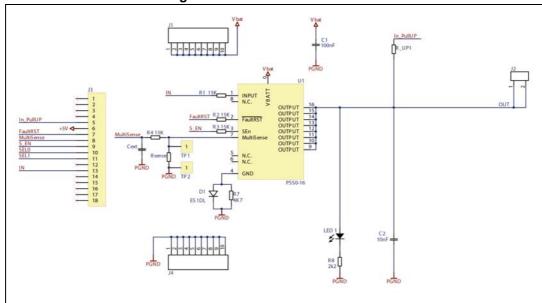


Figure 1. EV-VN7008AJ schematic

EV-VN7008AJ Board connections

2 Board connections

Figure 2 shows the placement of the connectors to be used for supplying the evaluation board, connecting the load and controlling the functionality and diagnostic of the device.

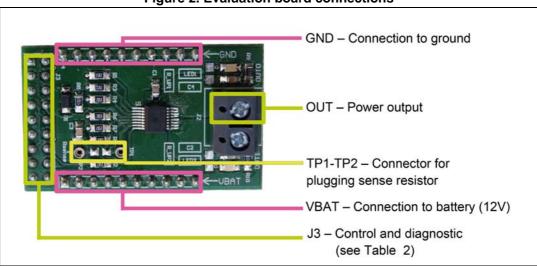


Figure 2. Evaluation board connections

Table 2. J3 connector: pin functions

Connector	Pin number	Pin name	Pin function
J3	14	N/A	Not connected
J3	5	IN_PullUP	Connection to optional external pull-up resistor for open load detection in off-state.
J3	6	+5 V	5V Power Supply
J3	7	FaultRST	Active low compatible with 3 V and 5 V CMOS outputs pin; it unlatches the output in case of fault; If kept low, sets the outputs in auto-restart.
J3	8	Multisense	Analog current sense output pin delivers a current proportional to the load current.
J3	9	S_EN	Active high compatible with 3 V and 5 V CMOS outputs pin; it enables the MultiSense diagnostic pin.
J3	1012	N/A	Not connected
J3	13	IN	Voltage controlled input pin with hysteresis, compatible with 3 V and 5 V CMOS outputs. It controls OUT0 switch state.
J3	14 18	N/A	Not connected

In case the user wishes to utilize the Current Sense / MultiSense function of the device, it is necessary to plug a sense resistor in Rsense.

The package includes a through-hole resistor, to be mounted on TP1-TP2 - see Figure 4.

Board connections EV-VN7008AJ

Different Rsense values can be adopted based on user preference.

Another option is soldering an SMD resistor on the dedicated PCB pad, as shown in *Figure 5*.

Figure 3. No sense resistor

Figure 4. Mounting through-hole sense resistor

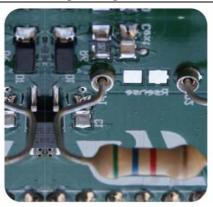
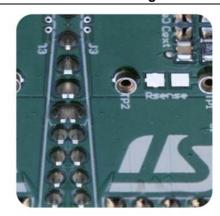



Figure 5. Pads for soldering SMD resistor

EV-VN7008AJ Thermal data

3 Thermal data

Table 3. EV-VN7008AJ thermal data

Symbol	Parameter	Max	Unit
Rthj-amb	Thermal resistance junction-ambient (MAX)	39°	°C/W

Table 4. PCB specifications

Parameter	Value
Board dimensions	25 mm x 41.5 mm
Number of Cu layer	2
Layer Cu thickness	35 μm
Board finish thickness	1.6 mm +/- 10%
Board Material	FR4
Thermal vias separation	1.1 mm
Thermal vias diameter	0.5 mm

Revision history EV-VN7008AJ

4 Revision history

Table 5. Document revision history

Date	Revision	Changes
11-Jan-2017	1	Initial release.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics - All rights reserved

