

Time-of-Flight sensors with greater data throughput

IMAGING division October 26th, 2023

FlightSense™ making light work

ST pioneer and leader in Time-of-Flight (ToF)

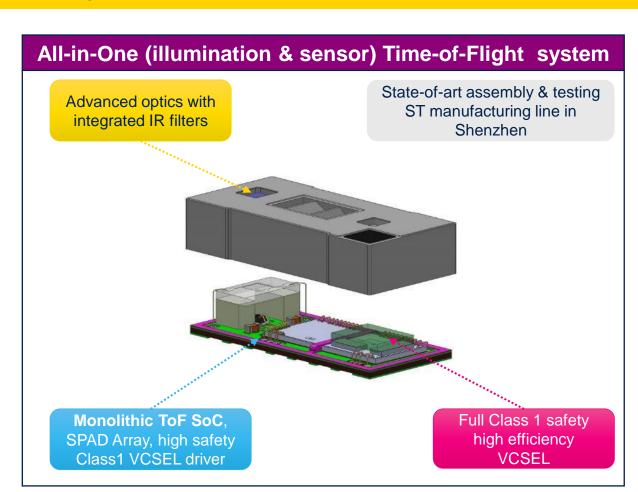
ST is #1 Worldwide Time-of-Flight sensor supplier

4 Generations

of all-in-one ToF solution deployed since 2014

>500 devices

Over 200 phones with ST's Time of Flight technology Several hundreds of non wireless end products on the market Unlimited variety of use-cases beyond smartphones


>80,000

Evaluation kits deployed

>2 Billions

ToF units shipped. Mastering end-to-end supply chain

FlightSense industrial & mass market portfolio

Up to 64 zones (8x8) Artificial intelligence enabler **CNH** data

VL53L7CH

90° FoV 65° FoV 64 zones (8x8) 64 zones (8x8) 400 cm dark/285cm amb 350 cm dark Low power consumption

VL53L0CX

VL53L5CX

Single zone

VL53L3CX

VL53L4CX

VL53L8CH

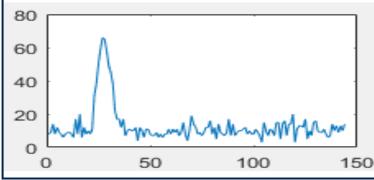
VL53L1CB

VL53L1CX

VL53L4CD

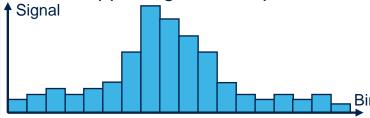
130 cm dark

What are CNH?



From standard data to CNH

Giving system host access to original sensor power to enable Al


Raw histogram

- Provides histogram for each zone on 128 bins
- Bin size is exactly 37.5 mm
- Data are raw sensor output, but not accessible as is

Compact Normalized Histogram

- Up to 18 <u>programmable</u> bins output per zone in 8x8 mode (64 zones)
 - Up to 72 bins for 16 zones
 - Up to 128 bins for 8 zones
- The product firmware is computing raw histogram data to output CNH
- Only new LxCH sensor products are supporting CNH output data

Standard data

- Up to 5 standard data (distance, signal, ambient) output per zone, in addition to CNH data output
- The product firmware is computing raw histogram data to output standard data
- All sensor products, including new LxCH are supporting standard data output

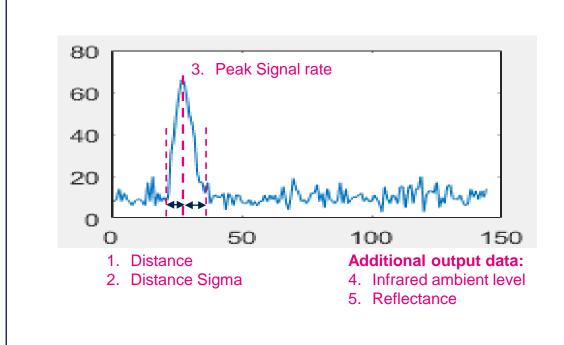
Output data	Value
Distance	357 mm
Peak signal rate	66 kcps/spad

Standard Time-of-Flight data output

For each multizone-sensor zone, the sensor pre-processes histogram data into 5 information output

5 pre-processed histogram data

Distance related

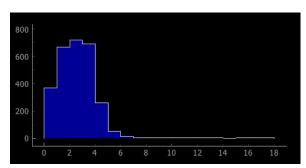


- Distance (mm)
- Distance sigma (mm)
- Signal related
 - Peak signal rate (kcps/spad)

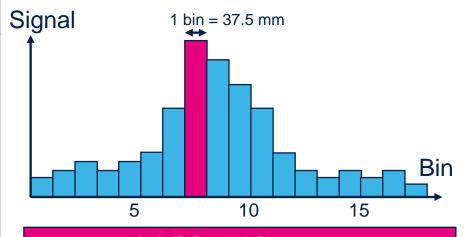
- Other
 - Infrared ambient level (kcps/spad)
 - Reflectance (%)

From the raw histogram, extract standard data

 Computed directly in the firmware, the standard are output via I²C or SPI to the system host



Compact Normalized Histogram


CNH resolution and data-set contains way more information than ranging distances

New data

 For each zone, the sensor provides CNH, with signal count on each bin

- X unit is bin number
- Y unit is signal count
- The measured ambient level is removed from the CNH data

Additional features

- Both standard and CNH data
- Ambient map information
- Autonomous mode available
- Both I²C and SPI* communication modes available

* VL53L8CH only

High data quantity

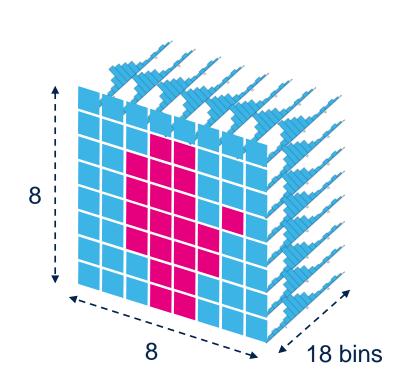
- 1 histogram bin = 1 data
- Up to 18 bins per zone (8x8)
 - Total of 1152 data

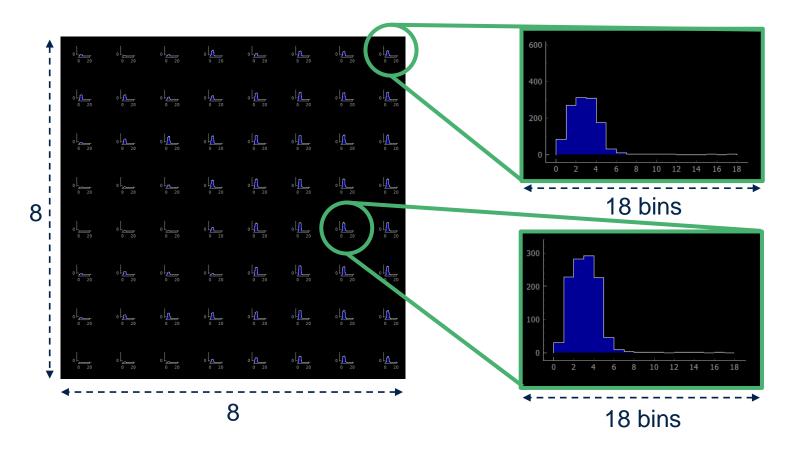
What means CNH?

C: Compact → Options are available to reduce the amount of data compared to the native "raw" histogram data

N: Normalized → Raw data are adjusted to compensate variations caused by frame-to-frame adjustments

H: Histogram → Primary data is in the form of histograms recording returnsignal-strength vs range

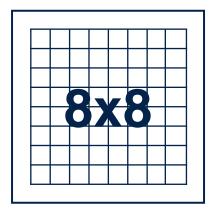

Multi-zone CNH

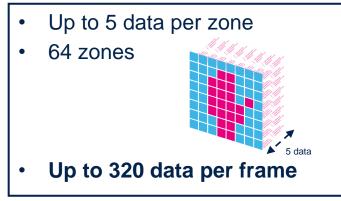

CNH resolution and data-set contains way more information than ranging distances

Theory

"Visible" X,Y resolution: 8x8 zones

"Hidden" Z resolution: 18 bins


15x more data per frame in 4x4 mode


Resolution

Standard data only Up to 5 data per zone 16 zones Up to 80 data per frame

CNH only Up to 72 CNH bins per zone* 16 zones Up to 1152 data per frame

Standard data + CNH 5 standard data per zone Up to 72 CNH bins per zone* Total of 77 data per zone* 16 zones Up to 1232 data per frame

- Up to 18 CNH bins per zone** 64 zones
 - Up to 1152 data per frame

- 5 standard data per zone
- Up to 18 CNH bins per zone**
- Total of 23 data per zone**
- 64 zones
- Up to 1472 data per frame

CNH products

Two products, one solution

Two products

VL53L7CH

- Up to 350 cm ranging
- 60° x 60° FoV (90° diagonal)
- I²C interface

VL53L8CH

- Up to 400 cm ranging
- 45° x 45° FoV (65° diagonal)
- High ambient light immunity
- Low power consumption
- I²C and SPI interface
- External synchronization pin

Common features

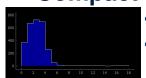
- Autonomous low power mode
- Motion Indicator

100% compatible

Single STM32 project

Single driver (ULD)

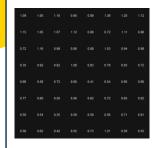
Single FW



Single GUI

Output data

Compact Normalized Histogram


- Up to 18 bins in 8x8 at 15Hz
- Up to 72 bins in 4x4 at 15Hz

Standard data

- 2 for distance (distance, sigma)
- 1 for signal (signal peak)
- 2 additional data (ambient level and reflectance)

Ambient map

 IR ambient light level data generated

VL53L7CH and VL53L8CH selection guide

Field of view		60° x 60° (90° diagonal)	45° x 45° (65° diagonal)		
Resolution	า	Up to 8x8 (64 zones)			
Common	features	Autonomous low power mode			
Additional	features	External synchronization pir			
Driver		100% compatible			
Interfaces		I ² C (1 MHz) I ² C (1 MHz) and SPI (3 MHz)			
Distance	Dark condition	350 cm	400 cm		
ranging	Under ambient light* 65 cm		285 cm		
Power consumption**		4.5mW	1.6mW		
Module size		6.4 x 3.0 x 1.6 mm	6.4 x 3.0 x 1.75 mm		

^{*} Best conditions using white target (88% reflectance)

^{**} Power consumption measured at 1hz frequency and with 3.3 V analog and VCSEL supply

VL53L7CH overview

An Artificial Intelligence enabler, 90° FoV 8x8 multizone Time-of-Flight sensor

Multi-zone (8x8)

Package size:

6.4 x 3.0 x 1.6 mm

FoV: 90° diagonal

Maximum ranging distance: 3.5 meters

Ranging under ambient light (5 klux): 65 cm

Close distance linearity: >2cm

Compact Normalized Histogram (CNH)

Typical use-cases

Al applications

Floor sensing

Glass detection

Gesture recognition

Applications

Vacuum cleaners

speaker

Home automation

goods

Highlights

Parallel multizone ranging output:

Up to 8x8 zone separate regions of interest

Ultra-wide field of view: 60° x 60° (90° diagonal)

Distance ranging performances:

- Up to 350 cm ranging in dark condition
- Up to 65 cm ranging under ambient light

Multi-target detection and distance measurement in each zone

Motion indicator indicating if the target has moved 30 Hz frame rate capability

Immunity to cover glass cross-talk beyond 60cm

Pin-to-pin compatible with VL53L5CX and VL53L7CX

Software driver compatible with VL53L8CH

VL53L8CH overview

An Artificial Intelligence enabler, high performance 8x8 multizone Time-of-Flight sensor

Multi-zone (8x8)

Package size:

6.4 x 3.0 x 1.75mm

FoV: 65° diagonal

Maximum ranging distance: 4 meters

Ranging under ambient light (5 klux): 285 cm

Close distance linearity: >2cm

Typical use-cases

People counting

Gesture recognition

Air quality monitoring

Applications

Vacuum cleaners

Smart speaker

Home Appliances purifier

Industrial

Highlights

Parallel multizone ranging output:

Up to 8x8 zones separate regions of interest

Wide field of view: 45° x 45° (65° diagonal)

Distance ranging performances:

- Up to 400 cm ranging in dark condition
- Up to 285 cm ranging under ambient light

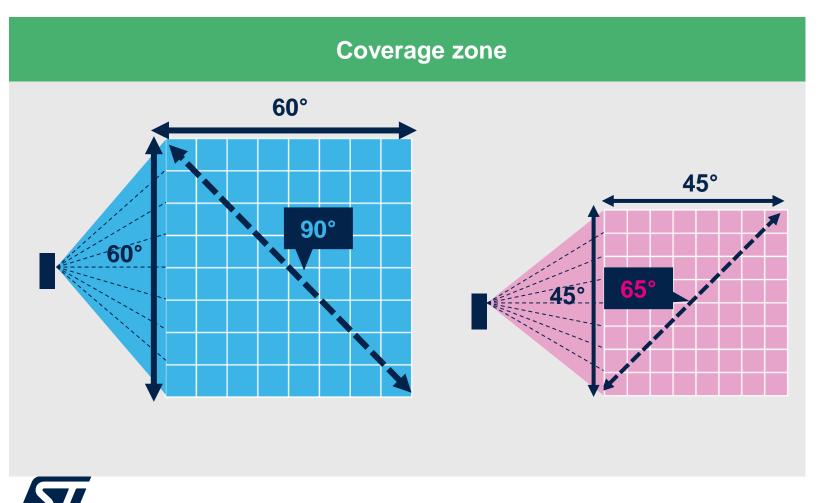
Multi-target detection and distance measurement in each zone

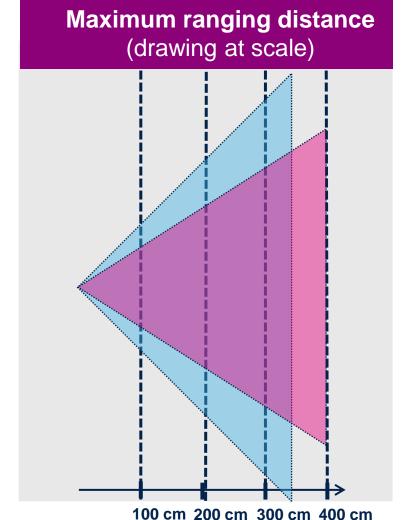
Low power consumption

Motion indicator indicating if the target has moved

30 Hz frame rate capability

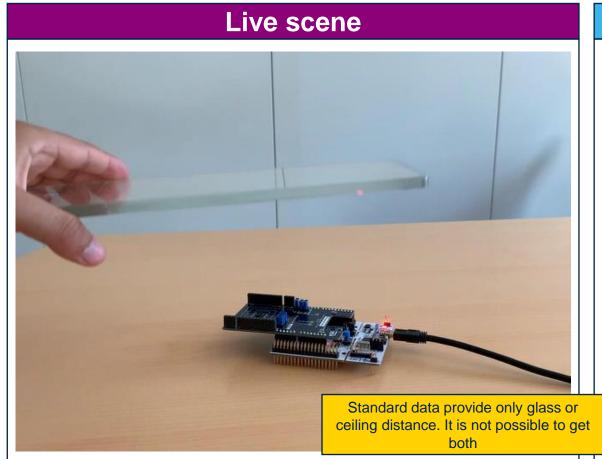
Immunity to cover glass cross-talk beyond 60cm

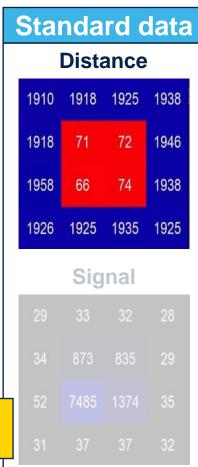

Pin-to-pin compatible with VL53L8CX

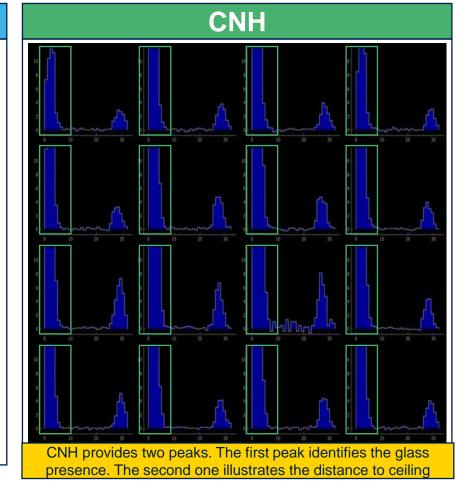

Software driver compatible with VL53L7CH

Field of view and ranging comparison

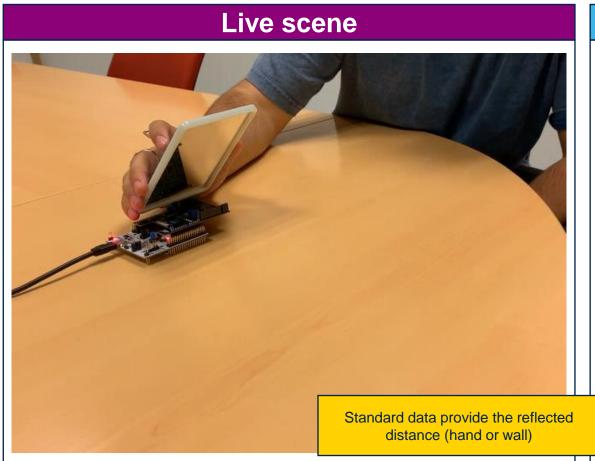
The VL53L7CH has a wider optical field of view, the VL53L8CH ranges further

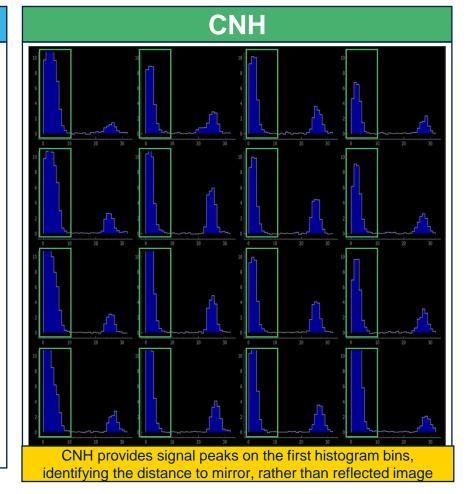



CNH demos and applications

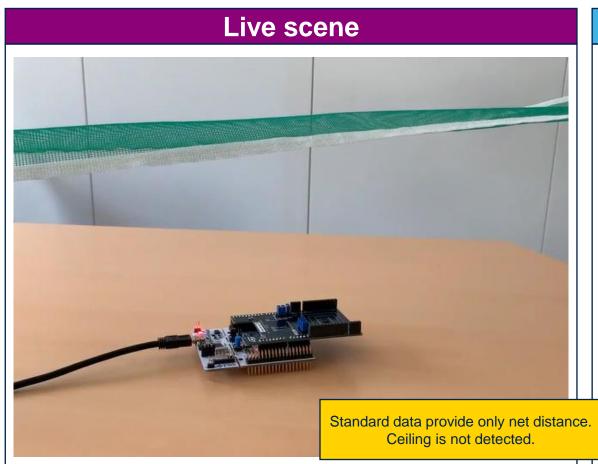


CNH allows Ceiling and glass detection

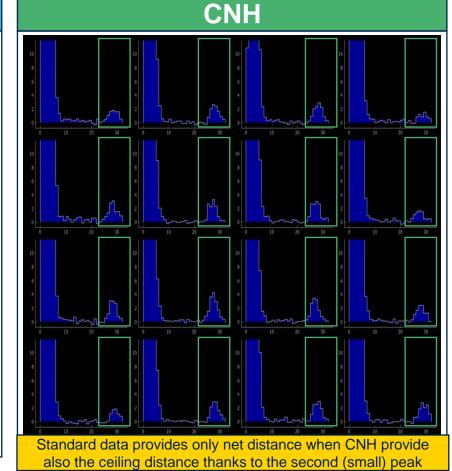




CNH allows Detecting mirror and reflecting distance

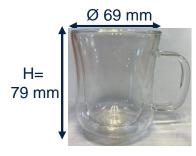


Standard data Distance 1695 1734 1804 1860 1706 1780 1836 1872 1730 1796 1856 1895 1736 1811 1876 1896 Signal

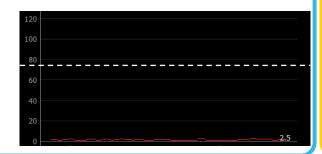


CNH allows Seeing through a net

Standard data						
Distance						
132	142	155	145			
134	146	156	150			
137	148	157	150			
135	146	157	150			
	Sig	nal				
1789	669	686	1360			
1596	750		1452			
1245	667	625	1288			
	615	633	1133			



Use-case


Measure the height of a glass coffee cup

Known limitations

- Due to the light path passing through the glass cup, wrong distances are provided
- Photons reflect everywhere creating many light path impacting distance accuracy
 - Some reflect inside the cup
 - Some reflect through the glass cup
 - Few reflect on the edge
 - Using standard data provide 2.5 mm cup height which is totally wrong

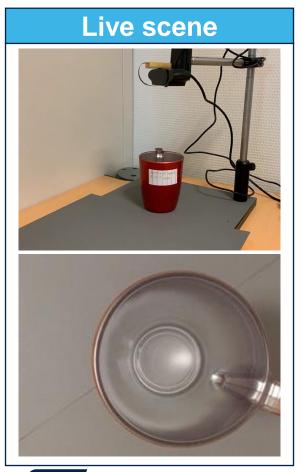
CNH solution

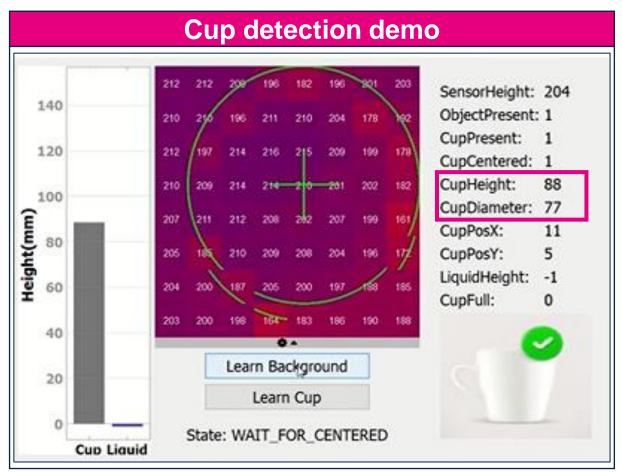

Cup size estimation

Thanks to the CNH and ... histogram shape, we can deduct all light path ... Using the FSB method

(First Significant Bin),

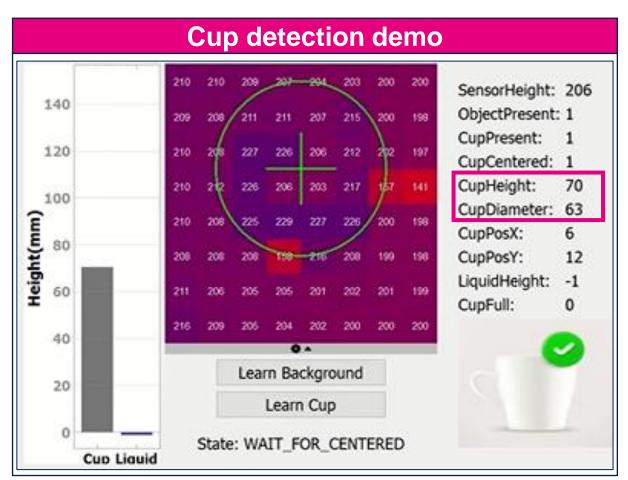
sensor to the cup rim


- we easily extract the distance from the
- Subtract the measured distance by the height to obtain the cup height
- Using CNH data and FSB method, we extract 72 mm and higher accuracy



Measuring cup size, regardless of material

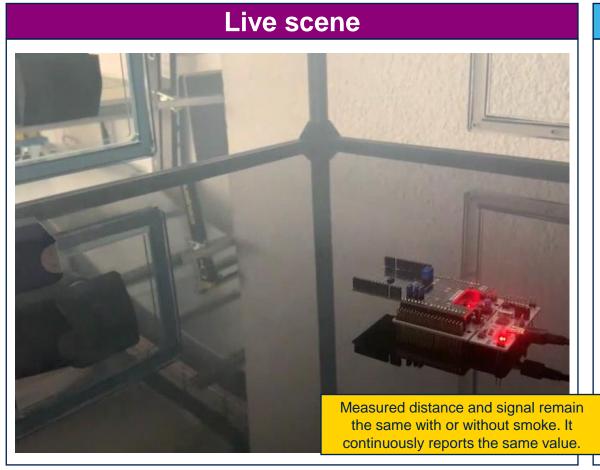
CNH allows

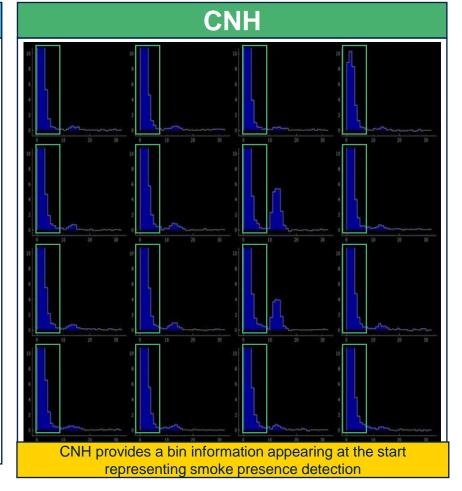




Measuring cup size, regardless of material

CNH allows





CNH allows Detecting smoke intensity

	Standard data							
	Distance							
	834	912	827	913				
	843	879	877	922				
	889	886	884	858				
	907	891	880	851				
	Signal							
	5	6	4	4				
	5	6	41	5				
<u> </u>	6	8	30	6				
	4	4	5	4				

CNH technically

CNH data are widely parameterizable

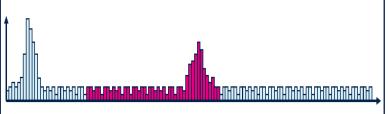
Bin

Resolution

- Set the resolution up to 64 zones
- Merge close zones into one bigger
- Reduce resolution to allow for increased number of bins and frequency
- 64 zones

32 zones

• 16 zones


Histogram binning

- Increase the depth of the histogram by summing adjacent bins
- Bin your histogram up to 8 bins in 1

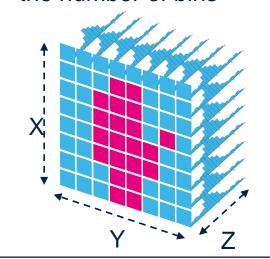
CNH parameters

- Bin start = bin26
- Number of selected bins = 48

Configuration examples

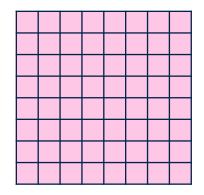
Res.	Histo	CNH size*	Transfer time	Frame rate
8 zones	80 bins	3268 bytes	32 ms	30 fps
8 zones	128 bins	5188 bytes	48 ms	20 fps
16 zones	48 bins	3948 bytes	36 ms	25 fps
16 zones	72 bins	5868 bytes	54 ms	18 fps
32 zones	36 bins	6108 bytes	56 ms	15 fps
64 zones	18 bins	6108 bytes	56 ms	15fps

^{*} CNH size must be <6180 bytes



XY resolution vs Z resolution

Lower XY resolution allows higher Z resolution


XYZ resolution

- X and Y represents the numbers of zone you can range
- Z resolution represents the number of bins

64 zones

Outputting the 64
 zones means to get the
full 8x8 resolution

- Bins/Max frequency:
 - 18 bins = 15Hz
 - 12 bins = 15Hz
 - 8 bins = 15Hz

32 zones

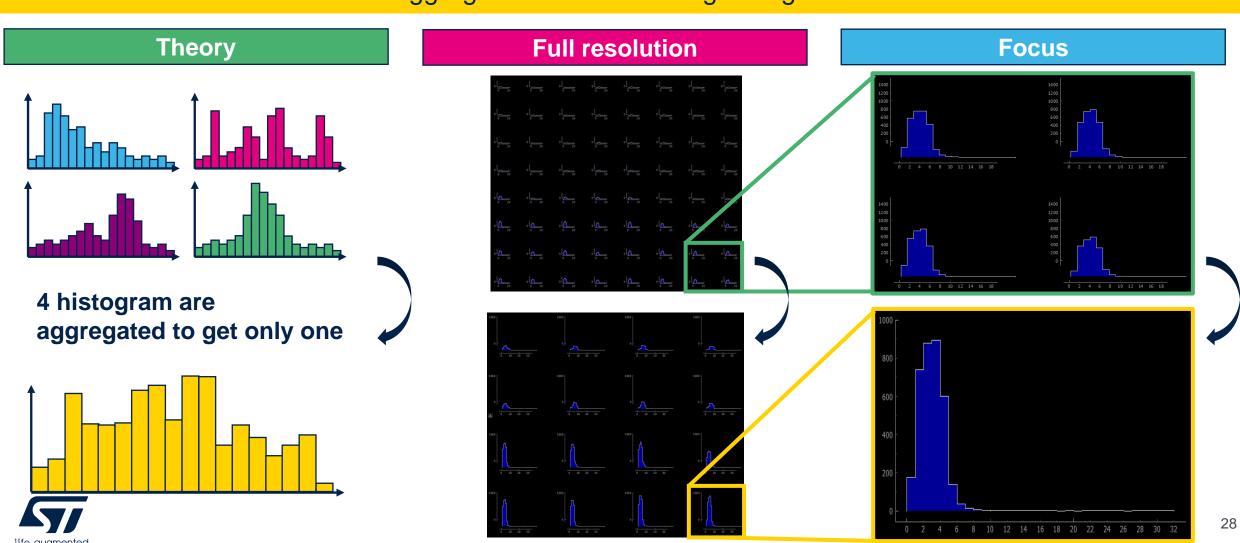
- Choose the 32 zones
 - By selecting only few zones on an 8x8 matrix
 - By merging two close zones into one from an 8x8 matrix
- Pattern examples*:

- Bins/Max frequency:
 - 36 bins = 15Hz
 - 18 bins = 15Hz
 - 12 bins = 15Hz

16 zones

- Choose the 16 zones
 - By aggreging an 8x8 matrix in 4x4
 - By selecting only few zones on an 8x8 matrix
- Pattern examples*:

- Bins/Max frequency:
 - 72 bins = 18Hz
 - 48 bins = 25Hz
 - 28 bins = 30Hz



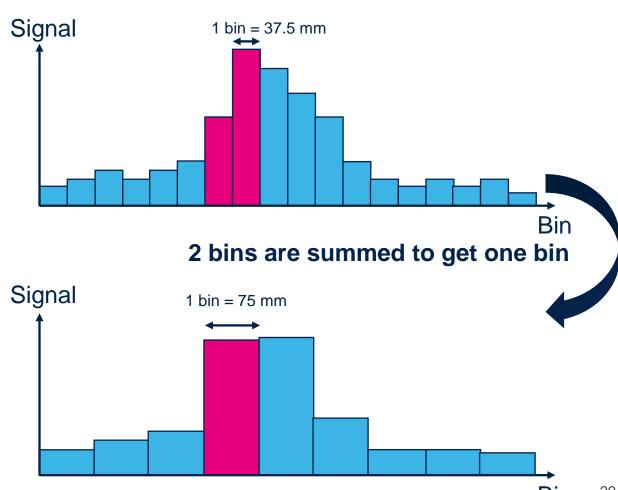
^{*} Product supports all type of aggregate patterns, but the EVK only accepts the first of the three examples

Bin aggregation

Bin aggregation allows deriving a single CNH

Histogram binning

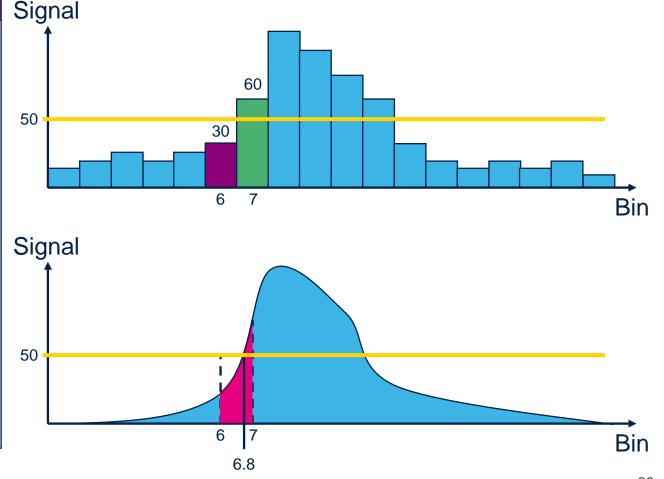
Increase histogram depth by summing histogram


Binning for longer bin window

- Some applications could require covering a longer bin window
- Bin the histogram up to 8 bins in 1
 - In this case, bin now measures 37.5 mm x 8 = 300 mm
- Examples:

Binning factor	Bin size	Max window in 8x8 (18 bins @15Hz)
1	37.5 mm	675 mm
2	75 mm	1350 mm
4	150 mm	2700 mm
8	300 mm	5400 mm*

^{*} All bins after 4,000 mm will report only noise due to wrap around limiting the max distance of the sensors at 4 m

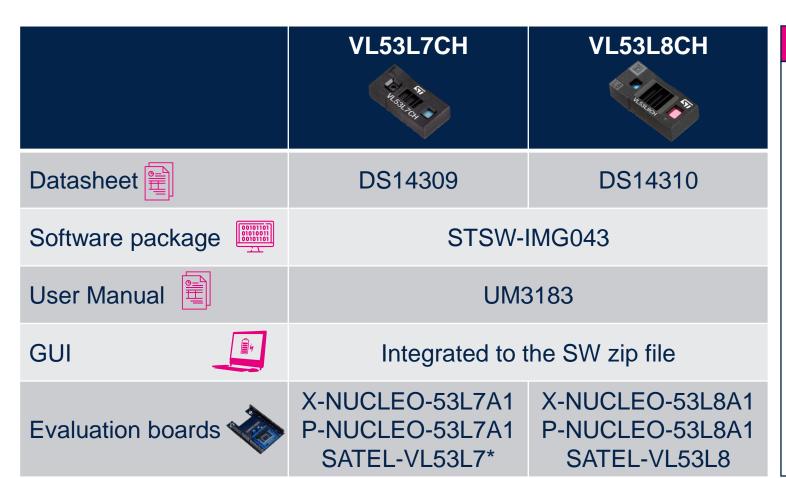


First Significant Bin (FSB)

FSB is one of the major post-processing data

First bin above the ambient light level

- The ambient light level data is generated for each zone
- The logic would like to take the first bin reaching this value
 - In our example: it should be the bin7
- Because we don't know at which moment the signal has reached threshold, we do interpolation
 - In our example: between bin6 and bin7
- Based on this interpolation, we can know more precisely the moment is has been reached
 - In our example: it has been reached at bin6.8
- To know the distance, we just multiply the bin found by the bin size (37.5 mm*)
 - In our example: 37.5 mm* x 6.8 = 25.5 cm


Ordering codes

Technical documentation

Complete toolset to start evaluation and integration

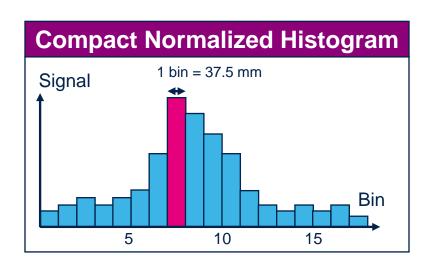
Software package www.st.com/en/embedded- software/stswimq043 GUI for VL53L7CH and VL53L8CH EAR99 Linux driver based on the LILD EAR99 EAR99

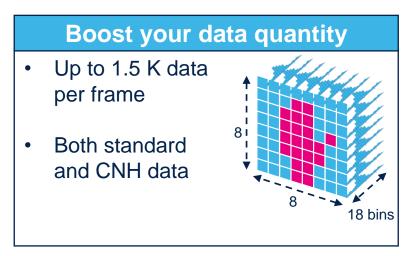
^{*} SATEL-VL53L7 boards are not yet on the market, SATEL-VL53L7CX can be used for the moment

FlightSense™ Multi-zone AI enablers ordering codes

Go to st.com/FlightSense contact your usual distributor

Item	Picture	Ordering Code	Comments	
VL53L7CH sensor		VL53L7CHV0GC/1	Tape & reel	MOQ= 3.6ku
VL33L7CH SellSUI	State		With liner	LT= 22weeks
VL53L7 Nucleo™ expansion board		X-NUCLEO-53L7A1/	Cover-window holderCover-window sample3x spacers	
VL53L7 expansion pack		P-NUCLEO-53L7A1/	X-NUCLEO-S	
VL53L7 Breakout boards		SATEL-VL53L7CX SATEL-VL53L7 (Q1'24)	2x Breakout delivered	boards


Item	Picture	Ordering Code	Comments	
VL53L8CH sensor		VL53L8CHV0GC/1	Tape & reel	MOQ= 3.6ku
VL33LoCH SellS0I		VL53L6CHVUGC/1	With liner	LT= 22weeks
VL53L8 Nucleo™ expansion board	FF CE SE	X-NUCLEO-53L8A1/	Cover-window holderCover-window sample3x spacers	
VL53L8 expansion pack		P-NUCLEO-53L8A1 + NUCLEO-F401RE		
VL53L8 Breakout boards		SATEL-VL53L8	2x Breakout boards delivered	



FlightSense™ Summary

Two products

- VL53L7CH
 - 90° FoV
 - 350 cm max distance

- 65° FoV
- 400 cm max distance

Our technology starts with You

© STMicroelectronics - All rights reserved.

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.
All other product or service names are the property of their respective owners.

