

TO-LL: the latest evolution in SMD power packages STPOWER MOSFET SJ MDmesh M6 and DM6

TO-LL the new space-saving and thermally efficient package

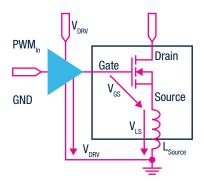
The new STPOWER
MOSFET Super-junction
MDmesh* M6 and
MDmesh DM6 series in
the space-saving and
thermally efficient TO-LL
leadless package allows
more compact and spacesaving power converters.
Thanks to the additional
Kelvin-source lead,
designers can achieve
better efficiency due to
reduced turn-on / turn-off
switching losses.

KEY FEATURES

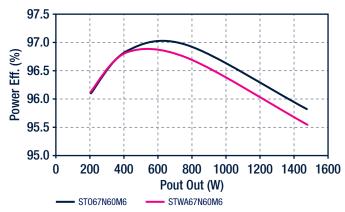
- Reduced space on board
- Distributed heat sinks
- Additional Kelvin source
- Reduced thickness (2.3 mm)
- High creepage (distance 2.7 mm)

MAIN BENEFITS

- Increased power density
- Competitive thermal dissipation
- Improvement in Turn-on / Turn-off efficiency

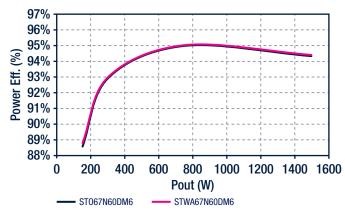

KEY APPLICATIONS

- Servers
- Telecom 5G SMPS
- Solar Microinvertes


TO-LL WITH STPOWER MOSFET MDmesh M6 AND MDmesh DM6 SERIES

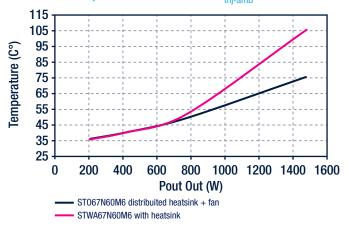
The TO-Leadless (TO-LL) package solution was tested against the TO-247 in the PFC and LLC sections of a 1.5 kW SMPS to compare their respective thermal performance and efficiency. The additional Kelvin-source lead generates significant efficiency gains in the PFC section at full load with high current levels, thanks to the reduction of the inductive effect on the turn-on commutation. The efficiency in the LLC section remains identical for both packages.

Power efficiency in PFC section


System Power Efficiency

The Kelvin-pin on the TO-LL package delivers better efficiency than the conventional TO-247 package, especially at full load.

Power efficiency in LLC section


System Power Efficiency

The power efficiency in the LLC is the same for both SMD and THD solutions. The Kelvin-pin does not impact efficiency because current at turn-off is very low and turn-on losses are zero due to ZVS.

Thermal comparison with same R_{thi-amb}

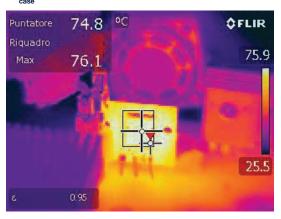
Thermal comparison beetween TO-LL and TO-247 at the same $\rm R_{\rm thi\text{-}amb}$ in 1.5 kW PFC.

Thermal comparison with same fan

Thermal comparison beetween TO-LL and TO-247 with the same fan in 1.5 kW PFC

Thermal comparison with same $R_{thj-amb}$ in 1.5 kW PFC

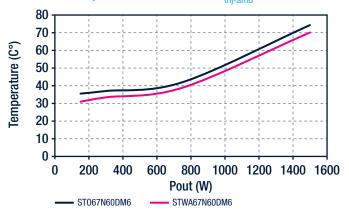
TO-LL T_{case} at 1.5 kW


TO-247 T_{case} at 1.5 kW

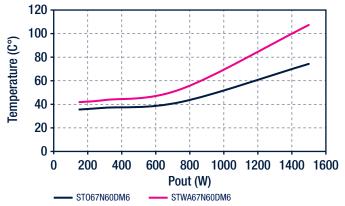

The TO-LL package generates less heat than the TO-247 option for an equivalent $R_{thj-amb}$ (in this case about 3.75 °C/W). To maintain a constant thermal resistance, we used a cooling fan for the TO-LL package, and a heatsink for the TO-247.

Thermal comparison with same fan

TO-LL T_{case} at 1.5 kW



TO-247 T_{case} at 1.5 kW


When we remove the heatsink from the TO-247 and use the same fan cooling system for both packages, the thermal performance of the TO-LL does not degrade like the TO-247.

Thermal comparison with same R_{thi-amb}

Thermal comparison beetween TO-LL and TO-247 at the same $\rm R_{\rm thi-amb}$ in 1.5 kW LLC.

Thermal comparison with same fan

Thermal comparison beetween TO-LL and TO-247 with the same fan in 1.5 kW LLC.

Thermal comparison with same $R_{thi-amb}$ in 1.5 kW LLC

TO-LL T_{case} at 1.5 kW

TO-247 T_{case} at 1.5 kW

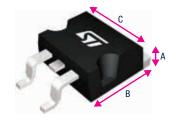


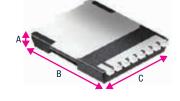
The TO-LL solution allows almost the same temperature respect the TO-247 when we use the same $R_{thj-amb}$, approximately 12.5 °C/W.

To maintain a constant thermal resistance, we used a cooling fan for the TO-LL package, and a heatsink for the TO-247.

Thermal comparison with same fan

TO-LL T_{case} at 1.5 kW


TO-247 T_{case} at 1.5 kW



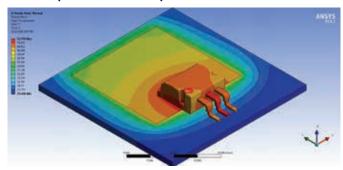
When we remove the heatsink from the TO-247 and use the same fan cooling system for both packages, the thermal performance of the TO-LL does not degrade like the TO-247.

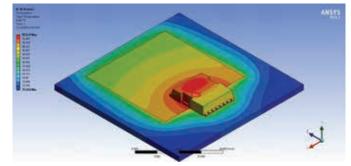
TO-LL vs D²PAK

Size and thermal performance comparisons

D²PAK Area on Board: 164.3 mm²

TO-LL Area on Board: 115.6 mm²


TO-LL: 30% Saved Area on Board vs D2PAK


Dimensions (mm)

	A	В	С	
D ² PAK	4.6	15.8	10.4	
TO-LL	2.3	11.7	9.9	

TO-LL

Thermal performance comparisons

D²PAK using 1 inch² 70 μm thick Cu layer $R_{thj\text{-pcb}} = 27.76~^{\circ}\text{C/W}$

TO-LL using 1 inch² 70 μm thick Cu layer $R_{thj\text{-pcb}} = 30.55~^{\circ}\text{C/W}$

Product portfolio in TO-LL package

B _{VDSS} (V)	R _{DS(on)} (Ω)	I _D (A)	Q _g (nC)	Sales Type	Package	Technology
600	0.190	17	23	ST024N60M6	TO-LL	MDmesh M6
	0.125	25	33	ST033N60M6		
	0.099	30	44	ST036N60M6		
	0.080	36	52	ST047N60M6		
	0.054	34	72	ST067N60M6		
	0.078	TBD	52	ST052N60DM6*		MDmesh DM6
	0.076	46	65	ST065N60DM6		
	0.059	58	72	ST067N60DM6		
650	0.065	55	80	ST068N65DM6		

Note: * Under development

To explore the complete MDmesh M6 and MDmesh DM6 product portfolio, visit www.st.com or use our ST-MOSFET-Finder mobile app for Android and iOS.

life.augmented

