

ST1VAFE6AX: biosensor with vAFE (vertical analog front-end) for biopotential signals and 6-axis IMU (inertial measurement unit) with AI and sensor fusion

Introduction

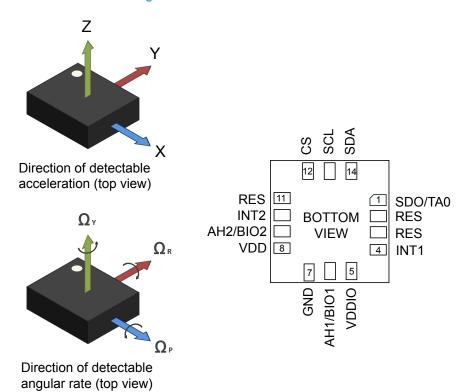
This document provides usage information and application hints related to ST's ST1VAFE6AX biosensor.

The ST1VAFE6AX is a biosensor embedding a vAFE channel to detect biopotential signals and a 6-axis IMU featuring a 3-axis digital accelerometer and 3-axis digital gyroscope system-in-package with a digital I²C, SPI, and MIPI I3C[®] serial interface standard output, performing at 0.6 mA in combo high-performance mode.

The device has been designed with a very compact, low-power vertical analog front-end (vAFE) with configurable input impedance. The vAFE enables reading analog signals that are complementary to motion signals. The vAFE and motion signals are intrinsically synchronous, so the result is a unique context-aware edge analysis, thus low power and with the minimum possible latency.

The 6-axis IMU has a dynamic user-selectable full-scale acceleration range of $\pm 2/\pm 4/\pm 8/\pm 16$ g and an angular rate range of $\pm 125/\pm 250/\pm 500/\pm 1000/\pm 2000/\pm 4000$ dps. Thanks to the ultralow noise performance of both the gyroscope and the accelerometer, the device combines always-on low-power features with superior sensing precision for an optimal motion experience for the consumer.

The ST1VAFE6AX can be configured to generate interrupt signals by using hardware recognition of free-fall events, 6D orientation, tap and double-tap sensing, activity or inactivity, and wake-up events. Furthermore, the device provides an incredible level of customization thanks to up to eight embedded finite state machines that can be programmed independently for motion detection or gesture recognition, and the machine learning core logic that allows identifying if a data pattern matches a user-defined set of classes. The IMU also embeds a sensor fusion low-power (SFLP) logic that allows estimating the 3D attitude of the device.


The device has an integrated smart first-in first-out (FIFO) buffer of up to 4.5 KB size, allowing dynamic batching of significant data and consistent power saving for the system.

The ST1VAFE6AX is available in a small plastic, land grid array (LGA) package of 2.5 x 3.0 x 0.71 mm to address ultracompact solutions.

1 Pin description

Figure 1. Pin connections

AN6120 - Rev 1 page 2/102

Table 1. Internal pin status

Pin #	Name	Function	Pin status		
	SDO	SPI 4-wire interface serial data output (SDO)	Default: input without pull-up		
1	TA0	I ² C least significant bit of the device address (TA0)	Pull-up is enabled if bit SDO_PU_EN = 1 in register PIN_CTRL		
	IAU	MIPI I3C [®] least significant bit of the static address (TA0)	(02h).		
2	RES	Connect to GND or VDDIO	Default: input without pull-up		
3	RES	Connect to GND or VDDIO	Default: input without pull-up		
4	INT1	Programmable interrupt in I ² C and SPI	Default: output forced to ground		
5	VDDIO	Power supply for I/O pins			
	A114/D104	Connect to VDD or GND if the analog hub and/or vAFE are disabled.			
6	AH1/BIO1	Connect to the analog input or BIO electrode 1 if the AH/vAFE is enabled. ⁽¹⁾			
7	GND	0 V supply			
8	VDD	Power supply			
0	AH2/BIO2	Connect to VDD or GND if the analog hub and/or vAFE are disabled.			
9	AHZ/BIOZ	Connect to the analog input or BIO electrode 2 if the AH/vAFE is enabled.(1)			
10	INT2	Programmable interrupt in I ² C and SPI	Default: output forced to ground		
11	RES	Connect to VDDIO or leave unconnected	Default: input with pull-up		
		I ² C / SPI mode selection	Default: input with pull-up		
12	CS	(1: SPI idle mode / I ² C communication enabled;	Pull-up is disabled if bit I2C_I3C_disable = 1 in register IF_CFG		
		0: SPI communication mode / I ² C disabled)	(03h).		
13	SCL	I ² C / MIPI I3C [®] serial clock (SCL) / SPI serial port clock (SPC)	Default: input without pull-up		
14	SDA	I ² C / MIPI I3C [®] serial data (SDA) / SPI serial data input (SDI) / 3-wire interface serial data output (SDO)	Default: input without pull-up Pull-up is enabled if bit SDA_PU_EN = 1 in register IF_CFG (03h		

^{1.} The analog hub and vAFE are enabled by setting the AH_BIO_EN bit to 1 in register CTRL7 (16h).

The internal pull-up value is from 30 k Ω to 50 k $\Omega,$ depending on VDDIO.

AN6120 - Rev 1 page 3/102

Registers

All the registers given in the following table are accessible from the primary SPI/I²C/MIPI I3C® interface only.

Table 2. Registers

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FUNC_CFG_ACCESS	01h	EMB_FUNC_ REG_ACCESS	0	0	0	FSM_WR_ CTRL_EN	SW_POR	0	0
PIN_CTRL	02h	0	SDO_PU_EN	IBHR_ POR_EN	0	0	0	1	1
IF_CFG	03h	SDA_PU_EN	0	ASF_CTRL	H_LACTIVE	PP_OD	SIM	0	I2C_I3C_ disable
FIFO_CTRL1	07h	WTM_7	WTM_6	WTM_5	WTM_4	WTM_3	WTM_2	WTM_1	WTM_0
FIFO_CTRL2	08h	STOP_ON_WTM	FIFO_COMPR_ RT_EN	0	ODR_CHG_EN	0	UNCOMPR_ RATE_1	UNCOMPR_ RATE_0	XL_DualC_BATCH _FROM_FSM
FIFO_CTRL3	09h	BDR_GY_3	BDR_GY_2	BDR_GY_1	BDR_GY_0	BDR_XL_3	BDR_XL_2	BDR_XL_1	BDR_XL_0
FIFO_CTRL4	0Ah	DEC_TS_BATCH_1	DEC_TS_BATCH_0	ODR_T_BATCH_1	ODR_T_BATCH_0	0	FIFO_MODE_2	FIFO_MODE_1	FIFO_MODE_0
COUNTER_BDR_REG1	0Bh	0	TRIG_COUNTER _BDR_1	TRIG_COUNTER _BDR_0	0	0	AH_BIO_ BATCH_EN	CNT_BDR_TH_9	CNT_BDR_TH_8
COUNTER_BDR_REG2	0Ch	CNT_BDR_TH_7	CNT_BDR_TH_6	CNT_BDR_TH_5	CNT_BDR_TH_4	CNT_BDR_TH_3	CNT_BDR_TH_2	CNT_BDR_TH_1	CNT_BDR_TH_0
INT1_CTRL	0Dh	0	INT1_CNT_BDR	INT1_FIFO_FULL	INT1_FIFO_OVR	INT1_FIFO_TH	0	INT1_DRDY_G	INT1_DRDY_XL
INT2_CTRL	0Eh	INT2_EMB_ FUNC_ENDOP	INT2_CNT_BDR	INT2_FIFO_FULL	INT2_FIFO_OVR	INT2_FIFO_TH	0	INT2_DRDY_G	INT2_DRDY_XL
WHO_AM_I	0Fh	0	1	1	1	0	0	0	1
CTRL1	10h	0	OP_MODE_XL_2	OP_MODE_XL_1	OP_MODE_XL_0	ODR_XL_3	ODR_XL_2	ODR_XL_1	ODR_XL_0
CTRL2	11h	0	OP_MODE_G_2	OP_MODE_G_1	OP_MODE_G_0	ODR_G_3	ODR_G_2	ODR_G_1	ODR_G_0
CTRL3	12h	BOOT	BDU	0	0	0	IF_INC	0	SW_RESET
CTRL4	13h	0	0	0	INT2_on_INT1	DRDY_MASK	INT2_DRDY_TEMP	DRDY_PULSED	0
CTRL5	14h	0	0	0	0	0	BUS_ACT_SEL_1	BUS_ACT_SEL_0	INT_EN_I3C
CTRL6	15h	0	LPF1_G_BW_2	LPF1_G_BW_1	LPF1_G_BW_0	FS_G_3	FS_G_2	FS_G_1	FS_G_0
CTRL7	16h	AH_BIO_EN	INT2_DRDY_ AH_BIO	AH_BIO_ C_ZIN_1	AH_BIO_ C_ZIN_0	AH_BIO1_EN	AH_BIO2_EN	0	LPF1_G_EN
CTRL8	17h	HP_LPF2_ XL_BW_2	HP_LPF2_ XL_BW_1	HP_LPF2_ XL_BW_0	AH_BIO_HPF	XL_DualC_EN	0	FS_XL_1	FS_XL_0
CTRL9	18h	AH_BIO_LPF	HP_REF_ MODE_XL	XL_FASTSETTL_ MODE	HP_SLOPE_XL_EN	LPF2_XL_EN	0	USR_OFF_W	USR_OFF_ ON_OUT
CTRL10	19h	0	EMB_FUNC _DEBUG	AH_BIO_SW	XL_ST_OFFSET	ST_G_1	ST_G_0	ST_XL_1	ST_XL_0
CTRL_STATUS	1Ah	0	0	0	0	0	FSM_WR_ CTRL_STATUS	-	0

Register name

FIFO_STATUS1

FIFO_STATUS2

Address

1Bh

1Ch

Bit7

DIFF_FIFO_7

FIFO_WTM_IA

Bit6

DIFF_FIFO_6

FIFO_OVR_IA

Bit5

DIFF_FIFO_5

FIFO_FULL_IA

Bit4

DIFF FIFO 4

COUNTER_BDR_IA

Bit3

DIFF_FIFO_3

FIFO OVR

LATCHED

Bit2

DIFF_FIFO_2

0

Bit1

DIFF_FIFO_1

0

WU IA

GDA

Temp1

Temp9

D1

D9

AH_BIO_1

AH_BIO_9

D1

D9

Bit0

DIFF FIFO 0

DIFF FIFO 8

FF IA

XLDA

Temp0

Temp8

D0

D8

AH_BIO_0

AH_BIO_8

D0

D8

D16

D24

X_WU

X_TAP

ZL

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
EMB_FUNC_STATUS_ MAINPAGE	49h	IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0
FSM_STATUS_MAINPAGE	4Ah	IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
MLC_STATUS_MAINPAGE	4Bh	0	0	0	0	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1
INTERNAL_FREQ_FINE	4Fh	FREQ_FINE_7	FREQ_FINE_6	FREQ_FINE_5	FREQ_FINE_4	FREQ_FINE_3	FREQ_FINE_2	FREQ_FINE_1	FREQ_FINE_0
FUNCTIONS_ENABLE	50h	INTERRUPTS_ ENABLE	TIMESTAMP_EN	0	0	DIS_RST_LIR_ ALL_INT	0	INACT_EN_1	INACT_EN_0
INACTIVITY_DUR	54h	SLEEP_STATUS_ ON_INT	WU_INACT_ THS_W_2	WU_INACT_ THS_W_1	WU_INACT_ THS_W_0	XL_INACT_ODR_1	XL_INACT_ODR_0	INACT_DUR_1	INACT_DUR_0
INACTIVITY_THS	55h	0	0	INACT_THS_5	INACT_THS_4	INACT_THS_3	INACT_THS_2	INACT_THS_1	INACT_THS_0
TAP_CFG0	56h	0	LOW_PASS_ ON_6D	HW_FUNC_MASK _XL_SETTL	SLOPE_FDS	TAP_Z_EN	TAP_Y_EN	TAP_X_EN	LIR
TAP_CFG1	57h	TAP_PRIORITY_2	TAP_PRIORITY_1	TAP_PRIORITY_0	TAP_THS_Z_4	TAP_THS_Z_3	TAP_THS_Z_2	TAP_THS_Z_1	TAP_THS_Z_0
TAP_CFG2	58h	0	0	0	TAP_THS_Y_4	TAP_THS_Y_3	TAP_THS_Y_2	TAP_THS_Y_1	TAP_THS_Y_0
TAP_THS_6D	59h	0	SIXD_THS_1	SIXD_THS_0	TAP_THS_X_4	TAP_THS_X_3	TAP_THS_X_2	TAP_THS_X_1	TAP_THS_X_0
TAP_DUR	5Ah	DUR_3	DUR_2	DUR_1	DUR_0	QUIET_1	QUIET_0	SHOCK_1	SHOCK_0
WAKE_UP_THS	5Bh	SINGLE_ DOUBLE_TAP	USR_OFF_ON_WU	WK_THS_5	WK_THS_4	WK_THS_3	WK_THS_2	WK_THS_1	WK_THS_0
WAKE_UP_DUR	5Ch	FF_DUR_5	WAKE_DUR_1	WAKE_DUR_0	0	SLEEP_DUR_3	SLEEP_DUR_2	SLEEP_DUR_1	SLEEP_DUR_0
FREE_FALL	5Dh	FF_DUR_4	FF_DUR_3	FF_DUR_2	FF_DUR_1	FF_DUR_0	FF_THS_2	FF_THS_1	FF_THS_0
MD1_CFG	5Eh	INT1_SLEEP _CHANGE	INT1_ SINGLE_TAP	INT1_WU	INT1_FF	INT1_ DOUBLE_TAP	INT1_6D	INT1_EMB_FUNC	0
MD2_CFG	5Fh	INT2_SLEEP _CHANGE	INT2_ SINGLE_TAP	INT2_WU	INT2_FF	INT2_ DOUBLE_TAP	INT2_6D	INT2_EMB_FUNC	INT2_TIMESTAMP
EMB_FUNC_CFG	63h	XL_DualC_BATCH _FROM_IF	0	EMB_FUNC_IRQ _MASK_G_SETTL	EMB_FUNC_IRQ_ MASK_XL_SETTL	EMB_FUNC_ DISABLE	0	0	0
Z_OFS_USR	73h	Z_OFS_USR_7	Z_OFS_USR_6	Z_OFS_USR_5	Z_OFS_USR_4	Z_OFS_USR_3	Z_OFS_USR_2	Z_OFS_USR_1	Z_OFS_USR_0
Y_OFS_USR	74h	Y_OFS_USR_7	Y_OFS_USR_6	Y_OFS_USR_5	Y_OFS_USR_4	Y_OFS_USR_3	Y_OFS_USR_2	Y_OFS_USR_1	Y_OFS_USR_0
X_OFS_USR	75h	X_OFS_USR_7	X_OFS_USR_6	X_OFS_USR_5	X_OFS_USR_4	X_OFS_USR_3	X_OFS_USR_2	X_OFS_USR_1	X_OFS_USR_0
FIFO_DATA_OUT_TAG	78h	TAG_SENSOR_4	TAG_SENSOR_3	TAG_SENSOR_2	TAG_SENSOR_1	TAG_SENSOR_0	TAG_CNT_1	TAG_CNT_0	-
FIFO_DATA_OUT_BYTE_0	79h	D7	D6	D5	D4	D3	D2	D1	D0
FIFO_DATA_OUT_BYTE_1	7Ah	D15	D14	D13	D12	D11	D10	D9	D8
FIFO_DATA_OUT_BYTE_2	7Bh	D7	D6	D5	D4	D3	D2	D1	D0
FIFO_DATA_OUT_BYTE_3	7Ch	D15	D14	D13	D12	D11	D10	D9	D8
FIFO_DATA_OUT_BYTE_4	7Dh	D7	D6	D5	D4	D3	D2	D1	D0
FIFO_DATA_OUT_BYTE_5	7Eh	D15	D14	D13	D12	D11	D10	D9	D8

2.1 Embedded functions registers

The table given below provides a list of the registers for the embedded functions available in the device and the corresponding addresses. Embedded functions registers are accessible when the EMB_FUNC_REG_ACCESS bit is set to 1 in the FUNC_CFG_ACCESS register.

Table 3. Embedded functions registers

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
PAGE_SEL	02h	PAGE_SEL3	PAGE_SEL2	PAGE_SEL1	PAGE_SEL0	0	0	0	1
EMB_FUNC_EN_A	04h	MLC_BEFORE _FSM_EN	0	SIGN_MOTION_EN	TILT_EN	PEDO_EN	0	SFLP_GAME_EN	0
EMB_FUNC_EN_B	05h	0	0	0	MLC_EN	FIFO_COMPR_EN	0	0	FSM_EN
EMB_FUNC_EXEC_STATUS	07h	0	0	0	0	0	0	EMB_FUNC_ EXEC_OVR	EMB_FUNC _ENDOP
PAGE_ADDRESS	08h	PAGE_ADDR7	PAGE_ADDR6	PAGE_ADDR5	PAGE_ADDR4	PAGE_ADDR3	PAGE_ADDR2	PAGE_ADDR1	PAGE_ADDR0
PAGE_VALUE	09h	PAGE_VALUE7	PAGE_VALUE6	PAGE_VALUE5	PAGE_VALUE4	PAGE_VALUE3	PAGE_VALUE2	PAGE_VALUE1	PAGE_VALUE0
EMB_FUNC_INT1	0Ah	INT1_FSM_LC	0	INT1_SIG_MOT	INT1_TILT	INT1_STEP_ DETECTOR	0	0	0
FSM_INT1	0Bh	INT1_FSM8	INT1_FSM7	INT1_FSM6	INT1_FSM5	INT1_FSM4	INT1_FSM3	INT1_FSM2	INT1_FSM1
MLC_INT1	0Dh	0	0	0	0	INT1_MLC4	INT1_MLC3	INT1_MLC2	INT1_MLC1
EMB_FUNC_INT2	0Eh	INT2_FSM_LC	0	INT2_SIG_MOT	INT2_TILT	INT2_STEP_ DETECTOR	0	0	0
FSM_INT2	0Fh	INT2_FSM8	INT2_FSM7	INT2_FSM6	INT2_FSM5	INT2_FSM4	INT2_FSM3	INT2_FSM2	INT2_FSM1
MLC_INT2	11h	0	0	0	0	INT2_MLC4	INT2_MLC3	INT2_MLC2	INT2_MLC1
EMB_FUNC_STATUS	12h	IS_FSM_LC	0	IS_SIGMOT	IS_TILT	IS_STEP_DET	0	0	0
FSM_STATUS	13h	IS_FSM8	IS_FSM7	IS_FSM6	IS_FSM5	IS_FSM4	IS_FSM3	IS_FSM2	IS_FSM1
MLC_STATUS	15h	0	0	0	0	IS_MLC4	IS_MLC3	IS_MLC2	IS_MLC1
PAGE_RW	17h	EMB_FUNC_LIR	PAGE_WRITE	PAGE_READ	0	0	0	0	0
EMB_FUNC_FIFO_EN_A	44h	MLC_FIFO_EN	STEP_COUNTER _FIFO_EN	SFLP_GBIAS _FIFO_EN	SFLP_GRAVITY _FIFO_EN	0	0	SFLP_GAME _FIFO_EN	0
EMB_FUNC_FIFO_EN_B	45h	0	0	0	0	0	0	MLC_FILTER_ FEATURE_FIFO_EN	0
FSM_ENABLE	46h	FSM8_EN	FSM7_EN	FSM6_EN	FSM5_EN	FSM4_EN	FSM3_EN	FSM2_EN	FSM1_EN
FSM_LONG_COUNTER_L	48h	FSM_LC_7	FSM_LC_6	FSM_LC_5	FSM_LC_4	FSM_LC_3	FSM_LC_2	FSM_LC_1	FSM_LC_0
FSM_LONG_COUNTER_H	49h	FSM_LC_15	FSM_LC_14	FSM_LC_13	FSM_LC_12	FSM_LC_11	FSM_LC_10	FSM_LC_9	FSM_LC_8
INT_ACK_MASK	4Bh	IACK_MASK7	IACK_MASK6	IACK_MASK5	IACK_MASK4	IACK_MASK3	IACK_MASK2	IACK_MASK1	IACK_MASK0
FSM_OUTS1	4Ch	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS2	4Dh	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS3	4Eh	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS4	4Fh	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS5	50h	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FSM_OUTS6	51h	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS7	52h	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
FSM_OUTS8	53h	P_axis_1	N_axis_1	P_axis_2	N_axis_2	P_axis_3	N_axis_3	P_V	N_V
SFLP_ODR	5Eh	0	1	SFLP_GAME _ODR_2	SFLP_GAME _ODR_1	SFLP_GAME _ODR_0	0	1	1
FSM_ODR	5Fh	0	1	FSM_ODR_2	FSM_ODR_1	FSM_ODR_0	0	1	1
MLC_ODR	60h	0	MLC_ODR_2	MLC_ODR_1	MLC_ODR_0	0	1	0	1
STEP_COUNTER_L	62h	STEP_7	STEP_6	STEP_5	STEP_4	STEP_3	STEP_2	STEP_1	STEP_0
STEP_COUNTER_H	63h	STEP_15	STEP_14	STEP_13	STEP_12	STEP_11	STEP_10	STEP_9	STEP_8
EMB_FUNC_SRC	64h	PEDO_RST_STEP	0	STEP_DETECTED	STEP_COUNT_ DELTA_IA	STEP_OVERFLOW	STEPCOUNTER _BIT_SET	0	0
EMB_FUNC_INIT_A	66h	MLC_BEFORE _FSM_INIT	0	SIG_MOT_INIT	TILT_INIT	STEP_DET_INIT	0	SFLP_GAME _INIT	0
EMB_FUNC_INIT_B	67h	0	0	0	MLC_INIT	FIFO_COMPR _INIT	0	0	FSM_INIT
MLC1_SRC	70h	MLC1_SRC_7	MLC1_SRC_6	MLC1_SRC_5	MLC1_SRC_4	MLC1_SRC_3	MLC1_SRC_2	MLC1_SRC_1	MLC1_SRC_0
MLC2_SRC	71h	MLC2_SRC_7	MLC2_SRC_6	MLC2_SRC_5	MLC2_SRC_4	MLC2_SRC_3	MLC2_SRC_2	MLC2_SRC_1	MLC2_SRC_0
MLC3_SRC	72h	MLC3_SRC_7	MLC3_SRC_6	MLC3_SRC_5	MLC3_SRC_4	MLC3_SRC_3	MLC3_SRC_2	MLC3_SRC_1	MLC3_SRC_0
MLC4_SRC	73h	MLC4_SRC_7	MLC4_SRC_6	MLC4_SRC_5	MLC4_SRC_4	MLC4_SRC_3	MLC4_SRC_2	MLC4_SRC_1	MLC4_SRC_0

2.2 Embedded advanced features pages

The table given below provides a list of the registers for the embedded advanced features page 0. These registers are accessible when PAGE_SEL[3:0] are set to 0000 in the PAGE_SEL register.

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
SFLP_GAME_GBIASX_L	6Eh	GAME_GBIASX_7	GAME_GBIASX_6	GAME_GBIASX_5	GAME_GBIASX_4	GAME_GBIASX_3	GAME_GBIASX_2	GAME_GBIASX_1	GAME_GBIASX_0
SFLP_GAME_GBIASX_H	6Fh	GAME_GBIASX_15	GAME_GBIASX_14	GAME_GBIASX_13	GAME_GBIASX_12	GAME_GBIASX_11	GAME_GBIASX_10	GAME_GBIASX_9	GAME_GBIASX_8
SFLP_GAME_GBIASY_L	70h	GAME_GBIASY_7	GAME_GBIASY_6	GAME_GBIASY_5	GAME_GBIASY_4	GAME_GBIASY_3	GAME_GBIASY_2	GAME_GBIASY_1	GAME_GBIASY_0
SFLP_GAME_GBIASY_H	71h	GAME_GBIASY_15	GAME_GBIASY_14	GAME_GBIASY_13	GAME_GBIASY_12	GAME_GBIASY_11	GAME_GBIASY_10	GAME_GBIASY_9	GAME_GBIASY_8
SFLP_GAME_GBIASZ_L	72h	GAME_GBIASZ_7	GAME_GBIASZ_6	GAME_GBIASZ_5	GAME_GBIASZ_4	GAME_GBIASZ_3	GAME_GBIASZ_2	GAME_GBIASZ_1	GAME_GBIASZ_0
SFLP_GAME_GBIASZ_H	73h	GAME_GBIASZ_15	GAME_GBIASZ_14	GAME_GBIASZ_13	GAME_GBIASZ_12	GAME_GBIASZ_11	GAME_GBIASZ_10	GAME_GBIASZ_9	GAME_GBIASZ_8
FSM_BIO_SENSITIVITY_L	BAh	FSM_BIO_S_7	FSM_BIO_S_6	FSM_BIO_S_5	FSM_BIO_S_4	FSM_BIO_S_3	FSM_BIO_S_2	FSM_BIO_S_1	FSM_BIO_S_0
FSM_BIO_SENSITIVITY_H	BBh	FSM_BIO_S_15	FSM_BIO_S_14	FSM_BIO_S_13	FSM_BIO_S_12	FSM_BIO_S_11	FSM_BIO_S_10	FSM_BIO_S_9	FSM_BIO_S_8

The following table provides a list of the registers for the embedded advanced features page 1. These registers are accessible when PAGE_SEL[3:0] are set to 0001 in the PAGE_SEL register.

Table 5. Embedded advanced features registers - page 1

Register name	Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
FSM_LC_TIMEOUT_L	7Ah	FSM_LC_TIMEOUT7	FSM_LC_TIMEOUT6	FSM_LC_TIMEOUT5	FSM_LC_TIMEOUT4	FSM_LC_TIMEOUT3	FSM_LC_TIMEOUT2	FSM_LC_TIMEOUT1	FSM_LC_TIMEOUT0
FSM_LC_TIMEOUT_H	7Bh	FSM_LC_TIMEOUT15	FSM_LC_TIMEOUT14	FSM_LC_TIMEOUT13	FSM_LC_TIMEOUT12	FSM_LC_TIMEOUT11	FSM_LC_TIMEOUT10	FSM_LC_TIMEOUT9	FSM_LC_TIMEOUT8
FSM_PROGRAMS	7Ch	FSM_N_PROG7	FSM_N_PROG6	FSM_N_PROG5	FSM_N_PROG4	FSM_N_PROG3	FSM_N_PROG2	FSM_N_PROG1	FSM_N_PROG0
FSM_START_ADD_L	7Eh	FSM_START7	FSM_START6	FSM_START5	FSM_START4	FSM_START3	FSM_START2	FSM_START1	FSM_START0
FSM_START_ADD_H	7Fh	FSM_START15	FSM_START714	FSM_START13	FSM_START12	FSM_START11	FSM_START10	FSM_START9	FSM_START8
PEDO_CMD_REG	83h	0	0	0	0	CARRY_COUNT_EN	FP_REJECTION_EN	0	0
PEDO_DEB_STEPS_CONF	84h	DEB_STEP7	DEB_STEP6	DEB_STEP5	DEB_STEP4	DEB_STEP3	DEB_STEP2	DEB_STEP1	DEB_STEP0
PEDO_SC_DELTAT_L	D0h	PD_SC_7	PD_SC_6	PD_SC_5	PD_SC_4	PD_SC_3	PD_SC_2	PD_SC_1	PD_SC_0
PEDO_SC_DELTAT_H	D1h	PD_SC_15	PD_SC_14	PD_SC_13	PD_SC_12	PD_SC_11	PD_SC_10	PD_SC_9	PD_SC_8
MLC_BIO_SENSITIVITY_L	E8h	MLC_BIO_S_7	MLC_BIO_S_6	MLC_BIO_S_5	MLC_BIO_S_4	MLC_BIO_S_3	MLC_BIO_S_2	MLC_BIO_S_1	MLC_BIO_S_0
MLC_BIO_SENSITIVITY_H	E9h	MLC_BIO_S_15	MLC_BIO_S_14	MLC_BIO_S_13	MLC_BIO_S_12	MLC_BIO_S_11	MLC_BIO_S_10	MLC_BIO_S_9	MLC_BIO_S_8

3 Operating modes

The ST1VAFE6AX provides six possible operating configurations:

- vAFE active with the accelerometer set in high-performance mode
- vAFE active with the gyroscope set either in low-power or high-performance mode
- vAFE active with the accelerometer set in high-performance mode and the gyroscope set either in lowpower or high-performance mode
- Only accelerometer active and gyroscope in power-down
- Only gyroscope active and accelerometer in power-down
- Both accelerometer and gyroscope sensors active with independent ODR and power mode

The device offers a wide VDD voltage range from 1.71 V to 3.6 V and a VDDIO range from 1.08 V to 3.6 V. The power-on sequence is not restricted. The VDD/VDDIO pins can be set to either the power supply level or to ground level (they must not be left floating) and no specific sequence is required for powering them on.

In order to avoid potential conflicts, during the power-on sequence it is recommended to set the lines (on the host side) connected to the device IO pins floating or connected to ground, until VDDIO is set. After VDDIO is set, the lines connected to the IO pins have to be configured according to their default status described in Table 1. In order to avoid an unexpected increase in supply current, the input pins that are not pulled-up/pulled-down must be the polarized by the host.

When the VDD power supply is applied, the device performs a 10 ms (maximum) boot procedure to load the trimming parameters. After the boot is completed, both the accelerometer and the gyroscope are automatically configured in power-down mode. To guarantee proper power-off of the device, it is recommended to maintain the duration of the VDD line to GND for at least $100 \, \mu s$.

The accelerometer and the gyroscope can be configured independently. When both the accelerometer and gyroscope are on, the accelerometer is synchronized with the gyroscope, and the data rates of the two sensors are integer multiples of each other.

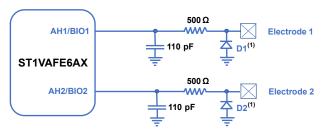
The accelerometer can be configured in the one of the following power modes:

- Power-down mode
- Low-power mode (three different modes are available, depending on the number of averaged measurements)
- High-performance mode

The gyroscope can be configured in one of the following power modes:

- Power-down mode
- Sleep mode
- Low-power mode
- High-performance mode

Note: The accelerometer sensor must be set in high-performance mode when the vAFE channel is enabled.


AN6120 - Rev 1 page 10/102

3.1 Biosensor functionality

The ST1VAFE6AX embeds a vAFE, which is able to detect biopotentials by means of the external electrodes connected to the device. The external electrodes have to be connected to pin 6 (AH1/BIO1) and/or pin 9 (AH2/BIO2). Figure 2 provides an example of a test circuit.

Figure 2. vAFE external connections

(1) ST ESDALCL5-1BM2 is referenced as an ST catalog product but similar features of other ESD diodes also can be used.

The same analog chain can be used to implement the analog hub (AH) functionality, which provides the capability to connect an external analog input and convert it to a digital signal for processing.

In the ST1VAFE6AX, the analog hub / vAFE has a dedicated channel that can be activated by setting the AH_BIO_EN bit and the AH_BIO1_EN (to enable the channel 1) / AH_BIO2_EN (to enable the channel 2) bits to 1 in the CTRL7 register. The AH_BIO_SW bit in the CTRL10 register allows internally swapping the input connected to the AH1/BIO1 and AH2/BIO2 pins.

Note: When the analog hub / vAFE channel is enabled, the accelerometer sensor must be set in high-performance mode.

The equivalent input impedance of the analog hub / vAFE buffers can be selected by properly setting the AH BIO C ZIN [1:0] bits in the CTRL7 register (00: 2.4 G Ω (default); 01: 730 M Ω ; 10: 300 M Ω ; 11: 235 M Ω).

The analog hub / vAFE channel embeds a digital notch filter and a digital high-pass filter that can be enabled, respectively, by setting the AH_BIO_LPF bit in the CTRL9 register and the AH_BIO_HPF bit in the CTRL8 register to 1. The configuration of these two bits defines the output data rate (120 Hz or 240 Hz) and the bandwidth of the analog hub / vAFE channel, as illustrated in Table 6.

AH BIO LPF AH BIO HPF AH / vAFE ODR (typ.) AH / vAFE bandwidth (typ.) [low, high] 240 Hz [0 Hz, 318 Hz] 0 0 0 1 240 Hz [0.15 Hz, 318 Hz] 1 0 120 Hz [0 Hz, 14.8 Hz]⁽¹⁾ 1 120 Hz 1 [0.08 Hz, 14.8 Hz]⁽¹⁾

Table 6. Analog hub / vAFE channel ODR and bandwidth configuration

The analog hub / vAFE data-ready signal is represented by the AH_BIODA bit of the STATUS_REG register. This signal can be driven to the INT2 pin by setting the INT2_DRDY_AH_BIO bit to 1 in the CTRL7 register.

AN6120 - Rev 1 page 11/102

^{1.} First -3 dB crossing point

A basic software routine for enabling the analog hub / vAFE chain and drive the data-ready signal on the INT2 pin is given below.

1.	Write 00h to CTRL1	// Turn off the accelerometer
2.	Write 00h to CTRL2	// Turn off the gyroscope
3.	Write CCh to CTRL7	// Enable analog hub / vAFE chain
		// Enable AH1/BIO1 and AH2/BIO2 pins
		// Analog hub / vAFE data-ready interrupt driven to INT2 pin
4.	Write 10h to CTRL8	// Enable analog hub / vAFE high-pass filter
5.	Write 00h to CTRL9	// Disable analog hub / vAFE notch filter (AH / vAFE ODR = 240 Hz)
6.	Write 07h to CTRL1	// Turn on the accelerometer (ODR = 240 Hz)

Analog hub / vAFE data are available as a 16-bit word in two's complement in the AH_BIO_OUT_L and AH_BIO_OUT_H registers. They can also be processed by MLC/FSM logic.

By setting the AH_BIO_BATCH_EN bit to 1 in the COUNTER_BDR_REG1 register, it is possible to store the analog hub / vAFE data in the FIFO buffer with a dedicated FIFO TAG (see Section 7: First-in, first-out (FIFO) buffer).

AN6120 - Rev 1 page 12/102

3.2 Accelerometer power modes and output data rates

The power mode and the output data rate of the accelerometer can be selected using the CTRL1 register.

When the accelerometer is configured in **power-down** mode, almost all internal blocks of the device are switched off to minimize power consumption. Digital interfaces (I²C, MIPI I3C®, and SPI) are still active to allow communication with the device. The content of the configuration registers is preserved and the output data registers are not updated, keeping the last data sampled in memory before going into power-down mode.

When the accelerometer is configured in **low-power** mode, its reading chain is automatically turned on and off to optimize the supply current. Three different low-power modes are available, based on the number of measurements that are averaged for the sample generation:

- Low-power mode 1 (LPM1), where two measurements are averaged
- Low-power mode 2 (LPM2), where four measurements are averaged
- Low-power mode 3 (LPM3), where eight measurements are averaged

Increasing the number of averaged measurements allows reducing the noise, while decreasing them allows reducing the supply current.

In the low-power modes, the antialiasing filter is disabled and accelerometer ODR is selectable up to 240 Hz.

When the accelerometer is configured in **high-performance** mode, its reading chain is always on. The antialiasing filter is enabled and the accelerometer ODR is selectable up to 7680 Hz. High-performance mode provides the best performance in terms of noise.

Table 7 summarizes the available power modes based on the OP_MODE_XL bits of the CTRL1 register. The power-down mode is selected if ODR_XL = 0000, regardless of the configuration of the OP_MODE_XL bits.

OP_MODE_XL_[2:0]	Power mode
000	High-performance (default)
100	Low-power mode 1
101	Low-power mode 2
110	Low-power mode 3

Table 7. Accelerometer power modes

Table 8 summarizes the available ODR values based on the ODR_XL bits of the CTRL1 register.

Table 8. Accelerometer ODR

ODR_XL_[3:0]	ODR selection [Hz]	High-performance	Low-power mode 1 / 2 / 3
0000	Power-down (default)	•	•
0001	1.875		•
0010	7.5	•	
0011	15	•	•
0100	30	•	•
0101	60	•	•
0110	120	•	•
0111	240	•	•
1000	480	•	
1001	960	•	
1010	1920	•	
1011	3840	•	
1100	7680	•	

AN6120 - Rev 1 page 13/102

3.3 Gyroscope power modes and output data rates

000

100

101

The power mode and the output data rate of the gyroscope can be selected using the CTRL2 register.

When the gyroscope is configured in power-down mode, almost all internal blocks of the device are switched off to minimize power consumption. The digital interfaces (I²C, MIPI I3C[®], and SPI) are still active to allow communication with the device. The content of the configuration registers is preserved and the output data registers are not updated, keeping the last data sampled in memory before going into power-down mode.

When the gyroscope is in sleep mode, the circuitry that drives the oscillation of the gyroscope mass is active, but the reading chain is turned off. Compared to power-down mode, the turn-on time from sleep mode to any active mode is drastically reduced.

When the gyroscope is configured in low-power mode, the driving circuitry is always on, but the reading chain is automatically turned on and off to optimize the supply current. The gyroscope ODR is selectable up to 240 Hz.

When the gyroscope is configured in high-performance mode, its reading chain is always on. The gyroscope ODR is selectable up to 7680 Hz. High-performance mode provides the best performance in terms of noise.

Table 9 summarizes the available power modes based on the OP_MODE_G bits of the CTRL2 register. The power-down mode is selected if ODR_G = 0000, regardless of the configuration of the OP_MODE_G bits.

OP MODE G [2:0] Power mode High-performance

Sleep

Low-power

Table 9. Gyroscope power modes

Table 10 cummarized	e tha availahla ODD ha	sed on the ODD C H	bits of the CTRL2 register.
Table to Sulfillianze:	s life available ODN ba	iseu un ine ook la i	DIES DI LITE OTTELLA TEUISIET.

Table 10. Gyroscope ODR

ODR_G_[3:0]	ODR selection [Hz]	High-performance	Low-power mode
0000	Power-down (default)	•	•
0010	7.5	•	•
0011	15	•	•
0100	30	•	•
0101	60	•	•
0110	120	•	•
0111	240	•	•
1000	480	•	
1001	960	•	
1010	1920	•	
1011	3840	•	
1100	7680	•	

AN6120 - Rev 1 page 14/102

3.4 Supply current

Table 11 shows the typical values of supply current for the different operating modes.

Table 11. Supply current (@VDD = 1.8 V, T = 25°C)

ODR [Hz]	Accelerometer only [μΑ]	Gyroscope only [μΑ]	Combo [accelerometer + gyroscope] [µA]
Power-down	2.6	2.6	2.6
1.875 Hz (low-power mode 1)	4.2	-	280
7.5 Hz (low-power mode 1)	-	270	200
15 Hz (low-power mode 1)	6.8	274	284
30 Hz (low-power mode 1)	9.8	280	290
60 Hz (low-power mode 1)	17.0	290	304
120 Hz (low-power mode 1)	27.0	315	332
240 Hz (low-power mode 1)	49.0	360	389
1.875 Hz (low-power mode 2)	4.3	-	-
15 Hz (low-power mode 2)	7.4	-	-
30 Hz (low-power mode 2)	11.0	-	-
60 Hz (low-power mode 2)	20.0	-	-
120 Hz (low-power mode 2)	31.0	-	-
240 Hz (low-power mode 2)	58.0	-	-
1.875 Hz (low-power mode 3)	4.5	-	-
15 Hz (low-power mode 3)	8.6	-	-
30 Hz (low-power mode 3)	13.2	-	-
60 Hz (low-power mode 3)	22.5	-	-
120 Hz (low-power mode 3)	41.0	-	-
240 Hz (low-power mode 3)	77.2	-	-
All ODRs (high-performance mode)	190	455	600

AN6120 - Rev 1 page 15/102

3.5 Accelerometer bandwidth

The accelerometer sampling chain is represented by a cascade of four main blocks: an analog antialiasing low-pass filter, an ADC converter, a digital low-pass filter (LPF1), and the composite group of digital filters.

Figure 3. Accelerometer sampling chain and Figure 4. Accelerometer composite filter show the accelerometer sampling chain.

The analog signal coming from the mechanical parts is filtered by an analog antialiasing low-pass filter before being converted by the ADC. The antialiasing filter is not enabled in the low-power modes. The digital LPF1 filter provides different cutoff values based on the accelerometer mode selected:

- ODR / 2 when the accelerometer is configured in high-performance mode
- 3100 Hz when the accelerometer is configured in low-power mode 1
- 912 Hz when the accelerometer is configured in low-power mode 2
- 431 Hz when the accelerometer is configured in low-power mode 3

Figure 3. Accelerometer sampling chain

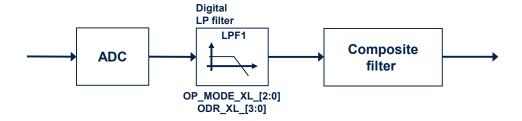
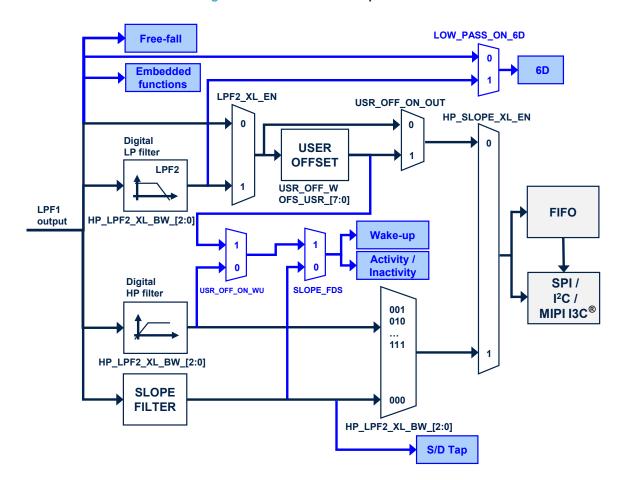



Figure 4. Accelerometer composite filter

AN6120 - Rev 1 page 16/102

The "Embedded functions" block in Figure 4 refers to the pedometer, step detector and step counter, significant motion and tilt functions, described in Section 6: Embedded functions, and also includes the finite state machine, the machine learning core, and the SFLP.

Finally, the composite group of filters composed of a low-pass digital filter (LPF2), a high-pass digital filter, and a slope filter processes the digital signal.

The HP_LPF2_XL_BW_[2:0] bits in the CTRL8 register and the CTRL9 register can be used to configure the composite filter group and the overall bandwidth of the accelerometer filtering chain, as shown in Table 12. Accelerometer bandwidth selection. Referring to this table, on the low-pass path side, the Bandwidth column refers to the LPF1 bandwidth if LPF2_XL_EN = 0; it refers to the LPF2 bandwidth if LPF2_XL_EN = 1. On the high-pass path side, the Bandwidth column refers to the slope filter bandwidth if HP_LPF2_XL_BW_[2:0] = 000; it refers to the HP filter bandwidth for all the other configurations.

Table 12. Accelerometer bandwidth selection also provides the maximum (worst case) settling time in terms of samples to be discarded for the various configurations of the accelerometer filtering chain.

HP_SLOPE_XL_EN	LPF2_XL_EN	HP_LPF2_ XL_BW_[2:0]	Bandwidth	Max overall settling time ⁽¹⁾ (samples to be discarded)
	0	-	ODR / 2 ⁽²⁾	See Table 14
		000	ODR / 4	See Table 14
		001	ODR / 10	21
0		010	ODR / 20	21
(Low-pass path)	1	011	ODR / 45	39
(Low-pass patil)	ľ	100	ODR / 100	78
		101	ODR / 200	156
		110	ODR / 400	313
		111	ODR / 800	626
		000	ODR / 4 (slope filter)	See Table 14
		001	ODR / 10	27
		010	ODR / 20	27
1		011	ODR / 45	39
(High-pass path)	-	100	ODR / 100	78
		101	ODR / 200	156
		110	ODR / 400	313
		111	ODR / 800	626

Table 12. Accelerometer bandwidth selection

- 1. Settling time @ 99% of the final value, taking into account all output data rates and all operating mode switches
- 2. This value is ODR / 2 when the accelerometer is in high-performance mode. It is equal to 3100 Hz when the accelerometer is in low-power mode 1 (2 mean), 912 Hz in low-power mode 2 (4 mean) and 431 Hz in low-power mode 3 (8 mean).

Setting the HP_SLOPE_XL_EN bit to 0, the low-pass path of the composite filter block is selected. If the LPF2_XL_EN bit is set to 0, no additional filter is applied. If the LPF2_XL_EN bit is set to 1, the LPF2 filter is applied in addition to LPF1, and the overall bandwidth of the accelerometer chain can be set by configuring the HP_LPF2_XL_BW_[2:0] field of the CTRL8 register.

The LPF2 low-pass filter can also be used in the 6D functionality by setting the LOW_PASS_ON_6D bit of the TAP_CFG0 register to 1.

Setting the HP_SLOPE_XL_EN bit to 1, the high-pass path of the composite filter block is selected. The HP_LPF2_XL_BW_[2:0] field is used in order to enable, in addition to the LPF1 filter, either the slope filter usage (when HP_LPF2_XL_BW_[2:0] = 000) or the digital high-pass filter (other HP_LPF2_XL_BW_[2:0] configurations). The HP_LPF2_XL_BW_[2:0] field is also used to select the cutoff frequencies of the HP filter.

AN6120 - Rev 1 page 17/102

The high-pass filter reference mode feature is available for the accelerometer sensor: when this feature is enabled, the current X, Y, Z accelerometer sample is internally stored and subtracted from all subsequent output values. In order to enable the reference mode, both the HP_REF_MODE_XL bit and the HP_SLOPE_XL_EN bit of the CTRL9 register have to be set to 1, and the value of the HP_LPF2_XL_BW_[2:0] field has to be different than 000. When the reference mode feature is enabled, both the LPF2 filter and the HP filter are not available. The first accelerometer output data after enabling the reference mode has to be discarded.

The XL_FASTSETTL_MODE bit of the CTRL9 register enables the accelerometer LPF2 or HPF fast-settling mode: the selected filter sets the first sample after writing this bit. This feature applies only upon device exit from power-down mode.

3.5.1 Accelerometer slope filter

As shown in Figure 4. Accelerometer composite filter, the device embeds a digital slope filter, which can also be used for some embedded features such as single/double-tap recognition, wake-up detection, and activity/inactivity.

The slope filter output data is computed using the following formula:

$$slope(t_n) = [acc(t_n) - acc(t_{n-1})] / 2$$

An example of a slope data signal is illustrated in the following figure.

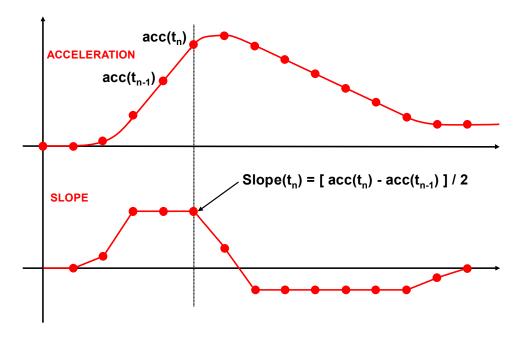


Figure 5. Accelerometer slope filter

Note: The first output data generated by the slope filter is not valid and must be discarded.

AN6120 - Rev 1 page 18/102

3.6 Accelerometer turn-on/off time

The accelerometer reading chain contains low-pass filtering to improve signal-to-noise performance and to reduce aliasing effects. For this reason, it is necessary to take into account the settling time of the filters when the accelerometer power mode is switched or when the accelerometer ODR is changed.

The accelerometer chain settling time is dependent on the power mode and output data rate selected for the following configurations:

- LPF2 and HP filters disabled
- LPF2 or HP filter enabled with ODR / 4 bandwidth selection

For these two possible configurations, the maximum overall turn-on/off in order to switch accelerometer power modes or accelerometer ODR is the one shown below in Table 13. Accelerometer turn-on/off time (LPF2 and HP disabled) and Table 14. Accelerometer samples to be discarded.

Note:

Accelerometer ODR timing is not impacted by power mode changes (the new configuration is active after the completion of the current period).

Table 13. Accelerometer turn-on/off time (LPF2 and HP disabled)

Starting mode	Target mode	Max turn-on/off time ⁽¹⁾
Power-down	Low-power mode	See Table 14
Power-down Power-down	High-performance mode	See Table 14
Low-power mode	High-performance mode	See Table 14 + discard 1 additional sample
High-performance mode	Low-power mode	See Table 14 + discard 1 additional sample
Low-power mode	Low-power mode (ODR change)	See Table 14
High-performance mode	High-performance mode (ODR change)	Discard 4 samples
Low-power mode / high-performance mode	Power-down	1 µs

^{1.} Settling time @ 99% of the final value

Table 14. Accelerometer samples to be discarded

Target mode	Number of samples to be discarded (LPF2 and HP filters disabled)		Number of samples to be discarded (LPF2 or HP filter enabled @ ODR / 4 bandwidth)	
Accelerometer ODR [Hz]	Low-power mode	High-performance mode	Low-power mode	High-performance mode
1.875 Hz	0 (first sample correct)	-	1	-
7.5 Hz	-	1	-	2
15 Hz	0 (first sample correct)	1	1	2
30 Hz	0 (first sample correct)	1	1	2
60 Hz	0 (first sample correct)	1	1	2
120 Hz	0 (first sample correct)	1	1	2
240 Hz	0 (first sample correct)	1	1	2
480 Hz	-	1	-	2
960 Hz	-	1	-	2
1920 Hz	-	4	-	5
3840 Hz	-	12	-	13
7680 Hz	-	27	-	27

Overall settling time if LPF2 or HP digital filters are enabled with a bandwidth different from ODR / 4 has already been indicated in Table 12. Accelerometer bandwidth selection.

AN6120 - Rev 1 page 19/102

SPI / I2C / MIPI I3C®

3.7 Accelerometer dual-channel mode

ADC

Digital

The ST1VAFE6AX accelerometer incorporates a dual-channel architecture capable of simultaneously providing two sets of acceleration data with two different full-scale values. By default, the device operates in single-channel mode supporting full-scale values from ±2 g to ±16 g and multiple power modes. The dual-channel functionality can be enabled / disabled by configuring the XL_DualC_EN bit to 1 (enable) or to 0 (disable) in the CTRL8 register. It is available for all the accelerometer operating modes.

Enabling / disabling dual-channel mode does not impact the accelerometer channel 1, which keeps working at the full scale set through the FS XL [1:0] bits in the CTRL8 register.

±16 g

Figure 6. Dual-channel mode

As shown in Figure 6, when dual-channel mode is enabled, an additional path (channel 2) of the accelerometer chain generates data at ±16 g full scale and at the output data rate configured through the ODR XL field of the CTRL1_XL register. Accelerometer channel 2 data are available in the output registers from UI OUTZ L A DualC through UI OUTX H A DualC (34h to 39h) and are expressed in two's complement. The bandwidth and the settling time of channel 2 are imposed by the LPF1 digital low-pass filter. See Section 3.6: Accelerometer turn-on/off time for further details.

DualC XL_DualC_EN

The accelerometer channel 2 data at ±16 g full scale can also be stored in FIFO by setting the XL_DualC_BATCH_FROM_IF bit to 1 in the EMB_FUNC_CFG register or by using some dedicated commands of the finite state machine (FSM) embedded in the ST1VAFE6AX device. The latter functionality can be enabled by setting the XL_DualC_BATCH_FROM_FSM bit to 1 in the FIFO CTRL2 register. See more details in Section 7: First-in, first-out (FIFO) buffer.

AN6120 - Rev 1 page 20/102

3.8 Gyroscope bandwidth

The gyroscope filtering chain configuration is shown in Figure 7. It is a cascade of two filters: a selectable digital low-pass filter (LPF1) and a digital low-pass filter (LPF2).

The LPF1 filter is available in high-performance mode. If the gyroscope is configured in low-power mode, the LPF1 filter is bypassed.

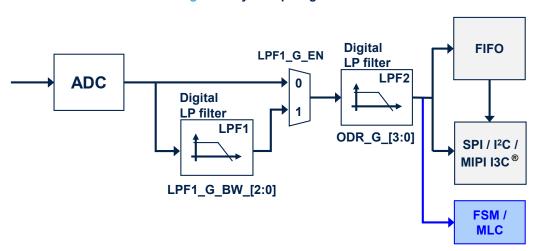


Figure 7. Gyroscope digital chain

The digital LPF1 filter can be enabled by setting the LPF1_G_EN bit of the CTRL7 register to 1 and its bandwidth can be selected through the field LPF1_G_BW_[2:0] of the CTRL6 register.

The digital LPF2 filter cannot be configured by the user and its cutoff frequency depends on the selected gyroscope ODR. When the gyroscope ODR is equal to 7680 Hz, the LPF2 filter is bypassed.

The overall gyroscope bandwidth for different gyroscope ODR values and for different configurations of the LPF1_G_EN bit of the CTRL7 register and LPF1_G_BW_[2:0] of the CTRL6 register is summarized in the following table.

Cursosono ODB (H-1	LPF1	LPF2	TOTAL LIPE and aff (U-1 /mbass @ 20 U-)
Gyroscope ODR [Hz]	LPF1_G_BW_[2:0]	LPF2	TOTAL LPF cut-off [Hz] (phase @ 20 Hz)
	Bypassed		3.4 (-61.2° @ 2.5 Hz)
	0xx		3.4 (-63.2° @ 2.5 Hz)
7.5 Hz	100	Enabled	3.4 (-64.4° @ 2.5 Hz)
7.5 HZ	101	Enabled	3.3 (-65.9° @ 2.5 Hz)
	110		3.3 (-67.5° @ 2.5 Hz)
	111		3.2 (-72.4° @ 2.5 Hz)
	Bypassed	Enabled	6.6 (-65.3° @ 5 Hz)
	0xx		6.6 (-66.2° @ 5 Hz)
15 Hz	100		6.6 (-68.7° @ 5 Hz)
15 HZ	101		6.6 (-71.6° @ 5 Hz)
	110		6.4 (-74.7° @ 5 Hz)
	111		5.9 (-84.1° @ 5 Hz)
	Bypassed		13.0 (-70.4° @ 10 Hz)
	0xx	Enabled	13.0 (-73.2° @ 10 Hz)
30 Hz	100		13.0 (-77.3° @ 10 Hz)
	101		13.0 (-83.2° @ 10 Hz)

Table 15. Gyroscope overall bandwidth selection

AN6120 - Rev 1 page 21/102

	LPF1		
Gyroscope ODR [Hz]	LPF1_G_BW_[2:0]	LPF2	TOTAL LPF cut-off [Hz] (phase @ 20 Hz)
30 Hz	110	Enabled	11.6 (-88.7° @ 10 Hz)
00112	111	Enabled	9.3 (-104.4° @ 10 Hz)
	Bypassed		24.6 (-80.6°)
	0xx		24.6 (-84.0°)
60 Hz	100	Enabled	24.8 (-94.4°)
00 HZ	101	Ellabled	24.7 (-107.2°)
	110		18.0 (-113.6°)
	111		12.1 (-133.2°)
	Bypassed		49 (-42.8°)
	0xx		49 (-46.3°)
120 Hz	100	Enabled	49 (-56.7°)
120 HZ	101	Ellabled	43 (-69.5°)
	110		24.2 (-75.9°)
	111		13.7 (-95.5°)
	Bypassed		96 (-24.8°)
	0xx		96 (-28.3°)
240 Hz	100	Enabled	78 (-38.7°)
240 П2	101	Eriabled	53 (-51.5°)
	110		27.3 (-57.9°)
	111		14.2 (-77.5°)
	Bypassed		187 (-15.6°)
	000		174 (-19.1°)
	001		157 (-21.0°)
	010		131 (-23.8°)
480 Hz	011	Enabled	186 (-17.0°)
	100		94 (-29.5°)
	101		57 (-42.3°)
	110		28.4 (-48.6°)
	111		14.3 (-68.3°)
	Bypassed		342 (-10.9°)
	000		240 (-14.4°)
	001		194 (-16.3°)
	010		148 (-19.1°)
960 Hz	011	Enabled	310 (-12.3°)
	100		99 (-24.7°)
	101		58 (-37.6°)
	110		28.7 (-43.9°)
	111		14.4 (-63.6°)
	Bypassed		490 (-8.3°)
	000		272 (-11.8°)
1920 Hz	001	Enabled	209 (-13.7°)
	010		155 (-16.5°)
	011		392 (-9.8°)

AN6120 - Rev 1 page 22/102

0 0DD !!!	LPF1	LPF2	TOTAL LIBE and off files (classes G on He)
Gyroscope ODR [Hz]	LPF1_G_BW_[2:0]	LPF2	TOTAL LPF cut-off [Hz] (phase @ 20 Hz)
	100		101 (-22.2°)
1920 Hz	101	Enabled	58 (-35.0°)
1020112	110	Litabiou	28.8 (-41.4°)
	111		14.4 (-61.0°)
	Bypassed		527 (-7.4°)
	000		279 (-10.9°)
	001		212 (-12.8°)
	010		156 (-15.6°)
3840 Hz	011	Enabled	410 (-8.8°)
	100		102 (-21.3°)
	101		58 (-34.1°)
	110 ⁽¹⁾		28.9 (-40.5°)
	111(1)		14.4 (-60.0°)
	Bypassed		537 (-6.9°)
	000		280 (-10.4°)
	001		212 (-12.3°)
	010		156 (-15.1°)
7680 Hz	011	Disabled	415 (-8.4°)
	100		102 (-20.8°)
	101		58 (-33.6°)
	110 ⁽¹⁾		28.9 (-40.0°)
	111(1)		14.4 (-59.6°)

^{1.} For ODR \geq 3840 Hz the cases LPF1_G_BW_[2:0] = 11x should be avoided due to low LPF1 roll-off at higher frequency.

If the gyroscope is configured in low-power mode, the gyroscope filtering chain presented above is bypassed. The bandwidth in low-power mode is indicated in the following table.

Table 16. Gyroscope low-power mode bandwidth

Gyroscope ODR [Hz]	Bandwidth [Hz]
7.5	2.3
15	4.6
30	9.1
60	18
120	36
240	71

AN6120 - Rev 1 page 23/102

3.9 Gyroscope turn-on/off time

Turn-on/off time has to be considered also for the gyroscope sensor when switching its modes or when the gyroscope ODR is changed.

The maximum overall turn-on/off time in order to switch gyroscope power modes or gyroscope ODR is the one shown in Table 17. Gyroscope turn-on/off time.

Note:

The gyroscope ODR timing is not impacted by power mode changes (the new configuration is active after the completion of the current period).

Table 17. Gyroscope turn-on/off time

Starting mode	Target mode	Max turn-on/off time ⁽¹⁾
Power-down	Sleep	70 ms
Power-down	Low-power mode	70 ms + discard 1 sample
Power-down	High-performance mode	70 ms + Table 18 + Table 19 ⁽²⁾
Sleep	Low-power mode	Discard 1 sample
Sleep	High-performance mode	Table 18 + Table 19 ⁽²⁾
Low-power mode	High-performance mode	Table 18 + Table 19 ⁽²⁾
Low-power mode	Low-power mode (ODR change)	Discard 1 sample
High-performance mode	Low-power mode	Discard 1 sample
High-performance mode	High-performance mode (ODR change)	Discard 2 samples
Low-power / high-performance mode	Power-down	2.8 ms

^{1.} Settling time @ 99% of the final value

Table 18. Gyroscope samples to be discarded (LPF1 disabled)

Gyroscope ODR [Hz]	Number of samples to be discarded ⁽¹⁾ (high-performance mode)
7.5 Hz	2
15 Hz	2
30 Hz	2
60 Hz	2
120 Hz	2
240 Hz	3
480 Hz	4
960 Hz	6
1920 Hz	9
3840 Hz	17
7680 Hz	31

^{1.} Settling time @ 99% of the final value

AN6120 - Rev 1 page 24/102

^{2.} Only when LPF1 is enabled

Table 19. Gyroscope chain settling time (LPF1 enabled)

LPF1_G_BW_[2:0]	Maximum settling time @ each ODR [ms] ⁽¹⁾
000	3.7
001	5.0
010	6.9
011	2.4
100	10.7
101	18.3
110	25.9
111	51.8

^{1.} Settling time @ 99% of the final value

AN6120 - Rev 1 page 25/102

4 Reading accelerometer and gyroscope output data

4.1 Startup sequence

Once the device is powered up, it automatically downloads the calibration coefficients from the embedded flash to the internal registers. When the boot procedure is completed, that is, after approximately 10 ms, the accelerometer and gyroscope automatically enter power-down mode.

To turn on the accelerometer and gather acceleration data through the primary I²C / MIPI I3C[®] / SPI interface, it is necessary to select one of the operating modes through the CTRL1 register.

The following general-purpose sequence can be used to configure the accelerometer:

```
    Write INT1_CTRL = 01h  // Accelerometer data-ready interrupt on INT1
    Write CTRL1 = 08h  // ODR_XL = 480 Hz (high-performance mode)
```

To turn on the gyroscope and gather angular rate data through the primary I^2C / MIPI $I3C^{\$}$ / SPI interface, it is necessary to select one of the operating modes through the CTRL2 register.

The following general-purpose sequence can be used to configure the gyroscope:

```
    Write INT1_CTRL = 02h
    Write CTRL2 = 08h
    Gyroscope data-ready interrupt on INT1
    Write CTRL2 = 08h
    ODR_G = 480 Hz (high-performance mode)
```

After the accelerometer and / or gyroscope sensors have been turned on, it is possible to activate the analog hub / vAFE chain as described in Section 3.1: Biosensor functionality.

4.2 Using the status register

The device is provided with a STATUS_REG register which can be polled to check when a new set of data is available. The XLDA bit is set to 1 when a new set of data is available in the accelerometer output registers. The GDA bit is set to 1 when a new set of data is available in the gyroscope output registers.

For the accelerometer (the gyroscope is similar), the read of the output registers can be performed as follows:

- 1. Read STATUS_REG.
- 2. If XLDA = 0, then go to 1.
- 3. Read OUTX_L_A.
- 4. Read OUTX H A.
- Read OUTY_L_A.
- Read OUTY_H_A.
- 7. Read OUTZ_L_A.
- 8. Read OUTZ_H_A.
- 9. Data processing

10. Go to 1.

AN6120 - Rev 1 page 26/102

4.3 Using the data-ready signal

The device can be configured to have a hardware signal to determine when a new set of measurement data is available to be read.

For the accelerometer sensor, the data-ready signal is represented by the XLDA bit of the STATUS_REG register. The signal can be driven to the INT1 pin by setting the INT1_DRDY_XL bit of the INT1_CTRL register to 1 and to the INT2 pin by setting the INT2_DRDY_XL bit of the INT2_CTRL register to 1.

For the gyroscope sensor, the data-ready signal is represented by the GDA bit of the STATUS_REG register. The signal can be driven to the INT1 pin by setting the INT1_DRDY_G bit of the INT1_CTRL register to 1 and to the INT2 pin by setting the INT2_DRDY_G bit of the INT2_CTRL register to 1.

The data-ready signal rises to 1 when a new set of data has been generated and it is available to be read. The data-ready signal can be either latched or pulsed. If the DRDY_PULSED bit of the CTRL4 register is set to 0 (default value), then the data-ready signal is latched and the interrupt is reset when the higher byte of one axis is read (29h, 2Bh, 2Dh registers for the accelerometer; 23h, 25h, 27h registers for the gyroscope). If the DRDY_PULSED bit of the CTRL4 register is set to 1, then the data-ready is pulsed and the duration of the pulse observed on the interrupt pin is 65 µs. Pulsed mode is not applied to the XLDA and GDA bits, which are always latched.

DATA Sample #(N)

Sample #(N+1)

DRDY

DATA READ

Figure 8. Data-ready signal

4.3.1 DRDY mask functionality

Setting the DRDY_MASK bit of the CTRL4 register to 1, the accelerometer and gyroscope data-ready signals are masked until the settling of the sensor filters is completed.

When FIFO is active and the DRDY_MASK bit is set to 1, accelerometer/gyroscope invalid samples stored in FIFO can be equal to 7FFFh, 7FFEh or 7FFDh. In this way, a tag is applied to the invalid samples stored in the FIFO buffer so that they can be easily identified and discarded during data post-processing.

Referring to the accelerometer, the DRDY mask functionality operates on all the power modes, full scales, and ODRs, considering also runtime changes. It covers the HP or LPF2 filter configuration up to ODR / 20 and it can be combined with the XL_FASTSETTL_MODE bit of the CTRL9 register for managing all the other filter configurations. If both the DRDY_MASK and the XL_FASTSETTL_MODE bits are set to 1, all the data-ready signals are masked until the internal filters are settled.

Referring to the gyroscope, the DRDY mask functionality operates on all the power modes, full scales, and ODRs, considering also runtime changes.

Note:

If the DRDY mask functionality is enabled, in order to guarantee the proper masking of the accelerometer sensor data-ready signal until the settling of the accelerometer filtering chain is completed, the following procedure must be implemented when the accelerometer ODR is intended to be changed and the target operating mode is high-performance mode:

- 1. Set the ODR_XL_[3:0] bits in the CTRL1 register to 0000 (power-down mode).
- 2. Wait 300 μs.
- 3. Set the ODR_XL_[3:0] bits in the CTRL1 register to the desired value.

This procedure is not necessary if the accelerometer target operating mode is low-power mode.

AN6120 - Rev 1 page 27/102

4.4 Using the block data update (BDU) feature

If reading the accelerometer/gyroscope data is not synchronized with either the XLDA/GDA bits in the STATUS_REG register or with the data-ready signal driven to the INT1/INT2 pins, it is strongly recommended to set the BDU (block data update) bit to 1 in the CTRL3 register.

This feature avoids reading values (most significant and least significant bytes of the output data) related to different samples. In particular, when the BDU is activated, the data registers related to each axis always contain the most recent output data produced by the device, but, in case the read of a given pair (that is, OUTX_H_A(G) and OUTX_L_A(G), OUTY_H_A(G) and OUTY_L_A(G), OUTZ_H_A(G) and OUTZ_L_A(G)) is initiated, the refresh for that pair is blocked until both the MSB and LSB of the data are read.

Note:

BDU only guarantees that the LSB and MSB have been sampled at the same moment. For example, if the reading speed is too slow, X and Y can be read at T1 and Z sampled at T2.

The BDU feature also acts on the FIFO_STATUS1 and FIFO_STATUS2 registers. When the BDU bit is set to 1, it is mandatory to read FIFO_STATUS1 first and then FIFO_STATUS2.

4.5 Understanding output data

The measured acceleration data are sent to the OUTX_H_A, OUTX_L_A, OUTY_H_A, OUTY_L_A, OUTZ_H_A, and OUTZ_L_A registers. These registers contain, respectively, the most significant byte and the least significant byte of the acceleration signals acting on the X, Y, and Z axes.

The measured angular rate data are sent to the OUTX_H_G, OUTX_L_G, OUTY_H_G, OUTY_L_G, OUTZ_H_G, and OUTZ_L_G registers. These registers contain, respectively, the most significant byte and the least significant byte of the angular rate signals acting on the X, Y, and Z axes.

The complete output data for the X, Y, Z channels is given by the concatenation OUTX_H_A(G) & OUTX_L_A(G), OUTY_H_A(G) & OUTY_L_A(G), OUTZ_H_A(G) & OUTZ_L_A(G) and it is expressed as a two's complement number.

Both acceleration data and angular rate data are represented as 16-bit numbers. In order to translate them to their corresponding physical representation, a sensitivity parameter must be applied. This sensitivity value depends on the selected full-scale range (refer to the datasheet). In detail:

- Each acceleration sample must be multiplied by the proper sensitivity parameter LA_So (linear acceleration sensitivity expressed in mg/LSB) in order to obtain the corresponding value in mg.
- Each angular rate sample must be multiplied by the proper sensitivity parameter G_So (angular rate sensitivity expressed in mdps/LSB) in order to obtain the corresponding value in mdps.

4.5.1 Examples of output data

Table 20. Content of output data registers vs. acceleration (FS_XL = $\pm 2~g$) provides a few basic examples of the accelerometer data that is read in the data registers when the device is subjected to a given acceleration.

Table 21. Content of output data registers vs. angular rate ($FS_G = \pm 250 \text{ dps}$) provides a few basic examples of the gyroscope data that is read in the data registers when the device is subjected to a given angular rate.

The values listed in the following tables are given under the hypothesis of perfect device calibration (that is, no offset, no gain error, and so on).

Table 20. Content of output data registers vs. acceleration (FS_XL = $\pm 2 g$)

Acceleration values	Register address		
Acceleration values	OUTX_H_A (2Dh)	OUTX_L_A (2Ch)	
0 <i>g</i>	00h	00h	
350 mg	16h	69h	
1 g	40h	09h	
-350 mg	E9h	97h	
-1 <i>g</i>	BFh	F7h	

AN6120 - Rev 1 page 28/102

Table 21. Content of output data registers vs	. angular rate (FS_G = ±250 dps)
---	-----------------------------------

Angular rate values	Register address			
Allyulai Tate Values	OUTX_H_G (23h)	OUTX_L_G (22h)		
0 dps	00h	00h		
100 dps	2Ch	A4h		
200 dps	59h	49h		
-100 dps	D3h	5Ch		
-200 dps	A6h	B7h		

4.6 Accelerometer offset registers

The device provides accelerometer offset registers (X_OFS_USR, Y_OFS_USR, Z_OFS_USR) which can be used for zero-*g* offset correction or, in general, to apply an offset to the accelerometer output data.

The accelerometer offset block can be enabled by setting the USR_OFF_ON_OUT bit of the CTRL9 register. The offset value set in the offset registers is internally subtracted from the measured acceleration value for the respective axis. Internally processed data are then sent to the accelerometer output register and to the FIFO (if enabled). These register values are expressed as an 8-bit word in two's complement and must be in the range [-127, 127].

The weight [g/LSB] to be applied to the offset register values is independent of the accelerometer selected full scale and can be configured using the USR_OFF_W bit of the CTRL9 register:

- 2⁻¹⁰ g/LSB if the USR_OFF_W bit is set to 0
- 2⁻⁶ g/LSB if the USR OFF W bit is set to 1

AN6120 - Rev 1 page 29/102

5 Interrupt generation

Interrupt generation is based on accelerometer data only, so, for interrupt-generation purposes, the accelerometer sensor has to be set in an active operating mode (not in power-down). The gyroscope sensor can be configured in power-down mode since it is not involved in interrupt generation.

The interrupt generator can be configured to detect:

- Free-fall
- Wake-up
- 6D orientation detection
- Single-tap and double-tap sensing
- Activity/inactivity and motion/stationary recognition

The device can also efficiently run the sensor-related features specified in Android, saving power and enabling faster reaction time. The following functions are implemented in the hardware:

- Significant motion
- Relative tilt
- Pedometer functions
- Timestamp
- Sensor fusion functions (game rotation vector, gravity vector, gyroscope bias)

Moreover, the device can be configured to generate interrupt signals activated by user-defined motion patterns. To do this, up to 8 embedded finite state machines can be programmed independently for motion detection or gesture recognition such as glance, absolute wrist tilt, shake, double-shake, or pick-up. Furthermore, up to four decision trees can simultaneously and independently run inside the machine learning core logic.

The embedded finite state machine and the machine learning core features offer very high customization capabilities starting from scratch or importing activity/gesture recognition programs directly provided by STMicroelectronics. Refer to the finite state machine application note and the machine learning core application note available on www.st.com.

All these interrupt signals, together with the FIFO interrupt signals, can be independently driven to the INT1 and INT2 interrupt pins or checked by reading the dedicated source register bits.

When the MIPI I3C[®] interface is used, information about the feature triggering the interrupt event is contained in the in-band interrupt (IBI) frame as described in the datasheet (default behavior). As an additional feature, by setting the INT_EN_I3C bit of the CTRL5 register to 1, the interrupt pins are activated even if using the MIPI I3C[®] interface.

The H_LACTIVE bit of the IF_CFG register must be used to select the polarity of the interrupt pins. If this bit is set to 0 (default value), the interrupt pins are active high and they change from low to high level when the related interrupt condition is verified. Otherwise, if the H_LACTIVE bit is set to 1 (active low), the interrupt pins are normally at high level and they change from high to low when the interrupt condition is reached.

The PP_OD bit of the IF_CFG register allows changing the behavior of the interrupt pins from push-pull to open drain. If the PP_OD bit is set to 0, the interrupt pins are in push-pull configuration (low-impedance output for both high and low level). When the PP_OD bit is set to 1, only the interrupt active state is a low-impedance output.

AN6120 - Rev 1 page 30/102

5.1 Interrupt pin configuration

The device is provided with two pins that can be activated to generate either data-ready or interrupt signals. The functionality of these pins is selected through the MD1_CFG and INT1_CTRL registers for the INT1 pin, and through the MD2_CFG and INT2_CTRL registers for the INT2 pin.

A brief description of these interrupt control registers is given in the following summary. The default value of their bits is equal to 0, which corresponds to 'disable'. In order to enable routing a specific interrupt signal to the pin, the related bit has to be set to 1.

Table 22. INT1_CTRL register

b7	b6	b5	b4	b3	b2	b1	b0
0	INT1_ CNT_BDR	INT1_ FIFO_FULL	INT1_ FIFO_OVR	INT1_ FIFO_TH	0	INT1_ DRDY_G	INT1_ DRDY_XL

- INT1 CNT BDR: FIFO COUNTER BDR IA interrupt on INT1
- INT1_FIFO_FULL: FIFO full flag interrupt on INT1
- INT1_FIFO_OVR: FIFO overrun flag interrupt on INT1
- INT1 FIFO TH: FIFO threshold interrupt on INT1
- INT1 DRDY G: gyroscope data-ready on INT1
- INT1_DRDY_XL: accelerometer data-ready on INT1

Table 23. MD1_CFG register

b7	b6	b5	b4	b3	b2	b1	b0
INT1_SLEEP _CHANGE	INT1_ SINGLE_TAP	INT1_WU	INT1_FF	INT1_ DOUBLE_TAP	INT1_6D	INT1_ EMB_FUNC	0

- INT1 SLEEP CHANGE: activity/inactivity recognition event interrupt on INT1
- INT1_SINGLE_TAP: single-tap interrupt on INT1
- INT1_WU: wake-up interrupt on INT1
- INT1_FF: free-fall interrupt on INT1
- INT1_DOUBLE_TAP: double-tap interrupt on INT1
- INT1 6D: 6D detection interrupt on INT1
- INT1_EMB_FUNC: embedded functions interrupt on INT1 (refer to Section 6: Embedded functions for more details)

Table 24. INT2_CTRL register

b 7	b6	b5	b4	b3	b2	b1	b0
INT2_EMB_ FUNC_ENDOP	INT2_ CNT_BDR	INT2_ FIFO_FULL	INT2_ FIFO_OVR	INT2_ FIFO_TH	0	INT2_ DRDY_G	INT2_ DRDY_XL

- INT2_EMB_FUNC_ENDOP: embedded functions end of operations interrupt on INT2. This pin is intended
 to be used for debugging purposes. For this reason, it is not recommended to enable it if other interrupt
 signals are intended to be routed to the INT2 pin. When it is enabled, the INT2 pin is set to high level if no
 embedded function is running, otherwise, it is set to low level if any embedded function is running. For this
 reason, it can be used to measure the execution time of the embedded functions.
- INT2 CNT BDR: FIFO COUNTER BDR IA interrupt on INT2
- INT2_FIFO_FULL: FIFO full flag interrupt on INT2
- INT2_FIFO_OVR: FIFO overrun flag interrupt on INT2
- INT2_FIFO_TH: FIFO threshold interrupt on INT2
- INT2_DRDY_G: gyroscope data-ready on INT2
- INT2 DRDY XL: accelerometer data-ready on INT2

AN6120 - Rev 1 page 31/102

The INT2_DRDY_TEMP bit of the CTRL4 register enables the temperature data-ready interrupt on the INT2 pin. The INT2_DRDY_AH_BIO bit of the CTRL7 register enables the analog hub / vAFE data-ready interrupt on the INT2 pin.

Table 25. MD2_CFG register

b7	b6	b5	b4	b3	b2	b1	b0
INT2_SLEEP _CHANGE	INT2_ SINGLE_TAP	INT2_WU	INT2_FF	INT2_ DOUBLE_TAP	INT2_6D	INT2_ EMB_FUNC	INT2_ TIMESTAMP

- INT2 SLEEP CHANGE: activity/inactivity recognition event interrupt on INT2
- INT2_SINGLE_TAP: single-tap interrupt on INT2
- INT2_WU: wake-up interrupt on INT2
- INT2 FF: free-fall interrupt on INT2
- INT2_DOUBLE_TAP: double-tap interrupt on INT2
- INT2_6D: 6D detection interrupt on INT2
- INT2_EMB_FUNC: embedded functions interrupt on INT2 (refer to Section 6: Embedded functions for more details)
- INT2 TIMESTAMP: timestamp overflow alert interrupt on INT2

If multiple interrupt signals are routed to the same interrupt pin, the logic level of this pin is the "OR" combination of the selected interrupt signals. In order to know which event has generated the interrupt condition, the related source registers have to be read:

- WAKE_UP_SRC, TAP_SRC, D6D_SRC (basic interrupt functions)
- STATUS REG (for data-ready signals)
- EMB FUNC STATUS MAINPAGE / EMB FUNC STATUS (for embedded functions)
- FSM STATUS MAINPAGE / FSM STATUS (for finite state machine)
- MLC_STATUS_MAINPAGE / MLC_STATUS (for machine learning core)
- FIFO_STATUS2 (for FIFO)

The ALL_INT_SRC register groups the basic interrupt functions event status (6D, free-fall, wake-up, tap, activity/inactivity) and the embedded functions interrupt status in a single register. It is possible to read this register in order to address a subsequent specific source register read.

The INT2_on_INT1 pin of the CTRL4 register allows driving some specific interrupt signals in logic "OR" on the INT1 pin (by setting this bit to 1). When this bit is set to 0, the interrupt signals are divided between the INT1 and INT2 pins. When this bit is set to 1, the movable interrupts are INT2_EMB_FUNC_ENDOP (enabled through the INT2_CTRL register), INT2_TIMESTAMP (enabled through the MD2_CFG register), INT2_DRDY_TEMP (enabled through the CTRL4 register), and INT2_DRDY_AH_BIO (enabled through the CTRL7 register).

The basic interrupts have to be enabled by setting the INTERRUPTS_ENABLE bit in the FUNCTIONS_ENABLE register.

The LIR bit of the TAP_CFG0 register enables the latched interrupt for the basic interrupt functions: when this bit is set to 1 and the interrupt flag is sent to the INT1 pin and/or INT2 pin, the interrupt remains active until the ALL_INT_SRC register or the corresponding source register is read. The latched interrupt is enabled on a function only if a function is routed to the INT1 or INT2 pin: if latched mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect. The DIS_RST_LIR_ALL_INT bit of the FUNCTIONS_ENABLE register can be set to 1 in order to avoid resetting the latched interrupt signals by reading the ALL_INT_SRC register. This feature is useful in order to not reset some status flags before reading the corresponding status register.

AN6120 - Rev 1 page 32/102

5.2 Free-fall interrupt

Free-fall detection refers to a specific register configuration that allows recognizing when the device is in free-fall: the acceleration measured along all the axes goes to zero. In a real case a "free-fall zone" is defined around the zero-*g* level where all the accelerations are small enough to generate the interrupt. Configurable threshold and duration parameters are associated to free-fall event detection. The threshold parameter defines the free-fall zone amplitude; the duration parameter defines the minimum duration of the free-fall interrupt event to be recognized (Figure 9).

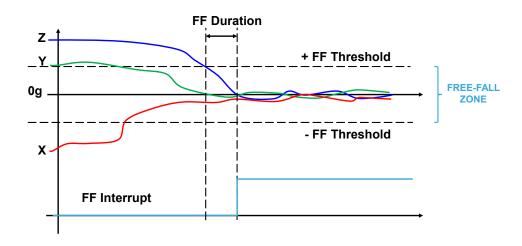


Figure 9. Free-fall interrupt

The free-fall interrupt signal can be enabled by setting the INTERRUPTS_ENABLE bit in the FUNCTIONS_ENABLE register to 1 and can be driven to the two interrupt pins by setting the INT1_FF bit of the MD1_CFG register to 1 or the INT2_FF bit of the MD2_CFG register to 1. It can also be checked by reading the FF_IA bit of the WAKE_UP_SRC or ALL_INT_SRC register.

If latched mode is disabled (LIR bit of TAP_CFG0 is set to 0), the interrupt signal is automatically reset when the free-fall condition is no longer verified. If latched mode is enabled and the free-fall interrupt signal is driven to the interrupt pins, once a free-fall event has occurred and the interrupt pin is asserted, it must be reset by reading the WAKE_UP_SRC or ALL_INT_SRC register. If latched mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

The FREE_FALL register is used to configure the threshold parameter. The unsigned threshold value is related to the value of the FF_THS_[2:0] field value as indicated in Table 26. Free-fall threshold LSB value. The values given in this table are valid for each accelerometer full-scale value.

FREE_FALL - FF_THS_[2:0]	Threshold LSB value [mg]
000	156
001	219
010	250
011	312
100	344
101	406
110	469
111	500

Table 26. Free-fall threshold LSB value

Duration time is measured in N/ODR_XL, where N is the content of the FF_DUR_[5:0] field of the FREE_FALL / WAKE_UP_DUR registers and ODR_XL is the accelerometer data rate.

AN6120 - Rev 1 page 33/102

A basic software routine for free-fall event recognition is given below.

1.	Write 08h to CTRL1	// Turn on the accelerometer (ODR = 480 Hz)
2.	Write 01h to TAP_CFG0	// Enable latched mode
3.	Write 80h to FUNCTIONS_ENABLE	// Enable interrupt functions
4.	Write 00h to WAKE_UP_DUR	// Set event duration (FF_DUR_5 bit)
5.	Write 33h to FREE_FALL	// Set FF threshold (FF_THS_[2:0] = 011)
		// Set six samples event duration (FF_DUR_[5:0] = 000110)
6.	Write 10h to MD1_CFG	// FF interrupt driven to INT1 pin

The sample code sets the threshold to 312 mg for free-fall recognition and the event is notified by hardware through the INT1 pin. The FF_DUR_[5:0] field of the FREE_FALL / WAKE_UP_DUR registers is configured to ignore events that are shorter than 6/ODR XL = 6/480 Hz \sim = 12.5 msec in order to avoid false detections.

5.3 Wake-up interrupt

The wake-up feature can be implemented using either the slope filter (see Section 3.5.1: Accelerometer slope filter for more details) or the high-pass digital filter, as illustrated in Figure 4. Accelerometer composite filter. The filter to be applied can be selected using the SLOPE_FDS bit of the TAP_CFG0 register. If this bit is set to 0 (default value), the slope filter is used; if it is set to 1, the HPF digital filter is used. Moreover, it is possible to configure the wake-up feature as an absolute wake-up with respect to a programmable position. This can be done by setting both the SLOPE_FDS bit of the TAP_CFG0 register and the USR_OFF_ON_WU bit of the WAKE_UP_THS register to 1. Using this configuration, the input data for the wake-up function comes from the low-pass filter path and the programmable position is subtracted as an offset. The programmable position can be configured through the X_OFS_USR, Y_OFS_USR and Z_OFS_USR registers (refer to Section 4.6: Accelerometer offset registers for more details).

The wake-up interrupt signal is generated if a certain number of consecutive filtered data exceed the configured threshold (Figure 10. Wake-up interrupt (using the slope filter)).

The unsigned threshold value is defined using the WK_THS_[5:0] bits of the WAKE_UP_THS register. The value of 1 LSB of these 6 bits depends on the value of the WU_INACT_THS_W_[2:0] bits of the INACTIVITY_DUR register as shown in the table below.

WU_INACT_THS_W_[2:0]	1 LSB resolution
000	7.8125 mg
001	15.625 mg
010	31.25 mg
011	62.5 mg
100	125 mg
101	250 mg
110	250 mg
111	250 mg

Table 27. Wake-up threshold resolution

The threshold is applied to both positive and negative data: for wake-up interrupt generation, the absolute value of the filtered data must be bigger than the threshold.

The duration parameter defines the minimum duration of the wake-up event to be recognized. Its value is set using the WAKE_DUR_[1:0] bits of the WAKE_UP_DUR register: 1 LSB corresponds to 1/ODR_XL time, where ODR_XL is the accelerometer output data rate. It is important to appropriately define the duration parameter to avoid unwanted wake-up interrupts due to spurious spikes of the input signal.

AN6120 - Rev 1 page 34/102

This interrupt signal can be enabled by setting the INTERRUPTS_ENABLE bit in the FUNCTIONS_ENABLE register to 1 and can be driven to the two interrupt pins by setting the INT1_WU bit of the MD1_CFG register or the INT2_WU bit of the MD2_CFG register to 1. It can also be checked by reading the WU_IA bit of the WAKE_UP_SRC or ALL_INT_SRC register. The X_WU, Y_WU, Z_WU bits of the WAKE_UP_SRC register indicate which axes have triggered the wake-up event.

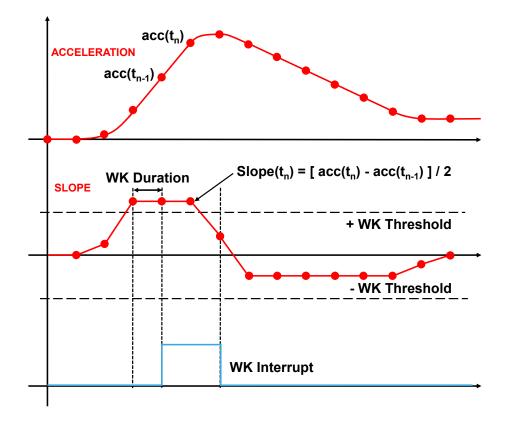


Figure 10. Wake-up interrupt (using the slope filter)

If latched mode is disabled (LIR bit of TAP_CFG0 is set to 0), the interrupt signal is automatically reset when the filtered data falls below the threshold. If latched mode is enabled and the wake-up interrupt signal is driven to the interrupt pins, once a wake-up event has occurred and the interrupt pin is asserted, it must be reset by reading the WAKE_UP_SRC register or the ALL_INT_SRC register. The X_WU, Y_WU, Z_WU bits are maintained at the state in which the interrupt was generated until the read is performed. In case the WU_X, WU_Y, WU_Z bits have to be evaluated (in addition to the WU_IA bit), it is recommended to directly read the WAKE_UP_SRC register (do not use ALL_INT_SRC register for this specific case). If latched mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

A basic software routine for wake-up event recognition using the high-pass digital filter is given below.

Write 34h to INACTIVITY_DUR

2. Write 11h to TAP_CFG0

3. Write 01h to WAKE_UP_THS

4. Write 00h to WAKE_UP_DUR

5. Write 20h to MD1_CFG

6. Write 80h to FUNCTIONS_ENABLE

7. Write 08h to CTRL1

// Set wake-up threshold resolution to 62.5 mg

// Select HPF path and enable latched mode

// Set wake-up threshold

// Set duration to 0

// Wake-up interrupt driven to INT1 pin

// Enable interrupt functions

// Turn on the accelerometer (ODR = 480 Hz)

AN6120 - Rev 1 page 35/102

8. Write 08h to CTRL1

Since the duration time is set to zero, the wake-up interrupt signal is generated for each X, Y, Z filtered data exceeding the configured threshold. The WK_THS field of the WAKE_UP_THS register is set to 000001 and the resolution of 1 LSB is set to 62.5 mg (WU_INACT_THS_W_[2:0] bits of INACTIVITY_DUR register are set to 011), therefore the wake-up threshold is 62.5 mg.

Since the wake-up functionality is implemented using the slope/high-pass digital filter, it is necessary to consider the settling time of the filter just after this functionality is enabled. For example, when using the slope filter (but a similar consideration can be done for the high-pass digital filter usage) the wake-up functionality is based on the comparison of the threshold value with half of the difference of the acceleration of the current (X, Y, Z) sample and the previous one (refer to Section 3.5.1: Accelerometer slope filter).

At the very first sample, the slope filter output is calculated as half of the difference of the current sample, for example (X, Y, Z) = (0, 0, 1) g, with the previous one, which is (X, Y, Z) = (0, 0, 0) g since no sample has been generated yet. For this reason, on the Z-axis the first output value of the slope filter is (1 - 0) / 2 = 0.5 g = 500 mg and it could be higher than the threshold value in which case a spurious interrupt event is generated. The interrupt signal is kept high for 1 ODR then it goes low.

In order to avoid the spurious interrupt generation due to the settling of the digital slope / high-pass filter, it is possible to mask the execution trigger of the basic interrupt functions during the digital filter settling by configuring to 1 both the XL_FASTSETTL_MODE bit of the CTRL9 register and the HW_FUNC_MASK_XL_SETTL of the TAP_CFG0 register.

The wake-up configuration procedure described above can be easily modified as follows:

Write 20h to CTRL9 // Set XL_FASTSETTL_MODE = 1
 Write 34h to INACTIVITY_DUR // Set wake-up threshold resolution to 62.5 mg
 Write 31h to TAP_CFG0 // Set HW_FUNC_MASK_XL_SETTL = 1, select HPF path and enable latched mode
 Write 01h to WAKE_UP_THS // Set wake-up threshold
 Write 00h to WAKE_UP_DUR // Set duration to 0
 Write 20h to MD1_CFG // Wake-up interrupt driven to INT1 pin
 Write 80h to FUNCTIONS_ENABLE // Enable interrupt functions

// Turn on the accelerometer (ODR = 480 Hz)

AN6120 - Rev 1 page 36/102

5.4 6D orientation detection

The accelerometer provides the capability to detect the orientation of the device in space, enabling easy implementation of energy-saving procedures and automatic screen rotation for mobile devices.

Six orientations of the device in space can be detected. The interrupt signal is asserted when the device switches from one orientation to another. The interrupt is not reasserted as long as the position is maintained.

6D interrupt is generated when, for two consecutive samples, only one axis exceeds a selected threshold and the acceleration values measured from the other two axes are lower than the threshold: the XH, XL, YH, YL, ZH, ZL bits of the D6D SRC register indicate which axis has triggered the 6D event.

In more detail:

Table 28. D6D_SRC register

b7	b6	b5	b4	b3	b2	b1	b0
0	D6D_IA	XH	XL	YH	YL	ZH	ZL

- D6D IA is set high when the device switches from one orientation to another.
- ZH (YH, XH) is set high when the face perpendicular to the Z (Y, X) axis is almost flat and the acceleration measured on the Z (Y, X) axis is positive and in the absolute value bigger than the threshold.
- ZL (YL, XL) is set high when the face perpendicular to the Z (Y, X) axis is almost flat and the acceleration measured on the Z (Y, X) axis is negative and in the absolute value bigger than the threshold.

The SIXD_THS_[1:0] bits of the TAP_THS_6D register are used to select the threshold value used to detect the change in device orientation. The threshold values given in the following table are valid for each accelerometer full-scale value.

 SIXD_THS_[1:0]
 Threshold value [degrees]

 00
 80

 01
 70

 10
 60

 11
 50

Table 29. Threshold for 6D function

The low-pass filter LPF2 can also be used in 6D functionality by setting the LOW_PASS_ON_6D bit of the TAP_CFG0 register to 1.

This interrupt signal can be enabled by setting the INTERRUPTS_ENABLE bit in the FUNCTIONS_ENABLE register to 1 and can be driven to the two interrupt pins by setting the INT1_6D bit of the MD1_CFG register or the INT2_6D bit of the MD2_CFG register to 1. It can also be checked by reading the D6D_IA bit of the D6D_SRC or ALL_INT_SRC register.

If latched mode is disabled (LIR bit of TAP_CFG is set to 0), the interrupt signal is active only for 1/ODR_XL then it is automatically disserted (ODR_XL is the accelerometer output data rate). If latched mode is enabled and the 6D interrupt signal is driven to the interrupt pins, once an orientation change has occurred and the interrupt pin is asserted, a read of the D6D_SRC or ALL_INT_SRC register clears the request and the device is ready to recognize a different orientation. The XL, XH, YL, YH, ZL, ZH bits are not affected by the LIR configuration. They correspond to the current state of the device when the D6D_SRC register is read. If latched mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

Referring to the six possible cases illustrated in Figure 11. 6D recognized orientations, the content of the D6D_SRC register for each position is shown in Table 30. D6D_SRC register in 6D positions.

AN6120 - Rev 1 page 37/102

Figure 11. 6D recognized orientations

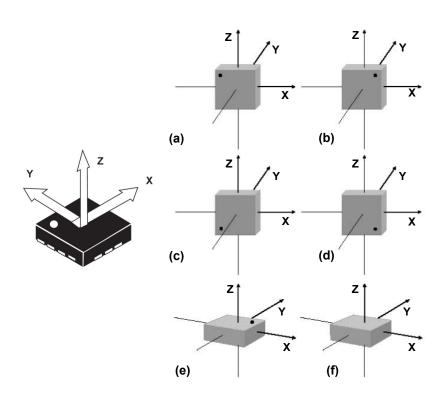


Table 30. D6D_SRC register in 6D positions

Case	D6D_IA	ХН	XL	YH	YL	ZH	ZL
(a)	1	0	0	1	0	0	0
(b)	1	0	1	0	0	0	0
(c)	1	1	0	0	0	0	0
(d)	1	0	0	0	1	0	0
(e)	1	0	0	0	0	1	0
(f)	1	0	0	0	0	0	1

A basic software routine for 6D orientation detection is as follows.

1. Write 41h to TAP_CFG0 // Enable LPF2 filter for 6D functionality and latched mode

2. Write 40h to TAP_THS_6D // Set 6D threshold (SIXD_THS_[1:0] = 10 = 60 degrees)

3. Write 04h to MD1_CFG // 6D interrupt driven to INT1 pin

4. Write 80h to FUNCTIONS_ENABLE // Enable interrupt functions

5. Write 08h to CTRL1 // Turn on the accelerometer (ODR = 480 Hz)

AN6120 - Rev 1 page 38/102

5.5 Single-tap and double-tap recognition

The single-tap and double-tap recognition help to create a man-machine interface with little software loading. The device can be configured to output an interrupt signal on a dedicated pin when tapped in any direction.

If the sensor is exposed to a single input stimulus, it generates an interrupt signal on the interrupt pin INT1 and/or INT2. A more advanced feature allows the generation of an interrupt signal when a double input stimulus with programmable time between the two events is recognized, enabling a mouse button-like function.

The single-tap and double-tap recognition functions use the slope between two consecutive acceleration samples to detect the tap events. The slope data is calculated using the following formula:

$$slope(t_n) = [acc(t_n) - acc(t_{n-1})] / 2$$

This function can be fully programmed by the user in terms of the expected amplitude and timing of the slope data by means of a dedicated set of registers.

Single and double-tap recognition work based on the selected output data rate. The recommended minimum accelerometer ODR for these functions is 480 Hz.

In order to enable the single-tap and double-tap recognition functions, it is necessary to set the INTERRUPTS ENABLE bit in the FUNCTIONS ENABLE register to 1.

AN6120 - Rev 1 page 39/102

5.5.1 Single tap

If the device is configured for single-tap event detection, an interrupt is generated when the slope data of the selected axis exceeds the programmed threshold, and returns below it within the shock time window.

In the single-tap case, if the LIR bit of the TAP_CFG0 register is set to 0, the interrupt is kept active for the duration of the quiet window. If the LIR bit is set to 1, the interrupt is kept active until the TAP_SRC or ALL_INT_SRC register is read.

The SINGLE_DOUBLE_TAP bit of WAKE_UP_THS has to be set to 0 in order to enable single-tap recognition only.

In case (a) of Figure 12. Single-tap event recognition the single-tap event has been recognized, while in case (b) the tap has not been recognized because the slope data falls below the threshold after the shock time window has expired.

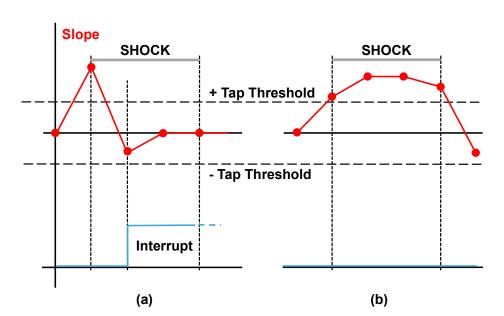


Figure 12. Single-tap event recognition

AN6120 - Rev 1 page 40/102

5.5.2 Double tap

If the device is configured for double-tap event detection, an interrupt is generated when, after a first tap, a second tap is recognized. The recognition of the second tap occurs only if the event satisfies the rules defined by the shock, the quiet and the duration time windows.

In particular, after the first tap has been recognized, the second tap detection procedure is delayed for an interval defined by the quiet time. This means that after the first tap has been recognized, the second tap detection procedure starts only if the slope data exceeds the threshold after the quiet window but before the duration window has expired. In case (a) of Figure 13, a double-tap event has been correctly recognized, while in case (b) the interrupt has not been generated because the slope data exceeds the threshold after the window interval has expired.

Once the second tap detection procedure is initiated, the second tap is recognized with the same rule as the first: the slope data must return below the threshold before the shock window has expired.

It is important to appropriately define the quiet window to avoid unwanted taps due to spurious bouncing of the input signal.

In the double-tap case, if the LIR bit of the TAP_CFG0 register is set to 0, the interrupt is kept active for the duration of the quiet window. If the LIR bit is set to 1, the interrupt is kept active until the TAP_SRC or ALL_INT_SRC register is read.

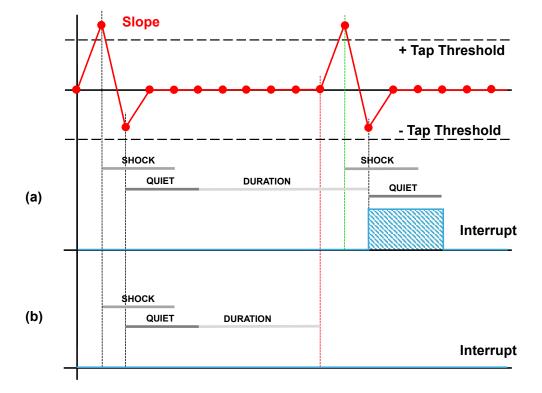


Figure 13. Double-tap event recognition (LIR bit = 0)

AN6120 - Rev 1 page 41/102

5.5.3 Single-tap and double-tap recognition configuration

The device can be configured to output an interrupt signal when tapped (once or twice) in any direction: the TAP_X_EN, TAP_Y_EN and TAP_Z_EN bits of the TAP_CFG0 register must be set to 1 to enable the tap recognition on the X, Y, Z directions, respectively. In addition, the INTERRUPTS_ENABLE bit of the FUNCTIONS ENABLE register has to be set to 1.

Configurable parameters for tap recognition functionality are the tap thresholds (each axis has a dedicated threshold) and the shock, quiet, and duration time windows.

The TAP_THS_Z_[4:0] bits of the TAP_CFG1 register, the TAP_THS_Y_[4:0] bits of the TAP_CFG2 register and the TAP_THS_X_[4:0] bits of the TAP_THS_6D register are used to select the unsigned threshold value used to detect the tap event on the respective axis. The value of 1 LSB of these 5 bits depends on the selected accelerometer full scale: 1 LSB = $FS_XL / 2^5$. The unsigned threshold is applied to both positive and negative slope data.

Both single-tap and double-tap recognition functions apply to only one axis. If more than one axis is enabled and they are over the respective threshold, the algorithm continues to evaluate only the axis with highest priority. The priority can be configured through the TAP_PRIORITY_[2:0] bits of TAP_CFG1. The following table shows all the possible configurations.

TAP_PRIORITY_[2:0]	Maximum priority	Middle priority	Minimum priority
000	Z	Y	X
001	Υ	Z	X
010	Z	X	Y
011	X	Y	Z
100	Z	Y	X
101	Y	X	Z
110	X	Z	Y
111	X	Y	Z

Table 31. TAP_PRIORITY_[2:0] bits configuration

The shock time window defines the maximum duration of the overcoming threshold event: the acceleration must return below the threshold before the shock window has expired, otherwise the tap event is not detected. The SHOCK_[1:0] bits of the TAP_DUR register are used to set the shock time window value: the default value of these bits is 00 and corresponds to 4/ODR_XL time, where ODR_XL is the accelerometer output data rate. If the SHOCK_[1:0] bits are set to a different value, 1 LSB corresponds to 8/ODR_XL time.

In the double-tap case, the quiet time window defines the time after the first tap recognition in which there must not be any overcoming threshold event. When latched mode is disabled (LIR bit of TAP_CFG is set to 0), the quiet time also defines the length of the interrupt pulse (in both single and double-tap case). The QUIET_[1:0] bits of the TAP_DUR register are used to set the quiet time window value: the default value of these bits is 00 and corresponds to 2/ODR_XL time, where ODR_XL is the accelerometer output data rate. If the QUIET_[1:0] bits are set to a different value, 1 LSB corresponds to 4/ODR_XL time.

In the double-tap case, the duration time window defines the maximum time between two consecutive detected taps. The duration time period starts just after the completion of the quiet time of the first tap. The DUR_[3:0] bits of the TAP_DUR register are used to set the duration time window value: the default value of these bits is 0000 and corresponds to 16/ODR_XL time, where ODR_XL is the accelerometer output data rate. If the DUR_[3:0] bits are set to a different value, 1 LSB corresponds to 32/ODR_XL time.

Figure 14. Single and double-tap recognition (LIR bit = 0) illustrates a single-tap event (a) and a double-tap event (b). These interrupt signals can be driven to the two interrupt pins by setting the INT1_SINGLE_TAP bit of the MD1_CFG register or the INT2_SINGLE_TAP bit of the MD2_CFG register to 1 for the single-tap case, and setting the INT1_DOUBLE_TAP bit of the MD1_CFG register or the INT2_DOUBLE_TAP bit of the MD2_CFG register to 1 for the double-tap case.

AN6120 - Rev 1 page 42/102

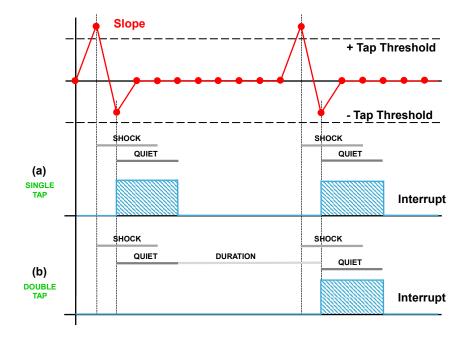


Figure 14. Single and double-tap recognition (LIR bit = 0)

Tap interrupt signals can also be checked by reading the TAP_SRC (1Ch) register, described in the following table.

b7 b6 b5 b4 b1 b0 b3 b2 **SINGLE DOUBLE TAP** TAP_IA 0 Z_TAP Y_TAP X_TAP _TAP _TAP SIGN

Table 32. TAP_SRC register

- TAP IA is set high when a single-tap or double-tap event has been detected.
- SINGLE_TAP is set high when a single tap has been detected.
- DOUBLE TAP is set high when a double tap has been detected.
- TAP_SIGN indicates the acceleration sign when the tap event is detected. It is set low in case of positive sign and it is set high in case of negative sign.
- X_TAP (Y_TAP, Z_TAP) is set high when the tap event has been detected on the X (Y, Z) axis.

Single and double-tap recognition works independently. Setting the SINGLE_DOUBLE_TAP bit of the WAKE_UP_THS register to 0, only the single-tap recognition is enabled: double-tap recognition is disabled and cannot be detected. When the SINGLE_DOUBLE_TAP is set to 1, both single and double-tap recognition are enabled.

If latched mode is enabled and the interrupt signal is driven to the interrupt pins, the value assigned to SINGLE_DOUBLE_TAP also affects the behavior of the interrupt signal. When it is set to 0, the latched mode is applied to the single-tap interrupt signal; when it is set to 1, the latched mode is applied to the double-tap interrupt signal only. The latched interrupt signal is kept active until the TAP_SRC or ALL_INT_SRC register is read. The TAP_SIGN, X_TAP, Y_TAP, Z_TAP bits are maintained at the state in which the interrupt was generated until the read is performed. In case the TAP_SIGN, X_TAP, Y_TAP, Z_TAP bits have to be evaluated (in addition to the TAP_IA bit), it is recommended to directly read the TAP_SRC register (do not use ALL_INT_SRC register for this specific case). If latched mode is enabled but the interrupt signal is not driven to the interrupt pins, the latch feature does not take effect.

AN6120 - Rev 1 page 43/102

5.5.4 Single-tap example

A basic software routine for single-tap detection is given below.

Write 08h to TAP_CFG0 1. // Enable tap detection on Z-axis Write 02h to TAP_CFG1 2. // Set Z-axis threshold and axes priority 3 Write 00h to TAP CFG2 // Set Y-axis threshold Write 00h to TAP_THS_6D 4. // Set X-axis threshold 5. Write 06h to TAP_DUR // Set quiet and shock time windows 6. Write 00h to WAKE UP THS // Only single-tap enabled (SINGLE DOUBLE TAP = 0) 7. Write 80h to FUNCTIONS_ENABLE // Enable hardware functions 8. Write 40h to MD1_CFG // Single-tap interrupt driven to INT1 pin 9. Write 02h to CTRL8 // FS_XL = ±8 g 10. Write 08h to CTRL1 // Turn on the accelerometer (480 Hz)

In this example the TAP_THS_Z_[4:0] bits are set to 00010, therefore the tap threshold for the Z-axis is 500 mg (= $2 * FS \times L / 2^5$).

The SHOCK field of the TAP_DUR register is set to 10. An interrupt is generated when the slope data exceeds the programmed threshold, and returns below it within 33.3 ms (= 2 * 8 / ODR_XL) corresponding to the shock time window.

The QUIET field of the TAP_DUR register is set to 01. Since latched mode is disabled, the interrupt is kept high for the duration of the quiet window, therefore 8.3 ms (= 1 * 4 / ODR_XL).

5.5.5 Double-tap example

A basic software routine for double-tap detection is given below.

1.	Write 08h to TAP_CFG0	// Enable tap detection on Z-axis
2.	Write 03h to TAP_CFG1	// Set Z-axis threshold and axes priority
3.	Write 00h to TAP_CFG2	// Set Y-axis threshold
4.	Write 00h to TAP_THS_6D	// Set X-axis threshold
5.	Write 7Fh to TAP_DUR	// Set quiet and shock time windows
6.	Write 80h to WAKE_UP_THS	// Single-tap and double-tap enabled (SINGLE_DOUBLE_TAP = 1)
7.	Write 80h to FUNCTIONS_ENABLE	// Enable hardware functions
8.	Write 08h to MD1_CFG	// Single-tap interrupt driven to INT1 pin
9.	Write 02h to CTRL8	// FS_XL = ±8 g
10.	Write 08h to CTRL1	// Turn on the accelerometer (480 Hz)

In this example the TAP_THS_Z_[4:0] bits are set to 00011, therefore the tap threshold is 750 mg (3 * FS_XL / 2^5).

For interrupt generation, during the first and the second tap the slope data must return below the threshold before the shock window has expired. The SHOCK field of the TAP_DUR register is set to 11, therefore the shock time is 50 ms (= 3 * 8 / ODR_XL).

For interrupt generation, after the first tap recognition there must not be any slope data overthreshold during the quiet time window. Furthermore, since latched mode is disabled, the interrupt is kept high for the duration of the quiet window. The QUIET field of the TAP_DUR register is set to 11, therefore the quiet time is 25 ms (= 3 * 4 / ODR XL).

For the maximum time between two consecutive detected taps, the DUR field of the TAP_DUR register is set to 0111, therefore the duration time is 533.3 ms (= 8 * 32 / ODR XL).

AN6120 - Rev 1 page 44/102

5.6 Activity/inactivity and motion/stationary recognition

The working principle of activity/inactivity and motion/stationary embedded functions is similar to wake-up. If no movement condition is detected for a programmable time, an inactivity/stationary condition event is generated. Otherwise, when the accelerometer data exceed the configurable threshold, an activity/motion condition event is generated.

The activity/inactivity recognition function allows reducing system power consumption and developing new smart applications.

When the activity/inactivity recognition function is activated, the device is able to automatically switch the accelerometer power mode to low-power mode 1 and change the sampling rate to a configurable low ODR (available selectable ODRs are 1.875 Hz, 15 Hz, 30 Hz, 60 Hz) when the inactivity state is detected, while it is able to automatically switch back to the power mode and sampling rate selected through the OP_MODE_XL_[2:0] bits and ODR XL [3:0] bits of the CTRL1 register when the activity state is detected.

The target accelerometer ODR for the inactivity state can be selected through the XL_INACT_ODR_[1:0] bits of the INACTIVITY_DUR register, with the values indicated in the table below.

XL_INACT_ODR_[1:0]	ODR [Hz]
00	1.875
01	15
10	30
11	60

Table 33. Target accelerometer ODR configuration for inactivity event

This feature can be extended to the gyroscope, with three possible options:

- Gyroscope configurations do not change.
- Gyroscope enters in sleep mode.
- Gyroscope enters in power-down mode.

With this feature the system may be efficiently switched from low-power consumption to full performance and vice versa depending on user-selectable acceleration events, thus ensuring power saving and flexibility.

The activity/inactivity recognition function is enabled by setting the INTERRUPTS_ENABLE bit to 1 and configuring the INACT_EN_[1:0] bits of the FUNCTIONS_ENABLE register. If the INACT_EN_[1:0] bits of the FUNCTIONS_ENABLE register are equal to 00, the motion/stationary embedded function is enabled. Possible configurations of the inactivity event are summarized in the following table.

INACT_EN[1:0]	Accelerometer	Gyroscope
00	Inactivity event disabled	Inactivity event disabled
01	Accelerometer ODR set with XL_INACT_ODR_[1:0] bits (low-power mode 1)	Gyroscope configuration unchanged
10	Accelerometer ODR set with XL_INACT_ODR_[1:0] bits (low-power mode 1)	Gyroscope in sleep mode
11	Accelerometer ODR set with XL_INACT_ODR_[1:0] bits (low-power mode 1)	Gyroscope in power-down mode

Table 34. Inactivity event configuration

The activity/inactivity and motion/stationary recognition functions can be implemented using either the slope filter (see Section 3.5.1: Accelerometer slope filter for more details) or the high-pass digital filter, as illustrated in Figure 4. Accelerometer composite filter. The filter to be applied can be selected using the SLOPE_FDS bit of the TAP_CFG0 register. If this bit is set to 0 (default value), the slope filter is used; if it is set to 1, the high-pass digital filter is used.

This function can be fully programmed by the user in terms of expected amplitude and timing of the filtered data by means of a dedicated set of registers (Figure 15. Activity/inactivity recognition (using the slope filter)).

The unsigned threshold value is defined using the INACT_THS_[5:0] bits of the INACTIVITY_THS register. The value of 1 LSB of these 6 bits depends on the value of the WU_INACT_THS_W_[2:0] bits of the INACTIVITY DUR register as shown in the following table.

AN6120 - Rev 1 page 45/102

Table 35. Activit	y/inactivity	threshold	resolution
-------------------	--------------	-----------	------------

WU_INACT_THS_W_[2:0]	1 LSB resolution
000	7.8125 mg
001	15.625 m <i>g</i>
010	31.25 mg
111	62.5 mg
100	125 mg
101	250 mg
110	250 mg
111	250 mg

The threshold is applied to both positive and negative filtered data.

When a certain number of consecutive X, Y, Z filtered data is smaller than the configured threshold, the OP_MODE_XL_[2:0] and the ODR_XL_[3:0] bits of the CTRL1 register are bypassed (inactivity) and the accelerometer is internally set in low-power mode 1 at the sampling rate configured through the XL_INACT_ODR_[1:0] bits of the INACTIVITY_DUR register, although the content of the CTRL1 register is left untouched. The gyroscope behavior varies according to the configuration of the INACT_EN_[1:0] bits of the FUNCTIONS_ENABLE register. The duration of the inactivity state to be recognized is defined by the SLEEP_DUR_[3:0] bits of the WAKE_UP_DUR register: 1 LSB corresponds to 512 / ODR_XL time, where ODR_XL is the accelerometer output data rate. If the SLEEP_DUR_[3:0] bits are set to 0000, the duration of the inactivity state to be recognized is equal to 16 / ODR_XL time.

When the inactivity state is detected, the interrupt is set high for 1/ODR_XL[s] period then it is automatically deasserted.

When filtered data on one axis becomes bigger than the threshold for a configurable time, the CTRL1 register settings are immediately restored (activity) and the gyroscope is restored to the previous state. The duration of the activity state to be recognized is defined by the INACT_DUR_[1:0] bits of the INACTIVITY_DUR register. 1 LSB corresponds to 1 / ODR_XL time, where ODR_XL is the accelerometer output data rate.

When the activity state is detected, the interrupt is set high for 1 / ODR_XL[s] period then it is automatically deasserted.

Once the activity/inactivity detection function is enabled, the activity/inactivity event can be driven to the two interrupt pins by setting the INT1_SLEEP_CHANGE bit of the MD1_CFG register or the INT2_SLEEP_CHANGE bit of the MD2_CFG register to 1. The activity/inactivity event can also be checked by reading the SLEEP_CHANGE_IA bit of the WAKE_UP_SRC or ALL_INT_SRC register.

The SLEEP_CHANGE_IA bit is by default in pulsed mode. Latched mode can be selected by setting the LIR bit of the TAP_CFG0 register to 1 and the INT1_SLEEP_CHANGE of the MD1_CFG register or INT2_SLEEP_CHANGE of the MD2_CFG register to 1. The SLEEP_STATE bit of the WAKE_UP_SRC register is not affected by the LIR configuration. It corresponds to the current state of the device when the WAKE_UP_SRC register is read.

By setting the SLEEP_STATUS_ON_INT bit of the INACTIVITY_DUR register to 1, the signal routed to the INT1 or INT2 pins is configured to be the activity/inactivity state (SLEEP_STATE bit of WAKE_UP_SRC register) instead of the sleep-change signal. It goes high during inactivity state and it goes low during activity state. Latched mode is not supported in this configuration.

AN6120 - Rev 1 page 46/102

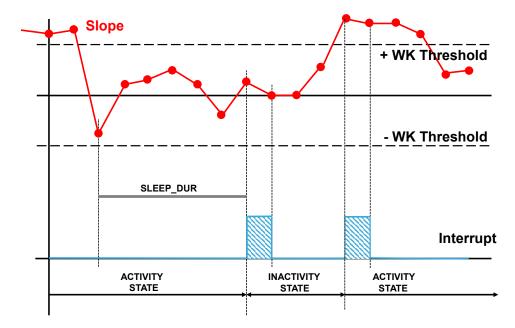


Figure 15. Activity/inactivity recognition (using the slope filter)

A basic software routine for activity/inactivity detection is as follows:

1.	Write 83h to FUNCTIONS_ENABLE	// Enable interrupt functions
		// Set gyroscope to power-down mode when in inactivity state
2.	Write 34h to INACTIVITY_DUR	// Set threshold resolution to 62.5 mg
		// Set accelerometer inactivity ODR to 15 Hz
		// Set activity duration
3.	Write 01h to INACTIVITY_THS	// Set threshold to 000001
4.	Write 05h to WAKE_UP_DUR	// Set the sleep duration to 0101
5.	Write 80h to MD1_CFG	// Activity/inactivity interrupt driven to INT1 pin
6.	Write 04h to CTRL6	// Set gyroscope FS = ±2000 dps
7.	Write 02h to CTRL8	// Set accelerometer FS = $\pm 8 g$
8.	Write 08h to CTRL1	// Turn on the accelerometer (ODR = 480 Hz)
9.	Write 08h to CTRL2	// Turn on the gyroscope (ODR = 480 Hz)

In this example, the INACT_THS_[5:0] bits field of the INACTIVITY_THS register is set to 000001 and the resolution of 1 LSB is set to 62.5 mg (WU_INACT_THS_W_[2:0] bits of INACTIVITY_DUR register are set to 011), therefore the activity/inactivity threshold is 62.5 mg.

Before inactivity detection, the X, Y, Z slope data must be smaller than the configured threshold for a period of time defined by the SLEEP_DUR field of the WAKE_UP_DUR register: this field is set to 0101, corresponding to 5.33 s (= 5 * 512 / ODR_XL). After this period of time has elapsed, the accelerometer ODR is internally set to 15 Hz (XL_INACT_ODR_[1:0] = 01) and the gyroscope is internally set to power-down mode.

The activity state is detected and the CTRL1 register settings are immediately restored and the gyroscope is turned on as soon as the slope data of (at least) one axis is bigger than the threshold for one sample, since the INACT_DUR_[1:0] bits of the INACTIVITY_DUR register are configured to 00.

5.6.1 Stationary/motion detection

Stationary/motion detection is a particular case of the activity/inactivity functionality in which no ODR / power mode changes occur when a sleep condition (equivalent to stationary condition) is detected. Stationary/motion detection is activated by setting the INACT_EN_[1:0] bits of the FUNCTIONS_ENABLE register to 00.

AN6120 - Rev 1 page 47/102

5.7 Boot status

After the device is powered up, it performs a 10 ms (maximum) boot procedure to load the trimming parameters. After the boot is completed, both the accelerometer and the gyroscope are automatically configured in power-down mode. During the boot time the registers are not accessible.

Note:

If it is required to force a boot by removing and resupplying VDD and the time between removing and resupplying VDD is less than 20 ms, then the maximum boot time increases to 30 ms.

After power-up, the trimming parameters can be reloaded by setting the BOOT bit of the CTRL3 register to 1. In this case, it is mandatory to wait 30 ms for the completion of the reboot internal procedure. The BOOT bit of the CTRL3 register automatically returns to 0.

If the reset to the default value of the control registers is required, it can be performed by setting the SW_RESET bit of the CTRL3 register to 1. When this bit is set to 1, the following registers are reset to their default value:

- FUNC CFG ACCESS (01h)
- FIFO_CTRL1 (07h) through ALL_INT_SRC (1Dh)
- TIMESTAMP0 (40h) through TIMESTAMP3 (43h)
- WAKE UP SRC (45h) through D6D SRC (47h)
- FUNCTIONS ENABLE (50h) through EMB FUNC CFG (63h)
- Z OFS USR (73h) through X OFS USR (75h)
- FIFO_DATA_OUT_TAG (78h)

The software reset procedure takes a maximum of 150 µs. The status of reset is signaled by the status of the SW RESET bit of the CTRL3 register. Once the reset is completed, this bit is automatically set low.

The reboot flow is as follows:

- 1. Set both the accelerometer and gyroscope in power-down mode.
- 2. Set the BOOT bit of the CTRL3 register to 1.
- 3. Wait 30 ms.

The software reset flow is as follows:

- 1. Set both the accelerometer and gyroscope in power-down mode.
- 2. Set the SW_RESET bit of the CTRL3 register to 1.
- 3. Monitor the software reset status. There are two possibilities:
 - a. Wait 150 µs.
 - b. Poll the SW RESET bit of the CTRL3 register until it returns to 0.

In order to avoid conflicts, the reboot and the software reset must not be executed at the same time (do not set to 1 at the same time both the BOOT bit and the SW_RESET bit of CTRL3 register). The above flows must be performed serially.

If a complete reset (including the boot, software reset, and a reset of the embedded functions and internal filters) is required, it can be performed by setting the SW_POR bit of the FUNC_CFG_ACCESS register. When this bit is set to 1, the device triggers a complete reset of the device, analogous to a power-on-reset. In this case, it is mandatory to wait 30 ms for the completion of device reset. The SW_POR bit of the FUNC_CFG_ACCESS register automatically returns to 0. The complete reset flow is as follows:

- 1. Set the SW POR bit of the FUNC CFG ACCESS register to 1.
- 2. Wait 30 ms.

AN6120 - Rev 1 page 48/102

6 Embedded functions

The device implements in the hardware many embedded functions. Specific IP blocks with negligible power consumption and high-level performance implement the following functions:

- Pedometer functions (step detector and step counter)
- Significant motion
- Relative tilt
- Timestamp
- Sensor fusion functions (game rotation vector, gravity vector, gyroscope bias)

6.1 Pedometer functions: step detector and step counter

A specific IP block is dedicated to pedometer functions: the step detector and the step counter.

Pedometer functions work at 30 Hz and are based on the accelerometer sensor only. Consequently, the accelerometer ODR must be set at a value of 30 Hz or higher when using them.

In order to enable the pedometer functions, it is necessary to set the PEDO_EN bit of the EMB_FUNC_EN_A embedded functions register to 1. The algorithm internal state can be reinitialized by asserting the STEP_DET_INIT bit of the EMB_FUNC_INIT_A embedded functions register.

The step counter indicates the number of steps detected by the step detector algorithm after the pedometer function has been enabled. The step count is given by the concatenation of the STEP_COUNTER_H and STEP_COUNTER_L embedded functions registers and it is represented as a 16-bit unsigned number.

The step count is not reset to zero when the accelerometer is configured in power-down or the pedometer is disabled or reinitialized. It can be reset to zero by setting the PEDO_RST_STEP bit of the EMB_FUNC_SRC register to 1. After the counter resets, the PEDO_RST_STEP bit is automatically set back to 0.

The step detector functionality generates an interrupt every time a step is recognized. In the case of interspersed step sessions, 10 consecutive steps (debounce steps) have to be detected before the first interrupt generation in order to avoid false step detections (debounce functionality).

The number of debounce steps can be modified through the DEB_STEP[7:0] bits of the PEDO_DEB_STEPS_CONF register in the embedded advanced features registers: basically, it corresponds to the minimum number of steps to be detected before the first step counter increment. 1 LSB of this field corresponds to 1 step, the default value is 10 steps. The debounce functionality restarts after around 1 s of device inactivity.

An additional false-positive rejection (FPR) block can be enabled to perform the real-time recognition of the walking activity (including running) based on statistical data and to inhibit the step counter if no walking activity is detected. It can be activated as follows:

- Set the FP REJECTION EN bit of the PEDO CMD REG embedded advanced features register to 1.
- Set either the MLC_EN bit of the EMB_FUNC_EN_B or the MLC_BEFORE_FSM_EN bit of the EMB_FUNC_EN_A to 1.

In the ST1VAFE6AX device, the FPR block can be customized by the user. In this case, the MLC must be programmed in order to use the first decision tree for the recognition of two classes: no walk (class with code 0x04) and walk (class with code 0x08). In detail, the step counter is inhibited if the following group of classes is detected by the MLC:

- Classes with code 0x4 through 0x7
- Classes with code 0xC through 0xE

STMicroelectronics provides the tools to generate specific pedometer configurations starting from a set of datalogs with a reference number of steps (Unico GUI on st.com).

AN6120 - Rev 1 page 49/102

The EMB_FUNC_SRC embedded functions register contains some read-only bits related to the pedometer function state.

Table 36. EMB_FUNC_SRC embedded functions register

b7	b6	b5	b4	b3	b2	b1	b0
PEDO_RST _STEP	0	STEP_ DETECTED	STEP_COUNT _DELTA_IA	STEP_ OVERFLOW	STEPCOUNTER _BIT_SET	0	0

- PEDO_RST_STEP: pedometer step counter reset. It can be set to 1 to reset the number of steps counted. It is automatically set back to 0 after the counter reset.
- STEP_DETECTED: step detector event status. It signals a step detection (after the debounce).
- STEP_COUNT_DELTA_IA: instead of generating an interrupt signal every time a step is recognized, it is possible to generate it if at least one step is detected within a certain time period, defined by setting a value different from 00h in the PEDO_SC_DELTAT_H and PEDO_SC_DELTAT_L embedded advanced features (page 1) registers. It is necessary to set the TIMESTAMP_EN bit of the FUNCTIONS_ENABLE register to 1 (to enable the timer). The time period is given by the concatenation of PEDO_SC_DELTAT_H and PEDO_SC_DELTAT_L and it is represented as a 16-bit unsigned value with a resolution of 5.6 ms. STEP_COUNT_DELTA_IA goes high (at the end of each time period) if at least one step is counted (after the debounce) within the programmed time period. If the time period is not programmed (PEDO_SC_DELTAT = 0), this bit is kept to 0.
- STEP_OVERFLOW: overflow signal that goes high when the step counter value reaches 2¹⁶.
- STEPCOUNTER_BIT_SET: step counter event status. It signals an increase in the step counter (after the debounce). If a timer period is programmed in the PEDO_SC_DELTAT_H and PEDO_SC_DELTAT_L embedded advanced features (page 1) registers, this bit is kept to 0.

The step detection interrupt signal can also be checked by reading the IS_STEP_DET bit of the EMB_FUNC_STATUS embedded functions register or the IS_STEP_DET bit of the EMB_FUNC_STATUS_MAINPAGE register.

The IS_STEP_DET bit can have different behaviors, as summarized in the table below, depending on the value of the PEDO_SC_DELTAT field (concatenation of PEDO_SC_DELTAT_H and PEDO_SC_DELTAT_L embedded advanced features registers) and the CARRY_COUNT_EN bit in the PEDO_CMD_REG embedded advanced features register.

Table 37. IS_STEP_DET configuration

PEDO_SC_DELTAT	CARRY_COUNT_EN	IS_STEP_DET
PEDO_SC_DELTAT = 0	0	STEPCOUNTER_BIT_SET
PEDO_SC_DELTAT > 0	0	STEP_COUNT_DELTA_IA
PEDO_SC_DELTAT ≥ 0	1	STEP_OVERFLOW

The IS_STEP_DET interrupt signal can be driven to the INT1/INT2 interrupt pin by setting the INT1_STEP_DETECTOR/INT2_STEP_DETECTOR bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 register to 1. In this case it is mandatory to also enable routing the embedded functions event to the INT1/INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of the MD1_CFG/MD2_CFG register.

The behavior of the interrupt signal is pulsed by default. The duration of the pulse is equal to 1 / MAX_RATE seconds, where MAX_RATE denotes the maximum rate of the enabled embedded functions. If only the pedometer function is enabled, the duration of the pulse is then equal to 1 / 30 seconds. Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW embedded functions register to 1. In this case, the interrupt signal is reset by reading the IS_STEP_DET bit of the EMB_FUNC_STATUS embedded functions register or the IS_STEP_DET bit of the EMB_FUNC_STATUS_MAINPAGE register.

The step counter can be batched in FIFO (see Section 7: First-in, first-out (FIFO) buffer for details).

AN6120 - Rev 1 page 50/102

A basic software routine that shows how to enable step counter detection is as follows:

Write 80h to FUNC_CFG_ACCESS // Enable access to embedded functions registers Write 40h to PAGE_RW 2. // Select write operation mode Write 11h to PAGE SEL 3. // Select page 1 Write 83h to PAGE_ADDR // Set embedded advanced features register to be written (PEDO_CMD_REG) 4. 5. Write 04h to PAGE_VALUE // Enable false-positive rejection block link with pedometer (FP_REJECTION_EN = 1) // Write operation mode disabled Write 00h to PAGE_RW Write 08h to EMB_FUNC_EN_A // Enable pedometer 7. Write 10h to EMB_FUNC_EN_B 8. // Enable false-positive rejection block (MLC_EN = 1)

9. Write 08h to EMB_FUNC_INT1 // Step detection interrupt driven to INT1 pin
10. Write 00h to FUNC_CFG_ACCESS // Disable access to embedded functions registers
11. Write 02h to MD1_CFG // Enable routing the embedded functions interrupt
12. Write 02h to CTRL8 // FS_XL = ±8 g

13. Write 04h to CTRL1 // Turn on the accelerometer (ODR_XL = 30 Hz)

AN6120 - Rev 1 page 51/102

6.2 Significant motion

The significant motion function generates an interrupt when a 'significant motion', that could be due to a change in user location, is detected. In the device, this function has been implemented in hardware using only the accelerometer.

The significant motion functionality can be used in location-based applications in order to receive a notification indicating when the user is changing location.

The significant motion function works at 30 Hz, so the accelerometer ODR must be set at a value of 30 Hz or higher. It generates an interrupt when the difference between the number of steps counted from its initialization/reset is higher than 10 steps. After an interrupt generation, the algorithm internal state is reset.

In order to enable significant motion detection it is necessary to set the SIGN_MOTION_EN bit of the EMB_FUNC_EN_A embedded functions register to 1. The algorithm can be reinitialized by asserting the SIG_MOT_INIT bit of the EMB_FUNC_INIT_A embedded functions register.

Note: The significant motion feature automatically enables the internal step counter algorithm.

The significant motion interrupt signal can be driven to the INT1/INT2 interrupt pin by setting the INT1_SIG_MOT/INT2_SIG_MOT bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 register to 1. In this case it is mandatory to also enable routing the embedded functions event to the INT1/INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of the MD1_CFG/MD2_CFG register.

The significant motion interrupt signal can also be checked by reading the IS_SIGMOT bit of the EMB_FUNC_STATUS embedded functions register or the IS_SIGMOT bit of the EMB_FUNC_STATUS_MAINPAGE register.

The behavior of the significant motion interrupt signal is pulsed by default. The duration of the pulse is equal to 1 / MAX_RATE seconds, where MAX_RATE denotes the maximum rate of the enabled embedded functions. If only the significant motion function is enabled, the duration of the pulse is then equal to 1 / 30 seconds. Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW embedded functions register to 1. In this case, the interrupt signal is reset by reading the IS_SIGMOT bit of the EMB_FUNC_STATUS embedded functions register or the IS_SIGMOT bit of the EMB_FUNC_STATUS_MAINPAGE register.

A basic software routine that shows how to enable significant motion detection is as follows:

Write 80h to FUNC CFG ACCESS // Enable access to embedded functions registers 2. Write 20h to EMB_FUNC_EN_A // Enable significant motion detection 3. Write 20h to EMB FUNC INT1 // Significant motion interrupt driven to INT1 pin Write 80h to PAGE_RW // Enable latched mode for embedded functions 4. Write 00h to FUNC_CFG_ACCESS // Disable access to embedded functions registers 6 Write 02h to MD1 CFG // Enable routing the embedded functions interrupt Write 04h to CTRL1 // Turn on the accelerometer // ODR XL = 30 Hz

AN6120 - Rev 1 page 52/102

6.3 Relative tilt

The tilt function allows detecting when an activity change occurs (for example, when a phone is in a front pocket and the user goes from sitting to standing or from standing to sitting). In the device it has been implemented in hardware using only the accelerometer.

The tilt function works at 30 Hz, so the accelerometer ODR must be set at a value of 30 Hz or higher.

In order to enable the relative tilt detection function it is necessary to set the TILT_EN bit of the EMB_FUNC_EN_A embedded functions register to 1. The algorithm can be reinitialized by asserting the TILT_INIT bit of the EMB_FUNC_INIT_A embedded functions register.

If the device is configured for tilt event detection, an interrupt is generated when the device is tilted by an angle greater than 35 degrees from the start position. The start position is defined as the position of the device when the tilt detection is enabled/reinitialized or the position of the device when the last tilt interrupt was generated.

After this function is enabled or reinitialized, the tilt logic typically requires a 2-second settling time before being able to generate the first interrupt.

In the example shown in Figure 16. Tilt example tilt detection is enabled when the device orientation corresponds to "start position #0". The first interrupt is generated if the device is rotated by an angle greater than 35 degrees from the start position. After the first tilt detection interrupt is generated, the new start position (#1) corresponds to the position of the device when the previous interrupt was generated (final position #0), and the next interrupt signal is generated as soon as the device is tilted by an angle greater than 35 degrees, entering the blue zone surrounding the start position #1.

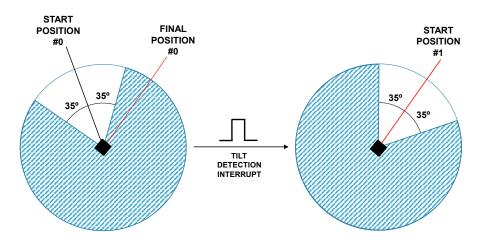


Figure 16. Tilt example

The tilt interrupt signal can be driven to the INT1/INT2 interrupt pin by setting the INT1_TILT/INT2_TILT bit of the EMB_FUNC_INT1/EMB_FUNC_INT2 register to 1. In this case it is mandatory to also enable routing the embedded functions event to the INT1/INT2 interrupt pin by setting the INT1_EMB_FUNC/INT2_EMB_FUNC bit of MD1_CFG/MD2_CFG register.

The tilt interrupt signal can also be checked by reading the IS_TILT bit of the EMB_FUNC_STATUS embedded functions register or the IS_TILT bit of the EMB_FUNC_STATUS_MAINPAGE register.

The behavior of the tilt interrupt signal is pulsed by default. The duration of the pulse is equal to 1 / MAX_RATE seconds, where MAX_RATE denotes the maximum rate of the enabled embedded functions. If only the tilt function is enabled, the duration of the pulse is then equal to 1 / 30 seconds. Latched mode can be enabled by setting the EMB_FUNC_LIR bit of the PAGE_RW embedded functions register to 1. In this case, the interrupt signal is reset by reading the IS_TILT bit of the EMB_FUNC_STATUS embedded functions register or the IS_TILT bit of the EMB_FUNC_STATUS MAINPAGE register.

AN6120 - Rev 1 page 53/102

Hereafter a basic software routine that shows how to enable the tilt detection function:

1.	Write 80h to FUNC CFG ACCESS	// Enable access to embedded functions re-
	White doin to 1 0110_01 0_7100E00	" Enable docess to embedded fariotions re

- Write 10h to EMB_FUNC_EN_A 2.
- 3. Write 10h to EMB_FUNC_INT1
- Write 80h to PAGE_RW 4.
- Write 00h to FUNC_CFG_ACCESS 5.
- 6. Write 02h to MD1_CFG
- Write 04h to CTRL1

- egisters
- // Enable tilt detection
- // Tilt interrupt driven to INT1 pin
- // Enable latched mode for embedded functions
- // Disable access to embedded functions registers
- // Enable routing the embedded functions interrupt
- // Turn on the accelerometer
- // ODR_XL = 30 Hz

page 54/102

6.4 Timestamp

Together with sensor data the device can provide timestamp information.

To enable this functionality the TIMESTAMP_EN bit of the FUNCTIONS_ENABLE register has to be set to 1. The time step count is given by the concatenation of the TIMESTAMP3 & TIMESTAMP2 & TIMESTAMP1 & TIMESTAMP0 registers and is represented as a 32-bit unsigned number.

The nominal timestamp resolution is 21.75 µs. It is possible to get the actual timestamp resolution value through the FREQ_FINE_[7:0] bits of the INTERNAL_FREQ_FINE register, which contains the difference in percentage of the actual ODR (and timestamp rate) with respect to the nominal value.

$$t_{actual}[s] = \frac{1}{46080 \cdot (1 + 0.0013 \cdot FREO\ FINE)}$$

Similarly, it is possible to get the actual output data rate by using the following formula:

$$ODR_{actual}[Hz] = \frac{7680 \cdot (1 + 0.0013 \cdot FREQ_FINE)}{ODR_{coeff}}$$

where the ODR_{coeff} values are indicated in the table below.

Table 38. ODR_{coeff} values

Selected ODR [Hz]	ODRcoeff
7.5	1024
15	512
30	256
60	128
120	64
240	32
480	16
960	8
1920 Hz	4
3840 Hz	2
7680 Hz	1

If both the accelerometer and the gyroscope are in power-down mode, the timestamp counter does not work and the timestamp value is frozen at the last value.

When the maximum value 4294967295 LSB (equal to FFFFFFFh) is reached corresponding to approximately 26 hours, the counter is automatically reset to 00000000h and continues to count. The timer count can be reset to zero at any time by writing the reset value AAh in the TIMESTAMP2 register. The reset procedure must be performed only after the accelerometer and/or the gyroscope has been turned on. After the reset value has been written in the register, at least 150 μ s must elapse before performing another write transaction.

The TIMESTAMP_ENDCOUNT bit of the ALL_INT_SRC goes high 5.6 ms before the occurrence of a timestamp overrun condition. This flag is reset when the ALL_INT_SRC register is read. It is also possible to route this signal to the INT2 pin (65 μ s duration pulse) by setting the INT2_TIMESTAMP bit of MD2_CFG to 1.

The timestamp can be batched in FIFO (see Section 7: First-in, first-out (FIFO) buffer for details).

AN6120 - Rev 1 page 55/102

6.5 Sensor fusion functions

A dedicated sensor fusion block SFLP (sensor fusion low power) is available for generating the following data based on the accelerometer and gyroscope data processing:

- · Game rotation vector, which provides a quaternion representing the attitude of the device
- Gravity vector, which provides a three dimensional vector representing the direction of gravity
- Gyroscope bias, which provides a three dimensional vector representing the gyroscope bias

The SFLP block is enabled by setting the SFLP_GAME_EN bit to 1 of the EMB_FUNC_EN_A embedded functions register.

The SFLP block can be reinitialized by setting the SFLP_GAME_INIT bit to 1 of the EMB_FUNC_INIT_A embedded functions register.

The SFLP block works at a configurable output data rate (which must be equal to or less than the selected output data rates of the accelerometer and gyroscope) through the SFLP_GAME_ODR_[2:0] field of the SFLP_ODR embedded functions register according to the following values:

- 000: 15 Hz 001: 30 Hz
- 010: 60 Hz
- 011: 120 Hz (default)
- 100: 240 Hz
- 101: 480 Hz

SFLP-generated data can be read from the FIFO only, see Section 7: First-in, first-out (FIFO) buffer for details.

If the SFLP block is intended to be used, the specific configuration below must be applied after the device boot (or after a complete reset of the device, triggered by writing to 1 the SW_POR bit of the FUNC_CFG_ACCESS register) with the device in power-down mode.

- 1. Write 80h to FUNC_CFG_ACCESS.
- 2. Write 40h to PAGE RW.
- 3. Write 01h to PAGE_SEL.
- 4. Write D2h to PAGE ADDRESS.
- 5. Write 50h to PAGE VALUE.
- 6. Write 00h to PAGE RW.
- 7. Write 00h to FUNC_CFG_ACCESS.

The typical supply current of the SFLP block is indicated in Table 39.

Table 39. SFLP supply current (@VDD = 1.8 V, T = 25°C)

SFLP ODR [Hz]	Supply current [μΑ]
15	3.5
30	7
60	14
120	28
240	56
480	112

AN6120 - Rev 1 page 56/102

6.5.1 Gyroscope bias initial value setting

The SFLP embeds a gyroscope bias calibration routine, which is automatically executed when the device is steady. In applications where a steady condition for the gyroscope bias calibration cannot be guaranteed, a specific flow is needed to set a previously computed bias in the SFLP block. This procedure forces a reset of the SFLP algorithm and must be implemented as follows:

- 1. Convert gbias in HFP format in [rad/s] and divide by the k factor according to Table 40.
- 2. Save the current sensor configuration (CTRL1 and CTRL2 registers) and set the high-performance mode (if both the accelerometer and gyroscope are in power-down mode, turn the accelerometer on and wait for the first valid sample).
- 3. Disable the embedded functions (save the current values of the EMB_FUNC_EN_A and EMB_FUNC_EN_B registers and set them to 00h).
- 4. Wait until EMB FUNC ENDOP = 1.
- 5. Set the EMB_FUNC_DEBUG bit of the CTRL10 register to 1.
- 6. Set the SFLP_GAME_EN bit of the EMB_FUNC_EN_A register to 1.
- 7. Write FUNC_CFG_ACCESS = 40h. Read the current accelerometer output data and write it in the registers from 02h to 0Ah. Each axis must be written to the registers as a 24-bit signed number in two's complement, left-shifted by the current accelerometer full-scale setting (FS_XL = 00, do not shift; FS_XL = 01, shift by one; FS_XL = 10, shift by two; FS_XL = 11, shift by three). The registers from 0Bh to 13h must be set to 00h. Write FUNC_CFG_ACCESS = 00h.
- 8. Wait 30 µs and then wait until EMB FUNC ENDOP = 1.
- Write the gbias values computed at step #1 in the embedded advanced features page 0 registers from SFLP_GAME_GBIASX_L to SFLP_GAME_GBIASZ_H.
- 10. Reload the sensor configuration saved at steps #2 and #4 (do not set the SFLP_GAME_EN bit of the EMB_FUNC_EN_A register back to 0).
- 11. Set the EMB_FUNC_DEBUG bit of the CTRL10 register to 0.

Table 40. k factor

SFLP game ODR [Hz]	k factor
15	0.04
30	0.02
60	0.01
120	0.005
240	0.0025
480	0.00125

AN6120 - Rev 1 page 57/102

6.6 Embedded functions additional configurations and monitoring

The device provides the possibility to enable some additional configurations if needed through the EMB_FUNC_CFG register.

It allows three additional features:

- EMB_FUNC_IRQ_MASK_XL_SETTL bit can be set to 1 to enable the masking of the execution trigger of the embedded functions when accelerometer data are in the settling phase, in order to avoid the processing of accelerometer data during the settling phase.
- EMB_FUNC_IRQ_MASK_G_SETTL bit can be set to 1 to enable the masking of the execution trigger of the embedded functions when gyroscope data are in the settling phase, in order to avoid the processing of gyroscope data during the settling phase.
- EMB_FUNC_DISABLE bit can be set to 1 to stop the execution trigger of the embedded functions. When
 this bit is set back to 0, all the initialization procedures are forced and the execution trigger is again
 enabled.

The device provides the capability to monitor the execution of the embedded functions through the EMB_FUNC_EXEC_STATUS embedded functions register.

It contains the following information:

- Execution time overrun: this information is contained in the EMB_FUNC_EXEC_OVR bit. It is asserted if the execution time of the enabled embedded functions exceeds the maximum time, that is, a new set of sensor data to be used as input is generated before the end of the embedded functions execution.
- Execution ongoing: this information is contained in the EMB_FUNC_ENDOP bit. When this bit is set to 1, no embedded function is running, while when this bit is set to 0, embedded functions are running. This information can be routed to the INT2 pin by setting the INT2_EMB_FUNC_ENDOP bit of the INT2_CTRL register.

AN6120 - Rev 1 page 58/102

7 First-in, first-out (FIFO) buffer

In order to limit intervention by the host processor and facilitate postprocessing data for event recognition, the ST1VAFE6AX embeds a 1.5 KB (up to 4.5 KB with the compression feature enabled) first-in, first-out buffer (FIFO).

The FIFO can be configured to store the following data:

- Gyroscope sensor data
- Accelerometer sensor data (either channel)
- Timestamp data
- Temperature sensor data
- Step counter (and associated timestamp) data
- SFLP game rotation vector, gravity vector, gyroscope bias
- Machine learning core filters, features, and results
- Analog hub or vAFE data

Saving the data in FIFO is based on FIFO words. A FIFO word is composed of:

- Tag, 1 byte
- Data, 6 bytes

Data can be retrieved from the FIFO through six dedicated registers, from address 79h to 7Eh: FIFO_DATA_OUT_BYTE_0, FIFO_DATA_OUT_BYTE_1, FIFO_DATA_OUT_BYTE_2, FIFO_DATA_OUT_BYTE_3, FIFO_DATA_OUT_BYTE_4, FIFO_DATA_OUT_BYTE_5.

The reconstruction of a FIFO stream is a simple task thanks to the FIFO_TAG field of the FIFO_DATA_OUT_TAG register that allows recognizing the meaning of a word in FIFO. The applications have maximum flexibility in choosing the rate of batching for sensors with dedicated FIFO configurations.

Seven different FIFO operating modes can be chosen through the FIFO_MODE_[2:0] bits of the FIFO_CTRL4 register:

- Bypass mode
- FIFO mode
- Continuous mode
- Continuous-to-FIFO mode
- Bypass-to-continuous mode
- Bypass-to-FIFO mode
- ContinuousWTM-to-full mode

To monitor the FIFO status (full, overrun, number of samples stored, and so forth), two dedicated registers are available: FIFO_STATUS1 and FIFO_STATUS2.

A programmable FIFO threshold can be set in FIFO CTRL1 using the WTM [7:0] bits.

FIFO full, FIFO threshold, and FIFO overrun events can be enabled to generate dedicated interrupts on the two interrupt pins (INT1 and INT2) through the INT1_FIFO_FULL, INT1_FIFO_TH and INT1_FIFO_OVR bits of the INT1_CTRL register, and through the INT2_FIFO_FULL, INT2_FIFO_TH and INT2_FIFO_OVR bits of the INT2_CTRL register.

Finally, FIFO embeds a compression algorithm that the user can enable in order to have up to 4.5 KB data stored in FIFO and take advantage in terms of interface communication length for FIFO flushing and communication power consumption.

AN6120 - Rev 1 page 59/102

7.1 FIFO description and batched sensors

FIFO is divided into 256 words of 7 bytes each. A FIFO word contains one byte with TAG information and 6 bytes of data: the overall FIFO buffer dimension is equal to 1792 bytes and can contain 1536 bytes of data. The TAG byte contains the information indicating which data is stored in the FIFO data field and other useful information.

FIFO is runtime configurable: a metainformation tag can be enabled in order to notify the user if batched sensor configurations have changed.

Moreover, in order to increase its capability, the FIFO embeds a compression algorithm for accelerometer and gyroscope data (refer to Section 7.10: FIFO compression for further details).

Batched sensors can be classified in three different categories:

- 1. Main sensors, which are physical sensors:
 - a. Accelerometer sensor (either channel)
 - b. Gyroscope sensor
 - c. Analog hub or vAFE sensing chain
- 2. Auxiliary sensors, which contain information of the status of the device:
 - a. Timestamp sensor
 - b. Configuration-change sensor (CFG-Change)
 - c. Temperature sensor
- 3. Virtual sensors:
 - a. Step counter sensor
 - b. SFLP game rotation vector, gravity vector, and gyroscope bias
 - c. Machine learning core filters, features, and results

Data can be retrieved from the FIFO through six dedicated registers: FIFO_DATA_OUT_BYTE_0, FIFO_DATA_OUT_BYTE_1, FIFO_DATA_OUT_BYTE_2, FIFO_DATA_OUT_BYTE_3, FIFO_DATA_OUT_BYTE_4, FIFO_DATA_OUT_BYTE_5.

A write to FIFO can be triggered by the following different events:

- Internal data-ready signal (faster sensor between the accelerometer, gyroscope, and analog hub / vAFE)
- Step detection event
- Virtual sensor new data available

AN6120 - Rev 1 page 60/102

7.2 FIFO registers

The FIFO buffer is managed by:

- Six control registers: FIFO_CTRL1, FIFO_CTRL2, FIFO_CTRL3, FIFO_CTRL4, COUNTER_BDR_REG1, COUNTER_BDR_REG2
- Two status registers: FIFO STATUS1 and FIFO STATUS2
- Seven output registers (tag + data): FIFO_DATA_OUT_TAG, FIFO_DATA_OUT_BYTE_0, FIFO_DATA_OUT_BYTE_1, FIFO_DATA_OUT_BYTE_2, FIFO_DATA_OUT_BYTE_3, FIFO_DATA_OUT_BYTE_4, FIFO_DATA_OUT_BYTE_5
- Some additional bits to route FIFO events to the two interrupt lines: INT1_CNT_BDR, INT1_FIFO_FULL, INT1_FIFO_OVR, INT1_FIFO_TH bits of the INT1_CTRL register and INT2_CNT_BDR, INT2_FIFO_FULL, INT2_FIFO_OVR, INT2_FIFO_TH bits of the INT2_CTRL register
- Some additional bits for other features:
 - FIFO_COMPR_EN bit of the EMB_FUNC_EN_B embedded function register in order to enable the FIFO compression algorithm
 - STEP_COUNTER_FIFO_EN bit of the EMB_FUNC_FIFO_EN_A register in order to enable batching the step counter data in FIFO
 - MLC_FIFO_EN bit of the EMB_FUNC_FIFO_EN_A register in order to enable batching the machine learning core results in FIFO
 - MLC_FILTER_FEATURE_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register in order to enable batching the machine learning core filters and features in FIFO
 - SFLP_GBIAS_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register in order to enable batching the gyroscope bias data in FIFO (the SFLP embedded function must be enabled)
 - SFLP_GRAVITY_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register in order to enable batching the gravity vector data in FIFO (the SFLP embedded function must be enabled)
 - SFLP_GAME_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register in order to enable batching the game rotation vector data in FIFO (the SFLP embedded function must be enabled)
 - FIFO_COMPR_INIT bit of the EMB_FUNC_INIT_B embedded function register in order to request a reinitialization of the FIFO compression algorithm

AN6120 - Rev 1 page 61/102

7.2.1 FIFO CTRL1

The FIFO_CTRL1 register contains the FIFO watermark threshold level. The value of 1 LSB of the FIFO threshold level is referred to as a FIFO word (7 bytes).

The FIFO watermark flag (FIFO_WTM_IA bit in the FIFO_STATUS2 register) rises when the number of bytes stored in the FIFO is equal to or higher than the watermark threshold level.

In order to limit the FIFO depth to the watermark level, the STOP_ON_WTM bit must be set to 1 in the FIFO CTRL2 register.

Table 41. FIFO_CTRL1 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WTM_7	WTM_6	WTM_5	WTM_4	WTM_3	WTM_2	WTM_1	WTM_0

7.2.2 FIFO_CTRL2

Table 42. FIFO_CTRL2 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
STOP_ ON_WTM	FIFO_COMPR _RT_EN	0	ODR_CHG _EN	0	UNCOMPR _RATE_1	UNCOMPR _RATE_0	XL_DualC_BATCH _FROM_FSM

The FIFO_CTRL2 register contains the bit STOP_ON_WTM which allows limiting the FIFO depth to the watermark level.

The FIFO_CTRL2 register also contains the bits to manage the FIFO compression algorithm for the accelerometer and gyroscope sensors:

- FIFO_COMPR_RT_EN bit allows runtime enabling / disabling of the compression algorithm: if the bit is set to 1, the compression is enabled, otherwise it is disabled.
- UNCOMPR_RATE_[1:0] configures the compression algorithm to write noncompressed data at a specific rate. The following table summarizes possible configurations.

Table 43. Forced noncompressed data write configurations

UNCOPTR_RATE[1:0]	Forced noncompressed data writes
00	Never
01	Every 8 batch data rate
10	Every 16 batch data rate
11	Every 32 batch data rate

Moreover, the FIFO_CTRL2 register contains the ODR_CHG_EN bit which can be set to 1 in order to enable the CFG-Change auxiliary sensor to be batched in FIFO (described in the next sections) and the XL_DualC_BATCH_FROM_FSM bit which, in combination with a specific FSM configuration, can be set to 1 in order to enable batching the accelerometer channel 2 in the FIFO buffer. In this case, it is necessary to enable the accelerometer dual-channel mode by setting the XL_DualC_EN bit of the CTRL8 register to 1 and to configure one FSM to actually enable the batch operation. Refer to the finite state machine application note available on www.st.com.

AN6120 - Rev 1 page 62/102

7.2.3 FIFO_CTRL3

Table 44. FIFO_CTRL3 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
BDR_GY_3	BDR_GY_2	BDR_GY_1	BDR_GY_0	BDR_XL_3	BDR_XL_2	BDR_XL_1	BDR_XL_0

The FIFO_CTRL3 register contains the fields to select the writing frequency in FIFO for accelerometer and gyroscope sensor data. The selected batch data rate must be equal to or lower than the output data rate configured through the ODR_XL and ODR_G fields of the CTRL1_XL and CTRL2_G registers.

The following tables indicate all the selectable batch data rates.

Table 45. Accelerometer batch data rate

BDR_XL[3:0]	Batch data rate [Hz]
0000	Not batched in FIFO
0001	1.875
0010	7.5
0011	15
0100	30
0101	60
0110	120
0111	240
1000	480
1001	960
1010	1920
1011	3840
1100	7680

Table 46. Gyroscope batch data rate

BDR_GY[3:0]	Batch data rate [Hz]
0000	Not batched in FIFO
0001	1.875
0010	7.5
0011	15
0100	30
0101	60
0110	120
0111	240
1000	480
1001	960
1010	1920
1011	3840
1100	7680

AN6120 - Rev 1 page 63/102

7.2.4 FIFO_CTRL4

The FIFO_CTRL4 register contains the fields to select the decimation factor for timestamp batching in FIFO and the batch data rate for the temperature sensor.

The timestamp write rate is configured as the maximum batch data rate (BDR_MAX) divided by the decimation factor specified in the DEC_TS_BATCH_[1:0] field. BDR_MAX is the maximum batch data rate among the following batch data rates:

- Accelerometer batch data rate (BDR XL)
- Accelerometer channel 2 batch data rate (equal to ODR_XL), if batching the accelerometer channel 2 data in FIFO is enabled
- Gyroscope batch data rate (BDR GY)
- Analog hub / vAFE batch data rate (equal to analog hub / vAFE ODR)

The programmable decimation factors are indicated in the table below.

Table 47. Timestamp batch data rate

DEC_TS_BATCH_[1:0]	Timestamp batch data rate [Hz]
00	Not batched in FIFO
01	BDR_MAX
10	BDR_MAX / 8
11	BDR_MAX / 32

The temperature batch data rate is configurable through the ODR_T_BATCH_[1:0] field as shown in the table below.

Table 48. Temperature sensor batch data rate

ODR_T_BATCH_[1:0]	Temperature batch data rate [Hz]
00	Not batched in FIFO
01	1.875
10	15
11	60

The FIFO_CTRL4 register also contains the FIFO operating mode bits. FIFO operating modes are described in Section 7.7: FIFO modes.

Table 49. FIFO_CTRL4 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DEC_TS_ BATCH_1	DEC_TS_ BATCH_0	ODR_T_ BATCH_1	ODR_T_ BATCH_0	0	FIFO_ MODE2	FIFO_ MODE1	FIFO_ MODE0

AN6120 - Rev 1 page 64/102

7.2.5 COUNTER_BDR_REG1

Since the FIFO might contain metainformation (that is, CFG-Change sensor) and accelerometer and gyroscope data might be compressed, the FIFO provides a way to synchronize reading the FIFO on the basis of the accelerometer or gyroscope actual number of samples stored in FIFO: the BDR counter.

The BDR counter can be configured through the COUNTER_BDR_REG1 and COUNTER_BDR_REG2 registers.

Table 50. COUNTER_BDR_REG1 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0	TRIG_ COUNTER_BDR _1	TRIG_ COUNTER_BDR _0	0	0	AH_BIO_ BATCH_EN	CNT_BDR _TH_9	CNT_BDR _TH_8

The TRIG_COUNTER_BDR_[1:0] field selects the trigger for the BDR counter:

- 00: accelerometer sensor is selected as the trigger
- 01: gyroscope sensor is selected as the trigger

The user can select the threshold that generates the COUNTER_BDR_IA event in the FIFO_STATUS2 register. Once the internal BDR counter reaches the threshold, the COUNTER_BDR_IA bit is set to 1. The threshold is configurable through the CNT_BDR_TH_[9:0] bits. The upper part of the field is contained in register COUNTER_BDR_REG1. 1 LSB value of the CNT_BDR_TH threshold level is referred to as one accelerometer/gyroscope sample (X, Y, and Z data). The BDR counter is automatically reset when the FIFO is empty. Moreover, the COUNTER_BDR_REG1 register contains the AH_BIO_BATCH_EN bit, which can be set to 1 in order to enable batching the analog hub / vAFE data.

7.2.6 COUNTER_BDR_REG2

The COUNTER BDR REG2 register contains the lower part of the BDR-counter threshold.

Table 51. COUNTER_BDR_REG2 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CNT_BDR							
_TH_7	_TH_6	_TH_5	_TH_4	_TH_3	_TH_2	_TH_1	_TH_0

7.2.7 FIFO_STATUS1

The FIFO_STATUS1 register, together with the FIFO_STATUS2 register, provides information about the number of samples stored in the FIFO. 1 LSB value of the DIFF_FIFO level is referred to as a FIFO word (7 bytes).

Table 52. FIFO_STATUS1 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
DIFF_							
FIFO_7	FIFO_6	FIFO_5	FIFO_4	FIFO_3	FIFO_2	FIFO_1	FIFO_0

AN6120 - Rev 1 page 65/102

7.2.8 FIFO STATUS2

The FIFO_STATUS2 register, together with the FIFO_STATUS1 register, provides information about the number of samples stored in the FIFO and about the current status (watermark, overrun, full, BDR counter) of the FIFO buffer

Table 53. FIFO_STATUS2 register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
FIFO_ WTM_IA	FIFO_ OVR_IA	FIFO_ FULL_IA	COUNTER _BDR_IA	FIFO_OVR _LATCHED	0	0	DIFF_ FIFO_8

- FIFO_WTM_IA represents the watermark status. This bit goes high when the number of FIFO words (7 bytes each) already stored in the FIFO is equal to or higher than the watermark threshold level. The watermark status signal can be driven to the two interrupt pins by setting the INT1_FIFO_TH bit of the INT1_CTRL register or the INT2_FIFO_TH bit of the INT2_CTRL register to 1.
- FIFO_OVR_IA goes high when the FIFO is completely filled and at least one sample has already been
 overwritten to store the new data. This signal can be driven to the two interrupt pins by setting the
 INT1_FIFO_OVR bit of the INT1_CTRL register or the INT2_FIFO_OVR bit of the INT2_CTRL register to
 1.
- FIFO_FULL_IA goes high when the next set of data that is stored in FIFO makes the FIFO completely full (that is, DIFF_FIFO_8 = 1) or generate a FIFO overrun. This signal can be driven to the two interrupt pins by setting the INT1_FIFO_FULL bit of the INT1_CTRL register or the INT2_FIFO_FULL bit of the INT2_CTRL register to 1.
- COUNTER_BDR_IA represents the BDR-counter status. This bit goes high when the number of accelerometer or gyroscope batched samples (on the base of the selected sensor trigger) reaches the BDR-counter threshold level configured through the CNT_BDR_TH_[9:0] bits of the COUNTER_BDR_REG1 and COUNTER_BDR_REG2 registers. The COUNTER_BDR_IA bit is automatically reset when the FIFO_STATUS2 register is read. The BDR-counter status can be driven to the two interrupt pins by setting the INT1_CNT_BDR bit of the INT1_CTRL register or the INT2_CNT_BDR bit of the INT2_CTRL register to 1.
- FIFO_OVR_LATCHED, as FIFO_OVR_IA, goes high when the FIFO is completely filled and at least one sample has already been overwritten to store the new data. The difference between the two flags is that FIFO_OVR_LATCHED is reset when the FIFO_STATUS2 register is read, whereas the FIFO_OVR_IA is reset when at least one FIFO word is read. This allows detecting a FIFO overrun condition during reading data from FIFO.
- DIFF_FIFO_8 contains the upper part of the number of unread words stored in the FIFO. The lower part is
 represented by the DIFF_FIFO_[7:0] bits in FIFO_STATUS1. The value of the DIFF_FIFO_[8:0] field
 corresponds to the number of 7-byte words in the FIFO.

Register content is updated synchronously to the FIFO write and read operations.

Note: The BDU feature also acts on the FIFO_STATUS1 and FIFO_STATUS2 registers. When the BDU bit is set to 1, it is mandatory to read FIFO_STATUS1 first and then FIFO_STATUS2.

7.2.9 FIFO_DATA_OUT_TAG

By reading the FIFO_DATA_OUT_TAG register, it is possible to understand to which sensor the data of the current reading belongs and to check if the data are consistent.

Table 54. FIFO_DATA_OUT_TAG register

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
TAG_ SENSOR_4	TAG_ SENSOR_3	TAG_ SENSOR_2	TAG_ SENSOR_1	TAG_ SENSOR_0	TAG_ CNT_1	TAG_ CNT_0	-

- TAG SENSOR [4:0] field identifies the sensors stored in the 6 data bytes (Table 55).
- TAG CNT [1:0] field identifies the FIFO time slot (described in the next sections).

AN6120 - Rev 1 page 66/102

The table below contains all the possible values and associated type of sensor for the TAG_SENSOR_[4:0] field.

Table 55. TAG_SENSOR field and associated sensor

TAG_SENSOR_[4:0]	Sensor name	Sensor category	Description
0x00	Empty	-	FIFO empty condition
0x01	Gyroscope NC	Main	Gyroscope uncompressed data
0x02	Accelerometer NC	Main	Accelerometer uncompressed data
0x03	Temperature	Auxiliary	Temperature data
0x04	Timestamp	Auxiliary	Timestamp data
0x05	CFG_Change	Auxiliary	Meta-information data
0x06	Accelerometer NC_T_2	Main	Accelerometer uncompressed batched at two times the previous time slot
0x07	Accelerometer NC_T_1	Main	Accelerometer uncompressed data batched at the previous time slot
0x08	Accelerometer 2xC	Main	Accelerometer 2x compressed data
0x09	Accelerometer 3xC	Main	Accelerometer 3x compressed data
0x0A	Gyroscope NC_T_2	Main	Gyroscope uncompressed data batched at two times the previous time slot
0x0B	Gyroscope NC_T_1	Main	Gyroscope uncompressed data batched at the previous time slot
0x0C	Gyroscope 2xC	Main	Gyroscope 2x compressed data
0x0D	Gyroscope 3xC	Main	Gyroscope 3x compressed data
0x12	Step counter	Virtual	Step counter data
0x13	Game rotation vector	Virtual	SFLP-generated game rotation vector
0x16	Gyroscope bias	Virtual	SFLP-generated gyroscope bias
0x17	Gravity vector	Virtual	SFLP-generated gravity vector
0x1A	MLC result	Virtual	Machine learning core generated result
0x1B	MLC filter	Virtual	Machine learning core generated filter
0x1C	MLC feature	Virtual	Machine learning core generated feature
0x1D	Accelerometer DualC	Main	Accelerometer channel 2 data
0x1F	Analog hub / vAFE	Main	Analog hub or vAFE data

7.2.10 FIFO_DATA_OUT

Data can be retrieved from the FIFO through six dedicated registers, from address 79h to address 7Eh: FIFO_DATA_OUT_BYTE_0, FIFO_DATA_OUT_BYTE_1, FIFO_DATA_OUT_BYTE_2, FIFO_DATA_OUT_BYTE_3, FIFO_DATA_OUT_BYTE_4, FIFO_DATA_OUT_BYTE_5.

The FIFO output registers content depends on the sensor category and type, as described in the next section.

AN6120 - Rev 1 page 67/102

7.3 FIFO batched sensors

As previously described, batched sensors can be classified in three different categories:

- Main sensors
- Auxiliary sensors
- Virtual sensors

In this section, all the details about each category are presented.

7.4 Main sensors

The main sensors are the physical sensors of the ST1VAFE6AX device: accelerometer, gyroscope, and analog hub / vAFE. The batch data rate can be configured through the BDR_XL_[3:0] and BDR_GY_[3:0] fields of the FIFO_CTRL3 register. The batch data rate must be equal to or lower than the related sensor output data rate configured through the ODR_XL_[3:0] and ODR_G_[3:0] fields of the CTRL1 and CTRL2 registers.

Batching the accelerometer channel 2 data can be enabled by setting the XL_DualC_BATCH_FROM_IF bit to 1 in the EMB_FUNC_CFG register; alternatively, it can be triggered by the FSM (bit XL_DualC_BATCH_FROM_FSM must be set to 1 and one FSM must be configured to actually enable the batch operation). In both cases, accelerometer channel 2 data are stored in FIFO according to the ODR_XL_[3:0] field of the CTRL1 register.

Batching the analog hub / vAFE data is enabled by setting the AH_BIO_BATCH_EN bit of the COUNTER_BDR_REG1 register. Analog hub / vAFE data are stored in FIFO according to the analog hub / vAFE ODR, which is equal to 240 Hz or 120 Hz based on the configuration of the AH_BIO_LPF bit of the CTRL9 register (if the AH_BIO_LPF bit is set to 0, the notch filter is disabled and the ODR is equal to 240 Hz; if the AH_BIO_LPF bit is set to 1, the notch filter is enabled and the ODR is equal to 120 Hz).

The main sensors define the FIFO time base. This means that each one of the other sensors can be associated to a time base slot defined by the main sensors. A batch event of the fastest main sensor also increments the TAG counter (TAG_CNT field of the FIFO_DATA_OUT_TAG register). This counter is composed of two bits and its value is continuously incremented (from 00 to 11) to identify different time slots.

An example of a batch data rate event is shown in Figure 17. Main sensors and time slot definitions. The BDR_GY event and BDR_XL event identify the time in which the corresponding sensor data is written to the FIFO. The evolution of the TAG counter identifies different time slots and its frequency is equivalent to the maximum value between BDR_XL and BDR_GY, since accelerometer channel 2 and analog hub / vAFE are not batched in this example.

In the general case, the frequency of the TAG counter is equivalent to the maximum batch data rate among the accelerometer (considering also the accelerometer channel 2), the gyroscope, and the analog hub / vAFE, whichever is fastest.

AN6120 - Rev 1 page 68/102

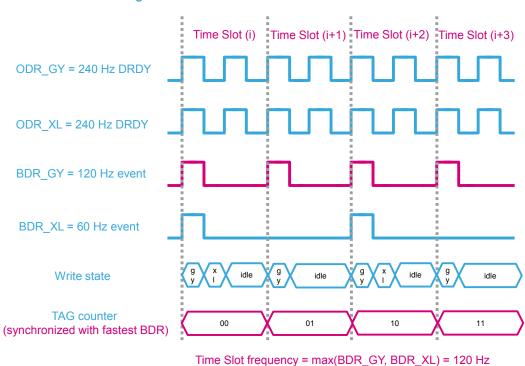


Figure 17. Main sensors and time slot definitions

The FIFO word format of the main sensors is presented in the tables below, representing the device addresses from 78h to 7Eh.

Table 56. Accelerometer output data format in FIFO

Z_L TAG Z_H Y_L Y_H X_L X_H Table 57. Gyroscope output data format in FIFO TAG X_L X_H Y_L Y_H Z_L Z_H Table 58. Analog hub / vAFE output data format in FIFO TAG AH_BIO_L AH_BIO_H

AN6120 - Rev 1 page 69/102

7.5 Auxiliary sensors

Auxiliary sensors are considered as service sensors for the main sensors. Auxiliary sensors include the:

- Temperature sensor (ODR T BATCH [1:0] bits of the FIFO CTRL4 register must be configured properly).
- Timestamp sensor: it stores the timestamp corresponding to a FIFO time slot (the TIMESTAMP_EN bit of the FUNCTIONS_ENABLE register must be set to 1 and the DEC_TS_BATCH_[1:0] bits of the FIFO_CTRL4 register must be configured properly).
- CFG-Change sensor: it identifies a change in some configuration of the device (ODR_CHG_EN bit of the FIFO CTRL2 register must be set to 1).

Auxiliary sensors cannot trigger a write in FIFO. Their registers are written when the first main sensor or the external sensor event occurs (even if they are configured at a higher batch data rate).

The temperature output data format in FIFO is presented in the following table.

Table 59. Temperature output data format in FIFO

Data	FIFO_DATA_OUT registers
TEMPERATURE[7:0]	FIFO_DATA_OUT_BYTE_0
TEMPERATURE[15:8]	FIFO_DATA_OUT_BYTE_1
0	FIFO_DATA_OUT_BYTE_2
0	FIFO_DATA_OUT_BYTE_3
0	FIFO_DATA_OUT_BYTE_4
0	FIFO_DATA_OUT_BYTE_5

The timestamp output data format in FIFO is presented in the following table.

Table 60. Timestamp output data format in FIFO

Data	FIFO_DATA_OUT registers
TIMESTAMP[7:0]	FIFO_DATA_OUT_BYTE_0
TIMESTAMP[15:8]	FIFO_DATA_OUT_BYTE_1
TIMESTAMP[23:16]	FIFO_DATA_OUT_BYTE_2
TIMESTAMP[31:24]	FIFO_DATA_OUT_BYTE_3
0	FIFO_DATA_OUT_BYTE_4[4:0]
XL_DualC_BATCH_EN ⁽¹⁾	FIFO_DATA_OUT_BYTE_4[5]
AH_BIO_BATCH_EN	FIFO_DATA_OUT_BYTE_4[6]
0	FIFO_DATA_OUT_BYTE_4[7]
BDR_XL	FIFO_DATA_OUT_BYTE_5[3:0]
BDR_GY	FIFO_DATA_OUT_BYTE_5[7:4]

^{1.} Internal signal that is set to 1 when the accelerometer channel 2 is stored in FIFO.

As shown in Table 60, timestamp data contain also some metainformation, which can be used to detect the batch data rate of both the main sensors if the CFG-Change sensor is not batched in FIFO. Moreover, the timestamp data also contain metainformation about the current batch state for the accelerometer channel 2.

CFG-Change identifies a runtime change in the output data rate, the batch data rate, or other configurations of the main or virtual sensors. When a supported runtime change is applied, this sensor is written at the first new main sensor or virtual sensor event followed by a timestamp sensor (also if the timestamp sensor is not batched).

This sensor can be used to correlate data from the sensors to the device timestamp without storing the timestamp each time. It could be also used to notify the user to discard data due to embedded filters settling or to other configuration changes (that is, switching mode, output data rate, and so forth).

AN6120 - Rev 1 page 70/102

CFG-Change output data format in FIFO is presented in the following table.

Table 61. CFG-Change output data format in FIFO

Data	FIFO_DATA_OUT registers
OP_MODE_XL	FIFO_DATA_OUT_BYTE_0[2:0]
OP_MODE_G	FIFO_DATA_OUT_BYTE_0[6:4]
LPF1_G_EN	FIFO_DATA_OUT_BYTE_0[7]
LPF1_G_BW	FIFO_DATA_OUT_BYTE_1[2:0]
FS_G_[2:0]	FIFO_DATA_OUT_BYTE_1[7:5]
LPF2_XL_EN	FIFO_DATA_OUT_BYTE_2[0]
HP_LPF2_XL_BW	FIFO_DATA_OUT_BYTE_2[3:1]
AH_BIO_BATCH_EN	FIFO_DATA_OUT_BYTE_2[4]
FS_XL	FIFO_DATA_OUT_BYTE_2[7:6]
0	FIFO_DATA_OUT_BYTE_3[4:0]
XL_DualC_BATCH_EN ⁽¹⁾	FIFO_DATA_OUT_BYTE_3[5]
Gyroscope startup ⁽²⁾	FIFO_DATA_OUT_BYTE_3[6]
FIFO_COMPR_RT_EN	FIFO_DATA_OUT_BYTE_3[7]
ODR_XL	FIFO_DATA_OUT_BYTE_4[3:0]
ODR_G	FIFO_DATA_OUT_BYTE_4[7:4]
BDR_XL	FIFO_DATA_OUT_BYTE_5[3:0]
BDR_GY	FIFO_DATA_OUT_BYTE_5[7:4]

^{1.} Internal signal that is set to 1 when the accelerometer channel 2 is stored in FIFO.

Note:

The write of the CFG-Change sensor in FIFO caused by enabling or disabling the XL_DualC_BATCH_FROM_IF bit might not precisely respect the actual accelerometer channel 2 batch in FIFO. One sample of accelerometer channel 2 data might be written in FIFO before the corresponding CFG-Change sensor when enabling the accelerometer channel 2 batch, or one sample of accelerometer channel 2 data might not be written in FIFO before the corresponding CFG-Change sensor when disabling the accelerometer channel 2 batch.

AN6120 - Rev 1 page 71/102

^{2.} Internal signal that is set to 0 when the gyroscope finishes the startup phase (maximum startup time is 70 ms).

7.6 Virtual sensors

Virtual sensors are divided into the following categories:

- Step counter sensor
- SFLP-generated sensors
- MLC-generated sensors

7.6.1 Step counter sensor

Step counter data, with associated timestamp, can be stored in FIFO. It is not a continuous rate sensor: the step detection event triggers its writing in FIFO.

In order to enable the step counter sensor in FIFO, the user should:

- 1. Enable the step counter sensor (set the PEDO_EN bit to 1 in the EMB_FUNC_EN_A embedded functions register)
- Enable batching step counter data (set the STEP_COUNTER_FIFO_EN bit to 1 in the EMB_FUNC_FIFO_EN_A embedded functions register)

The format of the step counter data read from FIFO is shown in the table below.

Data	FIFO_DATA_OUT registers
STEP_COUNTER[7:0]	FIFO_DATA_OUT_BYTE_0
STEP_COUNTER[15:8]	FIFO_DATA_OUT_BYTE_1
TIMESTAMP[7:0]	FIFO_DATA_OUT_BYTE_2
TIMESTAMP[15:8]	FIFO_DATA_OUT_BYTE_3
TIMESTAMP[23:16]	FIFO_DATA_OUT_BYTE_4
TIMESTAMP[31:24]	FIFO_DATA_OUT_BYTE_5

Table 62. Step counter output data format in FIFO

7.6.2 SFLP-generated sensors

A dedicated sensor fusion block (SFLP) is available for generating the following virtual sensors based on processing the accelerometer and gyroscope data:

- · Game rotation vector, which provides a quaternion representing the attitude of the device
- · Gravity vector, which provides a three dimensional vector representing the direction of gravity
- Gyroscope bias, which provides a three dimensional vector representing the gyroscope bias

SFLP-generated sensors are read only from FIFO and they are selectively enabled:

- Game rotation vector is batched by setting the SFLP_GAME_FIFO_EN bit of the EMB_FUNC_FIFO_EN_A
 register to 1.
- Gravity vector is batched by setting the SFLP_GRAVITY_FIFO_EN bit of EMB_FUNC_FIFO_EN_A
 register to 1.
- Gyroscope bias is batched by setting the SFLP_GBIAS_FIFO_EN bit of the EMB_FUNC_FIFO_EN_A
 register to 1.

If batching in FIFO is enabled, the SFLP-generated sensors are stored in FIFO according to the SFLP output data rate.

The format for the SFLP-generated sensors in FIFO is listed below:

- Game rotation vector: X, Y, and Z axes (vector part of the quaternion) are stored in half-precision floatingpoint format, where w (scalar part of the quaternion) is computed in software after reading the data from the FIFO, since the game rotation vector is a unit quaternion.
- Gravity vector: Z, Y, and X axes are stored as 16-bit two's complement number with ±2 g sensitivity.
- Gyroscope bias: X, Y, and Z axes are stored as 16-bit two's complement number with ±125 dps sensitivity.

AN6120 - Rev 1 page 72/102

7.6.3 MLC-generated sensors

The following machine learning core (MLC-generated) virtual sensors can be stored in FIFO:

- Results
- Filters
- Features, including windowed and recursive features

In order to store MLC-generated sensors in FIFO, the MLC block must be enabled by setting either the MLC_BEFORE_FSM_EN bit of the EMB_FUNC_EN_A register or the MLC_EN bit of the EMB_FUNC_EN_B register.

Batching MLC results is enabled by setting the MLC_FIFO_EN bit of the EMB_FUNC_FIFO_EN_A register to 1. An MLC result contains the information of the corresponding MLCx_SRC register and it is stored in FIFO when a change in the corresponding MLCx_SRC occurs.

Batching MLC filters is selectively enabled using one of the tools for configuring the MLC provided by STMicroelectronics. In addition, the MLC_FILTER_FEATURE_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register must be set to 1 to globally enable storing MLC filters or features in FIFO.

MLC filters are stored in FIFO at a rate equivalent to the MLC output data rate (MLC_ODR bits). If the filter is applied to the X, Y, Z axes of the desired sensor, one word is stored in FIFO for every axis. If the filter is applied to the norm of the desired sensor, one word is stored in FIFO.

Batching MLC features is selectively enabled using one of the tools for configuring the MLC provided by STMicroelectronics. In addition, the MLC_FILTER_FEATURE_FIFO_EN bit of the EMB_FUNC_FIFO_EN_B register must be set to 1 to globally enable storing MLC filters or features in FIFO.

MLC-windowed features are stored in FIFO at the end of every window.

MLC recursive features (like MLC filters) are stored in FIFO at a rate equivalent to the MLC output data rate (MLC ODR).

The format of MLC results, features, and filters in FIFO is indicated in the following tables.

Data	FIFO_DATA_OUT registers
MLCx_SRC	FIFO_DATA_OUT_BYTE_0
Index of MLC_SRC ⁽¹⁾	FIFO_DATA_OUT_BYTE_1
TIMESTAMP[7:0]	FIFO_DATA_OUT_BYTE_2
TIMESTAMP[15:8]	FIFO_DATA_OUT_BYTE_3
TIMESTAMP[23:16]	FIFO_DATA_OUT_BYTE_4
TIMESTAMP[31:24]	FIFO_DATA_OUT_BYTE_5

Table 63. MLC results in FIFO

Table 64. MLC filters or features in FIFO

Data	FIFO_DATA_OUT registers
VALUE[7:0] ⁽¹⁾	FIFO_DATA_OUT_BYTE_0
VALUE[15:8] ⁽¹⁾	FIFO_DATA_OUT_BYTE_1
IDENTIFIER[7:0] ⁽²⁾	FIFO_DATA_OUT_BYTE_2
IDENTIFIER[15:8] ⁽²⁾	FIFO_DATA_OUT_BYTE_3
Reserved	FIFO_DATA_OUT_BYTE_4
Reserved	FIFO_DATA_OUT_BYTE_5

^{1.} This value is represented as a half-precision floating-point number.

AN6120 - Rev 1 page 73/102

^{1.} MLCx_SRC registers are indexed from 0 to 3 (for example, MLC1_SRC is indexed as 0).

Filter and feature identifiers are indicated in the configuration file generated by STMicroelectronics tools for configuring the MLC.

7.7 FIFO modes

The ST1VAFE6AX FIFO buffer can be configured to operate in seven different modes, selectable through the FIFO_MODE_[2:0] field of the FIFO_CTRL4 register. The available configurations ensure a high level of flexibility and extend the number of functions usable in application development.

Bypass, FIFO, continuous, continuous-to-FIFO, bypass-to-continuous, bypass-to-FIFO, and continuousWTM-to-full modes are described in the following paragraphs.

7.7.1 Bypass mode

When bypass mode is enabled, the FIFO is not used, the buffer content is cleared, and it remains empty until another mode is selected. Bypass mode is selected when the FIFO_MODE_[2:0] bits are set to 000. Bypass mode must be used in order to stop and reset the FIFO buffer when a different mode is intended to be used. Note that by placing the FIFO buffer into bypass mode, the whole buffer content is cleared.

7.7.2 FIFO mode

In FIFO mode, the buffer continues filling until it becomes full. Then it stops collecting data and the FIFO content remains unchanged until a different mode is selected.

Follow these steps for FIFO mode configuration:

- 1. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- 2. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 register to 001 to enable FIFO mode.

When this mode is selected, the FIFO starts collecting data. The FIFO_STATUS1 and FIFO_STATUS2 registers are updated according to the number of samples stored.

When the FIFO is full, the DIFF_FIFO_8 bit of the FIFO_STATUS2 register is set to 1 and no more data are stored in the FIFO buffer. Data can be retrieved by reading all the FIFO_DATA_OUT (from 78h to 7Eh) registers for the number of times specified by the DIFF_FIFO_[8:0] bits of the FIFO_STATUS1 and FIFO_STATUS2 registers.

Using the FIFO_WTM_IA bit of the FIFO_STATUS2 register, data can also be retrieved when a threshold level (WTM_[7:0] in the FIFO_CTRL1 register) is reached if the application requires a lower number of samples in the FIFO.

If the STOP_ON_WTM bit of the FIFO_CTRL2 register is set to 1, the FIFO size is limited to the value of the WTM_[7:0] bits in the FIFO_CTRL1 register. In this case, the FIFO_FULL_IA bit of the FIFO_STATUS2 register is set high when the number of samples in FIFO reaches or exceeds the WTM_[7:0] value on the next FIFO write operation.

Communication speed is not very important in FIFO mode because the data collection is stopped and there is no risk of overwriting data already acquired. Before restarting the FIFO mode, it is necessary to set to bypass mode first in order to completely clear the FIFO content.

Figure 18. FIFO mode (STOP_ON_WTM = 0) shows an example of FIFO mode usage; the data from just one sensor are stored in the FIFO. In these conditions, the number of samples that can be stored in the FIFO buffer is 256 (with compression algorithm disabled). The FIFO_FULL_IA bit of the FIFO_STATUS2 register goes high just after the level labeled as 254 to notify that the FIFO buffer will be completely filled at the next FIFO write operation. After the FIFO is full (FIFO_DIFF_8 = 1), the data collection stops.

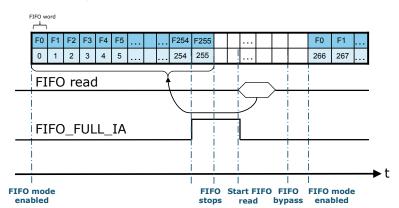


Figure 18. FIFO mode (STOP_ON_WTM = 0)

AN6120 - Rev 1 page 74/102

7.7.3 Continuous mode

In continuous mode, the FIFO continues filling. When the buffer is full, the FIFO index restarts from the beginning, and older data are replaced by the new data. The oldest values continue to be overwritten until a read operation frees FIFO slots. The host processor reading speed is important in order to free slots faster than new data is made available. To stop this configuration, bypass mode must be selected.

Follow these steps for continuous mode configuration (if the accelerometer/gyroscope data-ready is used as the FIFO trigger):

- 1. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- 2. Set the FIFO MODE [2:0] field in the FIFO CTRL4 register to 110 to enable FIFO mode.

When this mode is selected, the FIFO collects data continuously. The FIFO_STATUS1 and FIFO_STATUS2 registers are updated according to the number of samples stored. When the next FIFO write operation makes the FIFO completely full or generates a FIFO overrun, the FIFO_FULL_IA bit of the FIFO_STATUS2 register goes to 1. The FIFO_OVR_IA and FIFO_OVR_LATCHED bits in the FIFO_STATUS2 register indicates when at least one FIFO word has been overwritten to store the new data. Data can be retrieved after the FIFO_FULL_IA event by reading the FIFO_DATA_OUT (from 78h to 7Eh) registers for the number of times specified by the DIFF_FIFO_[8:0] bits in the FIFO_STATUS1 and FIFO_STATUS2 registers. Using the FIFO_WTM_IA bit of the FIFO_STATUS2 register, data can also be retrieved when a threshold level (WTM_[7:0] in the FIFO_CTRL1 register) is reached. If the STOP_ON_WTM bit of the FIFO_CTRL2 register is set to 1, the FIFO size is limited to the value of the WTM_[7:0] bits in the FIFO_CTRL1 register. In this case, the FIFO_FULL_IA bit of the FIFO_STATUS2 register goes high when the number of samples in FIFO reaches or overcomes the WTM_[7:0] value at the next FIFO write operation.

Figure 19. Continuous mode shows an example of the continuous mode usage. In the example, data from just one sensor are stored in the FIFO and the FIFO samples are read on the FIFO_FULL_IA event and faster than 1 * ODR so that no data is lost. In these conditions, the number of samples stored is 255.

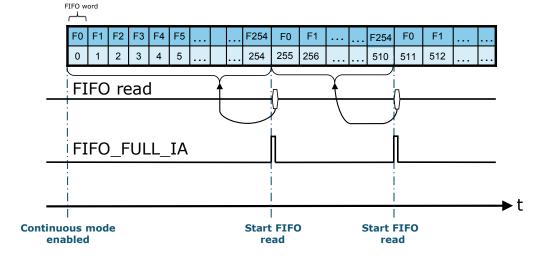


Figure 19. Continuous mode

AN6120 - Rev 1 page 75/102

7.7.4 Continuous-to-FIFO mode

This mode is a combination of the continuous and FIFO modes previously described. In continuous-to-FIFO mode, the FIFO buffer starts operating in continuous mode and switches to FIFO mode when an event condition occurs.

The event condition can be one of the following:

- Single tap: event detection has to be configured and the INT2_SINGLE_TAP bit of the MD2_CFG register has to be set to 1.
- Double tap: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register
 has to be set to 1.
- Free-fall: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1
- Wake-up: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1.
- 6D: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.

Continuous-to-FIFO mode is sensitive to the edge of the interrupt signal. At the first interrupt event, FIFO changes from continuous mode to FIFO mode and maintains it until bypass mode is set.

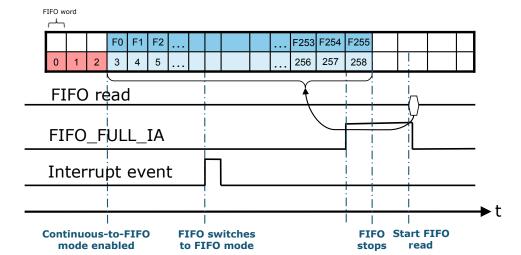


Figure 20. Continuous-to-FIFO mode

Follow these steps for continuous-to-FIFO mode configuration (if the accelerometer/gyroscope data-ready is used as the FIFO trigger):

- 1. Configure one of the events as previously described.
- 2. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- 3. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 register to 011 to enable FIFO continuous-to-FIFO mode. In continuous-to-FIFO mode the FIFO buffer continues filling. When the FIFO is full or overrun at the next FIFO write operation, the FIFO_FULL_IA bit goes high.

If the STOP_ON_WTM bit of the FIFO_CTRL2 register is set to 1, the FIFO size is limited to the value of the WTM_[7:0] bits in the FIFO_CTRL1 register. In this case, the FIFO_FULL_IA bit of the FIFO_STATUS2 register goes high when the number of samples in FIFO reaches or exceeds the WTM_[7:0] value at the next FIFO write operation.

When the trigger event occurs, two different cases can be observed:

- 1. If the FIFO buffer is already full, it stops collecting data at the first sample after the event trigger. The FIFO content is composed of the samples collected before the event.
- 2. If FIFO buffer is not full yet, it continues filling until it becomes full and then it stops collecting data.

Continuous-to-FIFO can be used in order to analyze the history of the samples which have generated an interrupt. The standard operation is to read the FIFO content when the FIFO mode is triggered and the FIFO buffer is full and stopped.

AN6120 - Rev 1 page 76/102

7.7.5 Bypass-to-continuous mode

This mode is a combination of the bypass and continuous modes previously described. In bypass-to-continuous mode, the FIFO buffer starts operating in bypass mode and switches to continuous mode when an event condition occurs.

The event condition can be one of the following:

- Single tap: event detection has to be configured and the INT2_SINGLE_TAP bit of the MD2_CFG register has to be set to 1.
- Double tap: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register
 has to be set to 1.
- Free-fall: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1
- Wake-up: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1.
- 6D: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.

Bypass-to-continuous mode is sensitive to the edge of the interrupt signal. At the first interrupt event, FIFO changes from bypass mode to continuous mode and maintains it until bypass mode is set.

Follow these steps for bypass-to-continuous mode configuration (if the accelerometer / gyroscope data-ready is used as the FIFO trigger):

- 1. Configure one of the events as previously described.
- 2. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- 3. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 register to 100 to enable FIFO bypass-to-continuous mode.

Once the trigger condition appears and the buffer switches to continuous mode, the FIFO buffer continues filling. When the next stored set of data makes the FIFO full or overrun, the FIFO FULL IA bit is set high.

Bypass-to-continuous can be used in order to start the acquisition when the configured interrupt is generated.

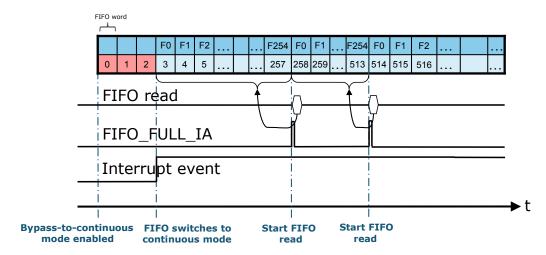


Figure 21. Bypass-to-continuous mode

AN6120 - Rev 1 page 77/102

7.7.6 Bypass-to-FIFO mode

This mode is a combination of the bypass and FIFO modes previously described. In bypass-to-FIFO mode, the FIFO buffer starts operating in bypass mode and switches to FIFO mode when an event condition occurs.

The event condition can be one of the following:

- Single tap: event detection has to be configured and the INT2_SINGLE_TAP bit of the MD2_CFG register has to be set to 1.
- Double tap: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register
 has to be set to 1.
- Free-fall: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1
- Wake-up: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1.
- 6D: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.

Bypass-to-FIFO mode is sensitive to the edge of the interrupt signal. At the first interrupt event, FIFO changes from bypass mode to FIFO mode and maintains it until ypass mode is set.

Follow these steps for ypass-to-FIFO mode configuration (if the accelerometer / gyroscope data-ready is used as the FIFO trigger):

- 1. Configure one of the events as previously described.
- 2. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- 3. Set the FIFO_MODE_[2:0] bits in the FIFO_CTRL4 register to 111 to enable FIFO bypass-to-FIFO mode.

Once the trigger condition appears and the buffer switches to FIFO mode, the FIFO buffer starts filling. When the next stored set of data makes the FIFO full or overrun, the FIFO_FULL_IA bit is set high and the FIFO stops.

Bypass-to-FIFO can be used in order to analyze the history of the samples which have generated an interrupt.

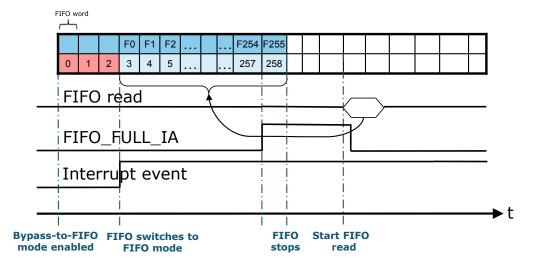


Figure 22. Bypass-to-FIFO mode

AN6120 - Rev 1 page 78/102

7.7.7 ContinuousWTM-to-full mode

This mode is similar to continuous-to-FIFO mode previously described, with the following additional behaviors:

- When in continuous mode, the FIFO size is automatically limited according to the selected FIFO threshold level (WTM_[7:0] field of the FIFO_CTRL1 register), and for this reason it is referred to as "continuousWTM" mode. When in this mode, the FIFO full event is internally masked.
- When in FIFO mode, the FIFO size is no longer limited to the selected FIFO threshold level, and for this
 reason it is referred to as "full" mode. When in this mode, the FIFO full event is no longer internally
 masked.

In continuousWTM-to-full mode, the FIFO buffer starts operating in continuousWTM mode and switches to full mode when an event condition occurs.

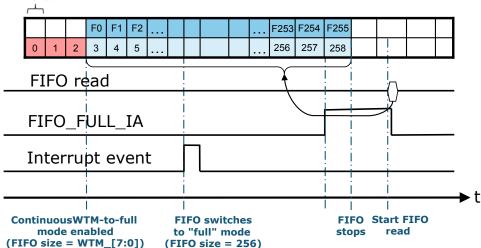
The event condition can be one of the following:

- Single tap: event detection has to be configured and the INT2_SINGLE_TAP bit of the MD2_CFG register has to be set to 1.
- Double tap: event detection has to be configured and the INT2_DOUBLE_TAP bit of the MD2_CFG register
 has to be set to 1.
- Free-fall: event detection has to be configured and the INT2_FF bit of the MD2_CFG register has to be set to 1.
- Wake-up: event detection has to be configured and the INT2_WU bit of the MD2_CFG register has to be set to 1.
- 6D: event detection has to be configured and the INT2_6D bit of the MD2_CFG register has to be set to 1.

ContinuousWTM-to-full mode is sensitive to the edge of the interrupt signal. At the first interrupt event, FIFO changes from continuousWTM mode to full mode and maintains it until bypass mode is set.

Follow these steps for continuousWTM-to-full mode configuration (if the accelerometer/gyroscope data-ready is used as the FIFO trigger):

1. Configure one of the events as previously described.


FIFO word

- 2. Enable the sensor data to be stored in FIFO with the corresponding batch data rate (if configurable).
- Set the FIFO_MODE_[2:0] field in the FIFO_CTRL4 register to 010 to enable FIFO continuousWTM-to-full mode.

In continuousWTM-to-full mode the FIFO buffer continues filling. When the FIFO is full or overrun at the next FIFO write operation (as indicated above, the FIFO size is automatically limited to the value of the WTM_[7:0] field in the FIFO_CTRL1 register), the FIFO_FULL_IA bit does not go high, since it is internally masked. When the trigger event occurs, the FIFO buffer size is no longer limited to the value of the WTM_[7:0] field in the FIFO_CTRL1 register and it continues filling until it becomes full and then it stops collecting data.

ContinuousWTM-to-full mode can be used in order to analyze the history of both the samples which have generated an interrupt and the samples right after the interrupt generation. The standard operation is to read the FIFO content when the FIFO mode is triggered and the FIFO buffer is full and stopped.

Figure 23. ContinuousWTM-to-full mode

AN6120 - Rev 1 page 79/102

7.8 Retrieving data from the FIFO

When FIFO is enabled and the mode is different from bypass, reading the FIFO output registers return the oldest FIFO sample set. Whenever these registers are read, their content is moved to the SPI/I²C/MIPI I3CSM output buffer.

FIFO slots are ideally shifted up one level in order to release room for a new sample, and the FIFO output registers load the current oldest value stored in the FIFO buffer.

One way to retrieve data from the FIFO is the following:

- 1. Read the FIFO_STATUS1 and FIFO_STATUS2 registers to check how many words are stored in the FIFO. This information is contained in the DIFF_FIFO_[8:0] field.
- 2. For each word in FIFO, read the FIFO word (tag and output data) and interpret it on the basis of the FIFO tag.
- 3. Go to step 1.

The entire FIFO content is retrieved by performing a certain number of read operations from the FIFO output registers until the buffer becomes empty (DIFF_FIFO_[8:0] bits of the FIFO_STATUS1 and FIFO_STATUS2 register are equal to 0).

FIFO can be read when it is empty. In this case, the FIFO word is marked by the specific empty tag.

FIFO output data must be read with a multiple of 7 bytes reads starting from the FIFO_DATA_OUT_TAG register. The wraparound function from address FIFO_DATA_OUT_BYTE_5 to FIFO_DATA_OUT_TAG is done automatically in the device, in order to allow reading many words with a unique multiple read operation. In this case, it is recommended to retrieve the data from the FIFO as follows:

- 1. Read the FIFO_STATUS1 and FIFO_STATUS2 registers to check how many words are stored in the FIFO. This information is contained in the DIFF_FIFO_[8:0] field.
- 2. Read DIFF_FIFO + N words with a multiple operation (that is, (DIFF_FIFO + N) * 7 bytes), where N is chosen in order to make sure that the FIFO has been emptied.
- 3. If the data read from the FIFO do not contain data marked with the empty tag, then read N additional samples in order to empty the FIFO.

AN6120 - Rev 1 page 80/102

7.9 FIFO watermark threshold

The FIFO threshold is a functionality of the ST1VAFE6AX FIFO which can be used to check when the number of samples in the FIFO reaches a defined watermark threshold level.

The bits WTM_[7:0] in the FIFO_CTRL1 register contain the watermark threshold level. The resolution of the WTM_[7:0] field is 7 bytes, corresponding to a complete FIFO word. So, the user can select the desired level in a range between 0 and 255.

The bit FIFO_WTM_IA in the FIFO_STATUS2 register represents the watermark status. This bit is set high if the number of words in the FIFO reaches or exceeds the watermark level. FIFO size can be limited to the threshold level by setting the STOP_ON_WTM bit in the FIFO_CTRL2 register to 1.

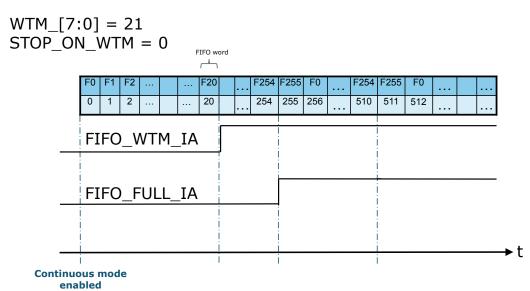


Figure 24. FIFO threshold (STOP_ON_WTM = 0)

Figure 24. FIFO threshold (STOP_ON_WTM = 0) shows an example of FIFO threshold level usage when just accelerometer (or gyroscope) data are stored. The STOP_ON_WTM bit set to 0 in the FIFO_CTRL2 register. The threshold level is set to 21 through the WTM_[7:0] bits. The FIFO_WTM_IA bit of the FIFO_STATUS2 register rises after the 21st level has been reached (21 words in the FIFO). Since the STOP_ON_WTM bit is set to 0, the FIFO does not stop at the 21st set of data, but keeps storing data until the FIFO FULL IA flag is set high.

AN6120 - Rev 1 page 81/102

Figure 25. FIFO threshold (STOP_ON_WTM = 1) in FIFO mode

$$WTM_[7:0] = 21$$

 $STOP_ON_WTM = 1$

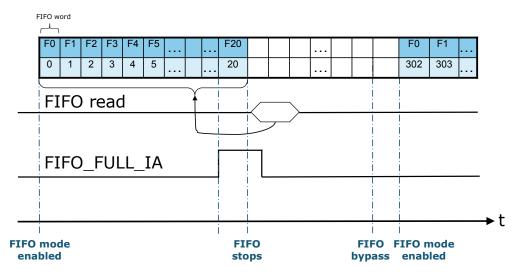


Figure 25. FIFO threshold (STOP_ON_WTM = 1) in FIFO mode shows an example of FIFO threshold level usage in FIFO mode with the STOP_ON_WTM bit set to 1 in the FIFO_CTRL2 register. Just accelerometer (or gyroscope) data are stored in this example. The threshold level is set to 21 through the WTM_[7:0] bits and defines the current FIFO size. In FIFO mode, data are stored in the FIFO buffer until the FIFO is full. The FIFO_FULL_IA bit of the FIFO_STATUS2 register rises when the next data stored in the FIFO generates the FIFO full or overrun condition. The FIFO_WTM_IA bit of the FIFO_STATUS2 register goes high when the FIFO is full.

Figure 26. FIFO threshold (STOP_ON_WTM = 1) in continuous mode

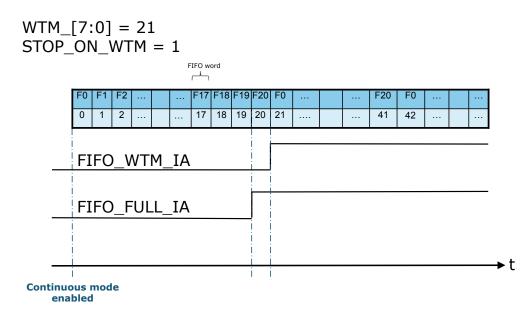


Figure 26. FIFO threshold (STOP_ON_WTM = 1) in continuous mode shows an example of FIFO threshold level usage in continuous mode with the STOP_ON_WTM bit set to 1 in the FIFO_CTRL2 register. Just accelerometer (or gyroscope) data are stored in this example. The threshold level is set to 21 through the WTM_[7:0] bits. The FIFO_FULL_IA bit of the FIFO_STATUS2 register rises when the next data stored in the FIFO makes the FIFO full. The FIFO_WTM_IA bit of the FIFO_STATUS2 goes high when the FIFO is full. If data are not retrieved from FIFO, new data (labeled as sample 21) overrides the older data stored in FIFO (labeled as sample F0).

AN6120 - Rev 1 page 82/102

7.10 FIFO compression

FIFO compression is an embedded algorithm that allows storing up to 3 times the number of accelerometer and gyroscope data in FIFO. The compression algorithm automatically analyzes the slope of the sensor waveform and applies the compression of data in FIFO on the basis of the slope (difference between two consecutive samples).

FIFO compression can be enabled on accelerometer and gyroscope data in FIFO by setting both the FIFO_COMPR_EN bit in the EMB_FUNC_EN_B embedded function register and the FIFO_COMPR_RT_EN bit in the FIFO_CTRL2 register. When active, the compression affects both accelerometer and gyroscope data and the level of compression is independent.

The accelerometer and gyroscope batch data rate (BDR) can be configured independently, but the compression algorithm is not supported if the accelerometer and/or the gyroscope are batched at a rate greater than 1920 Hz. FIFO compression supports three different levels of compression:

- NC, not compressed. If the difference between the actual and previous data is higher than 128 LSB, then
 one sensor sample is stored in one FIFO word.
- 2xC, low compression. If the difference between the actual and previous data between 16 and 128 LSB, then two sensor samples are stored in one FIFO word.
- 3xC, high compression. If the difference between the actual and previous data is less than 16 LSB, then three sensor samples are stored in one FIFO word.

AN6120 - Rev 1 page 83/102

7.10.1 Time correlation

There are five different tags (for each main sensor) depending on the degree of compression:

- NC, noncompressed, associated to the actual time slot
- NC T 2, noncompressed, associated to two times the previous time slot
- NC T 1, noncompressed, associated to the previous time slot
- 2xC, low compression
- 3xC, high compression

All NC tags are useful in understanding the time slot correlation. By decoding the sensor tag, it is possible to understand the time frame in which the data was generated.

At the first batch event, the compression algorithm writes a noncompressed word (NC) in FIFO. After that, the algorithm analyzes the slope of the waveforms and three FIFO entries are possible:

- 3xC data written, which contains diff(i), diff(i − 1) and diff(i − 2)
- 2xC data written, which contains diff(i 1) and diff(i 2)
- NC T 2 data written, which contains data(i 2)

Noncompressed tag sensor NC_T_1 could be written when a configuration change occurs or when the user wants to temporarily disable the runtime FIFO compression by deasserting the FIFO_COMPR_RT_EN bit in the FIFO_CTRL2 register.

The table below summarizes the data and time slot associated for each tag.

Tag sensor	Time slot data
NC	data(i)
NC_T_1	data(i - 1)
NC_T_2	data(i - 2)
2xC	diff(i - 2), diff(i - 1)
3xC	diff(i - 2), diff(i - 1), diff(i)

Table 65. FIFO compression tags and associated data

As shown in Table 65, using FIFO compression introduces a latency of 2 / BDR, since the compression acts on a window of three BDR.

AN6120 - Rev 1 page 84/102

7.10.2 Data format

A FIFO word of a compressed data contains the information of its slope with respect to its previous data:

$$data(i) = diff(i) + data(i-1)$$

Thus, the last decoded data, data(i-1) in the formula above, must be saved when performing the decompression task.

The following table summarizes the output data format in FIFO for 2xC compressed data.

Table 66. 2xC compressed data output data format in FIFO

Data	Formula
diffx(i – 2)	8bit_signed(FIFO_DATA_OUT_BYTE_0)
diffy(i – 2)	8bit_signed(FIFO_DATA_OUT_BYTE_1)
diffz(i – 2)	8bit_signed(FIFO_DATA_OUT_BYTE_2)
diffx(i – 1)	8bit_signed(FIFO_DATA_OUT_BYTE_3)
diffy(i – 1)	8bit_signed(FIFO_DATA_OUT_BYTE_4)
diffz(i – 1)	8bit_signed(FIFO_DATA_OUT_BYTE_5)

The following table summarizes the output data format in FIFO for 3xC compressed data.

Table 67. 3xC compressed data output data format in FIFO

Data	Formula
diffx(i – 2)	5bit_signed(FIFO_DATA_OUT_BYTE_01[4:0])
diffy(i – 2)	5bit_signed(FIFO_DATA_OUT_BYTE_01[9:5])
diffz(i – 2)	5bit_signed(FIFO_DATA_OUT_BYTE_01[14:10])
diffx(i – 1)	5bit_signed(FIFO_DATA_OUT_BYTE_23[4:0])
diffy(i – 1)	5bit_signed(FIFO_DATA_OUT_BYTE_23[9:5])
diffz(i – 1)	5bit_signed(FIFO_DATA_OUT_BYTE_23[14:10])
diffx(i)	5bit_signed(FIFO_DATA_OUT_BYTE_45[4:0])
diffy(i)	5bit_signed(FIFO_DATA_OUT_BYTE_45[9:5])
diffz(i)	5bit_signed(FIFO_DATA_OUT_BYTE_45[14:10])

In the table above:

- FIFO_DATA_OUT_BYTE_01[15:0] = FIFO_DATA_OUT_BYTE_0 + FIFO_DATA_OUT_BYTE_1 << 8
- FIFO_DATA_OUT_BYTE_23[15:0] = FIFO_DATA_OUT_BYTE_2 + FIFO_DATA_OUT_BYTE_3 << 8
- FIFO_DATA_OUT_BYTE_45[15:0] = FIFO_DATA_OUT_BYTE_4 + FIFO_DATA_OUT_BYTE_5 << 8

AN6120 - Rev 1 page 85/102

7.10.3 Disabling FIFO compression at runtime

The FIFO compression introduces a latency of 2 / BDR in the writing of the sensor in FIFO. Using FIFO compression is not indicated when user want to flush FIFO with low latency.

In case both high latency and low latency can be used, FIFO can be configured in the more convenient way also at runtime.

The FIFO_COMPR_RT_EN bit can be changed at runtime in order to move from an enabled compression algorithm to a disabled compression algorithm (without latency). The switching is managed as a device configuration change. FIFO writes the CFG-Change sensor at the first BDR event after the change. In that case, all data not yet stored are written at the same time slot with tag NC, NC_T_2 or NC_T_1.

The table below shows an example of a runtime disabled compression algorithm. In this case, a main sensor, CFG-Change sensor and timestamp sensor are supposed to be batched in FIFO. FIFO compression is runtime disabled between time instant t(i-1) and time instant t(i). As explained above, all data that are not yet stored are written to the same slot preceded by CFG-Change and timestamp sensors.

Table 68. Example of disabled runtime compression

Time	FIFO_COMPR_RT_EN	Sensor	FIFO_DATA_OUT
	1		
t(i-3)	1	3xC	diff(i-5), diff(i-4), diff(i-3)
t(i-2)	1	-	-
t(i-1)	1	-	-
Async event	0	-	-
	CFG_Change	CFG_Change	CFG-change data
		Timestamp	Timestamp data
t(i)	0	NC_T_2	data(i-2)
		NC_T_1	data(i-1)
		NC	data(i)
t(i+1)	0	NC	data(i+1)
t(i+2)	0	NC	data(i+2)

AN6120 - Rev 1 page 86/102

7.10.4 CFG-Change sensor with FIFO compression enabled

When a change of configuration is applied to the device, the application processor must discriminate the data of previous configurations with the data of the new configuration. For this task, the same approach as the FIFO_COMPR_RT_EN change is applied as shown in the table below. In this case, a main sensor, CFG-Change sensor and timestamp sensor are supposed to be batched in FIFO. A new device configuration is applied between time instant t(i-1) and time instant t(i). As explained, all data that are not yet stored are written to the same slot preceded by the CFG-Change and timestamp sensors. After that, the FIFO compression algorithm restarts to operate as expected.

Time	FIFO_COMPR_RT_EN	Sensor	FIFO_DATA_OUT
	1		
t(i-3)	1	3xC	diff(i-5), diff(i-4), diff(i-3)
t(i-2)	1	-	-
t(i-1)	1	-	-
Async event (CFG-change)	1	-	-
		CFG_Change	CFG-change data
		Timestamp	Timestamp data
t(i)	1	NC_T_2	data(i-2)
		NC_T_1	data(i-1)
		NC	data(i)
t(i+1)	1	-	-
t(i+2)	1	-	-
t(i+3)	1	3xC	diff(i+1), diff(i+2), diff(i+3)

Table 69. Example of device configuration change with FIFO compression enabled

7.10.5 Noncompressed data rate

A compression algorithm can be configured in order to guarantee writing of noncompressed data with a certain periodicity (8, 16, 32 BDR events) through the UNCOMPR_RATE_[1:0] field in FIFO_CTRL2.

The usage of the noncompressed data rate in FIFO can be useful for data reconstruction when there is a possibility of FIFO overrun events: if an overrun occurs and the reference noncompressed data is overwritten, it is not possible to reconstruct the current data until new noncompressed data is written in FIFO. The UNCOMPR_RATE_[1:0] field configures the compression algorithm to write noncompressed data at a specific rate, in order to be sure to have at least one noncompressed data every 8, 16, or 32 samples.

UNCOPTR_RATE_[1:0]	NC data write
00	NC data is not forced
01	NC data each 8 BDR
10	NC data each 16 BDR
11	NC data each 32 BDR

Table 70. UNCOPTR_RATE configuration

7.10.6 FIFO compression initialization

When FIFO is set in bypass mode, the compression algorithm must be reinitialized by asserting the FIFO_COMPR_INIT bit in the EMB_FUNC_INIT_B embedded functions register.

AN6120 - Rev 1 page 87/102

7.10.7 FIFO compression example

The following table provides a basic numerical example of the data that could be read from the FIFO when the compression feature is enabled. In this example, the accelerometer sensor only is stored in FIFO and it is configured with a full scale of ± 2 g.

FIFO_DATA_OUT registers Data analysis Time Acceleration Acceleration Acceleration TAG_ SENSOR_[4:0] Latency [n/ ODR] BYTE_0 BYTE_1 BYTE_2 BYTE_3 BYTE_4 BYTE_5 Compression [n/ODR] [LSB] [LSB] [LSB] 0 0x02 0x4F 0x01 0x84 0x000x85 0x3C NC 335 132 15493 0 0x00 0x86 0x40 16518 3 0x06 0x61 0x01 0x96 NC_T_2 353 150 2 4 0x5C 0x0B 0x0D 0xF8 16520 0x09 0x43 0x33 3xC 349 144 2 352 16523 154 1 339 155 16521 O 0x9E 0xC2 7 0x090x040x030xFC 0x033xC 337 159 16522 2 159 16517 1 340 342 157 16517 O 10 0x08 0xFB 0x0A0x0F0xFF 0xF0 2xC 16538 2 0x15 337 167 351 149 16522 1 0x80 12 0x090xD8 0x64 0x20 0x97 0x2B 3xC 351 16512 2 153 355 156 16520 1 346 152 16530 0

Table 71. FIFO compression example

At the first batch event, the compression algorithm writes a noncompressed word (NC) without latency in FIFO. After that, the algorithm analyzes the slope of the waveforms and three possible FIFO entries are possible: 3xC, 2xC, NC_T_2. Noncompressed words with the NC_T_1 tag are not present in this example since there is no runtime configuration change.

The second sample stored in FIFO is a noncompressed word with latency of 2 samples (NC_T_2): this FIFO entry contains the entire accelerometer data (without any compression).

Then, since the accelerometer data slope is low, the compression algorithm starts to compress accelerometer data: accelerometer data should be reconstructed starting from the latest sample just before the current one (the first compressed data is expressed as the difference from the NC_T_2 data, the second compressed data is expressed as the difference from the first compressed data, and so on).

As shown in the example, the compression algorithm works with a three-level depth buffer: if a 2xC compression level is written in FIFO, only the previous data (latency 1) and two times the previous data (latency 2) are stored in the FIFO word.

From the example, the benefit of FIFO compression is also shown: the samples are written in FIFO at interlaced ODR, thus limiting intervention by the host processor even more than normal FIFO usage.

AN6120 - Rev 1 page 88/102

7.11 Timestamp correlation

It is possible to reconstruct the timestamp of FIFO stream with three different approaches:

- 1. Basic, using only timestamp sensor information
- 2. Memory-saving, based on the TAG CNT field in FIFO DATA OUT TAG
- 3. Hybrid, based on combined usage of the TAG CNT field and decimated timestamp sensor

The basic approach guarantees the highest precision in timestamp reconstruction but wastes a lot of memory space available in FIFO. The timestamp sensor is written in FIFO at each time slot. If the overrun condition occurs, the correct procedure to retrieve the data from FIFO is to discard each data read before a new timestamp sensor.

The memory-saving approach uses only the TAG_CNT information and, when the TAG_CNT value increases, the timestamp stored at the software layer should be updated as follows:

$$timestamp = timestamp(i-1) + \frac{1}{BDR\ MAX}$$

The memory-saving approach allows the user to maximize the data stored in FIFO. With this method all the timestamp correlation is forwarded to the application processor.

This approach is not recommended when the overrun condition can occur.

The hybrid approach is a trade-off and a combination of the two previous solutions. The timestamp is configured to be written in FIFO with decimation. When the TAG_CNT value increases, the timestamp stored at the software layer should be updated as in the memory-saving approach, while when the timestamp sensor is read, the timestamp stored at the software layer should be realigned with the correct value from the sensor.

AN6120 - Rev 1 page 89/102

8 Temperature sensor

The device is provided with an internal temperature sensor that is suitable for ambient temperature measurement. If both the accelerometer and the gyroscope sensors are in power-down mode, the temperature sensor is off.

The maximum output data rate of the temperature sensor is 60 Hz and its value depends on how the accelerometer and gyroscope sensors are configured:

- If the gyroscope is in power-down mode:
 - If the accelerometer is configured in low-power mode and its ODR is lower than 60 Hz, the temperature data rate is equal to the configured accelerometer ODR.
 - The temperature data rate is equal to 60 Hz for all other accelerometer configurations.
- If the gyroscope is not in power-down mode, the temperature data rate is equal to 60 Hz, regardless of the accelerometer and gyroscope configuration.

For the temperature sensor, the data-ready signal is represented by the TDA bit of the STATUS_REG register. The signal can be driven to the INT2 pin by setting the INT2_DRDY_TEMP bit of the CTRL4 register to 1.

The temperature data is given by the concatenation of the OUT_TEMP_H and OUT_TEMP_L registers and it is represented as a number of 16 bits in two's complement format with a sensitivity of 256 LSB/°C. The output zero level corresponds to 25°C.

Temperature sensor data can also be stored in FIFO with a configurable batch data rate (see Section 7: First-in, first-out (FIFO) buffer for details).

8.1 Example of temperature data calculation

The following table provides a few basic examples of the data that is read from the temperature data registers at different ambient temperature values. The values listed in this table are given under the hypothesis of perfect device calibration (that is, no offset, no gain error, and so forth).

Table 72. Content of output data registers vs. temperature

Temperature values	Register address		
remperature values	OUT_TEMP_H (21h)	OUT_TEMP_L (20h)	
0°C	E7h	00h	
25°C	00h	00h	
50°C	19h	00h	

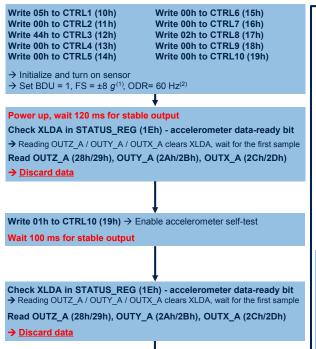
AN6120 - Rev 1 page 90/102

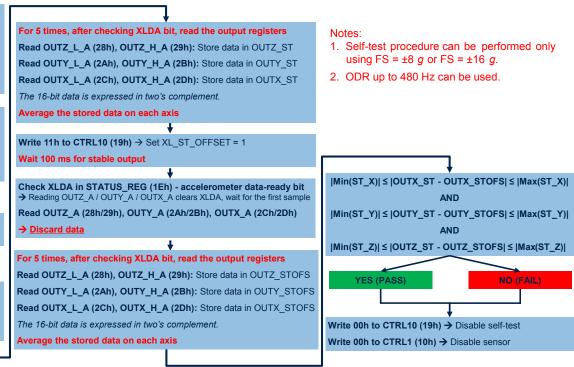
9 Self-test

The embedded self-test functions allow checking the device functionality without moving it. The value of the minimum and maximum self-test limits is provided in the datasheet.

9.1 Accelerometer self-test

When the accelerometer self-test is enabled, an actuation force is applied to the sensor, simulating a definite input acceleration. In this case, the sensor outputs exhibit a change in their DC levels, which are related to the selected full scale through the sensitivity value.


The accelerometer self-test function is off when the ST_XL_[1:0] bits of the CTRL10 register are programmed to 00. It is enabled when the ST_XL_[1:0] bits are set to 01 (positive sign self-test) or 10 (negative sign self-test).


When the accelerometer self-test is activated, the sensor output level is given by the algebraic sum of the signals produced by the acceleration acting on the sensor and by the electrostatic test-force. In order to implement the self-test procedure, the XL_ST_OFFSET bit of the CTRL10 register must set to 0 in the first phase of the self-test and then to 1 in the second phase of the self-test.

The complete accelerometer self-test procedure is indicated in Figure 27. Accelerometer self-test procedure.

AN6120 - Rev 1 page 91/102

Figure 27. Accelerometer self-test procedure

9.2 Gyroscope self-test

The gyroscope self-test allows testing the mechanical and electrical parts of the gyroscope sensor. When it is activated, an equivalent Coriolis signal is emulated at the input of the ASIC front-end and the sensor output exhibits an output change.

The gyroscope self-test function is off when the ST_G_[1:0] bits of the CTRL10 register are programmed to 00. It is enabled when the ST_G_[1:0] bits are set to 01 (positive sign self-test) or 10 (negative sign self-test).

When the gyroscope self-test is active, the sensor output level is given by the algebraic sum of the signals produced by the angular rate acting on the sensor and by the electrostatic test-force.

The complete gyroscope self-test procedure is indicated in Figure 28. Gyroscope self-test procedure.

AN6120 - Rev 1 page 93/102


```
Write 00h to CTRL1 (10h)
                                 Write 04h to CTRL6 (15h)
Write 05h to CTRL2 (11h)
                                 Write 00h to CTRL7 (16h)
Write 44h to CTRL3 (12h)
                                 Write 00h to CTRL8 (17h)
Write 00h to CTRL4 (13h)
                                 Write 00h to CTRL9 (18h)
Write 00h to CTRL5 (14h)
                                 Write 00h to CTRL10 (19h)
```

- → Initialize and turn on sensor
- \rightarrow Set BDU = 1, FS = ±2000 dps, ODR = 60 Hz ⁽¹⁾

Power up, wait 100 ms for stable output

Check GDA in STATUS REG (1Eh) - gyroscope data-ready bit

→ Reading OUTX_G / OUTY_G / OUTZ_G clears GDA, wait for the first sample Read OUTX G (22h/23h), OUTY G (24h/25h), OUTZ G (26h/27h)

→ Discard data

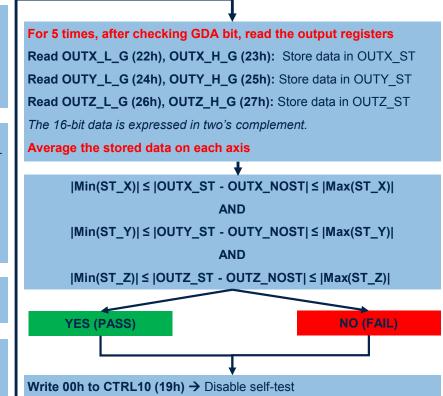
For 5 times, after checking GDA bit, read the output registers

Read OUTX L G (22h), OUTX H G (23h): Store data in OUTX NOST Read OUTY L G (24h), OUTY H G (25h): Store data in OUTY NOST Read OUTZ_L_G (26h), OUTZ_H_G (27h): Store data in OUTZ NOST The 16-bit data is expressed in two's complement.

Average the stored data on each axis

Write 04h to CTRL10 (19h) → Enable gyroscope self-test

Wait 100 ms


Check GDA in STATUS REG (1Eh) - gyroscope data-ready bit

→ Reading OUTX / OUTY / OUTZ clears GDA, wait for the first sample

Read OUTX_G (22h/23h), OUTY_G (24h/25h), OUTZ_G (26h/27h) → Discard data

Note:

1. ODR up to 480 Hz can be used.

Write 00h to CTRL2 (11h) → Disable sensor

Revision history

Table 73. Document revision history

Date	Version	Changes
12-Jul-2024	1	Initial release

AN6120 - Rev 1 page 95/102

Contents

1	Pin	description				
2	Reg	gisters	4			
	2.1	Embedded functions registers	7			
	2.2	Embedded advanced features pages	9			
3	Ope	erating modes				
	3.1	Biosensor functionality	11			
	3.2	Accelerometer power modes and output data rates	13			
	3.3	Gyroscope power modes and output data rates	14			
	3.4	Supply current	15			
	3.5	Accelerometer bandwidth	16			
		3.5.1 Accelerometer slope filter	18			
	3.6	Accelerometer turn-on/off time	19			
	3.7	Accelerometer dual-channel mode	20			
	3.8	Gyroscope bandwidth	21			
	3.9	Gyroscope turn-on/off time	24			
4	Rea	ading accelerometer and gyroscope output data				
	4.1	Startup sequence	26			
	4.2	Using the status register	26			
	4.3	Using the data-ready signal	27			
		4.3.1 DRDY mask functionality	27			
	4.4	Using the block data update (BDU) feature				
	4.5	Understanding output data	28			
		4.5.1 Examples of output data	28			
	4.6	Accelerometer offset registers	29			
5	Inte	errupt generation	30			
	5.1	Interrupt pin configuration				
	5.2	Free-fall interrupt3				
	5.3	Wake-up interrupt				
	5.4	6D orientation detection				
	5.5	Single-tap and double-tap recognition	39			
		5.5.1 Single tap	40			
		5.5.2 Double tap				
		5.5.3 Single-tap and double-tap recognition configuration				
		5.5.4 Single-tap example	44			

		5.5.5	Double-tap example	44
	5.6	Activity	//inactivity and motion/stationary recognition	45
		5.6.1	Stationary/motion detection	47
	5.7	Boot st	tatus	48
6	Emb	edded f	functions	49
	6.1	Pedom	neter functions: step detector and step counter	49
	6.2	Signific	cant motion	52
	6.3	Relativ	re tilt	53
	6.4	Timesta	amp	55
	6.5	Sensor	r fusion functions	56
		6.5.1	Gyroscope bias initial value setting	57
	6.6	Embed	dded functions additional configurations and monitoring	58
7	First	t-in, first	t-out (FIFO) buffer	59
	7.1	FIFO d	lescription and batched sensors	60
	7.2	FIFO re	egisters	61
		7.2.1	FIFO_CTRL1	62
		7.2.2	FIFO_CTRL2	62
		7.2.3	FIFO_CTRL3	63
		7.2.4	FIFO_CTRL4	64
		7.2.5	COUNTER_BDR_REG1	65
		7.2.6	COUNTER_BDR_REG2	65
		7.2.7	FIFO_STATUS1	65
		7.2.8	FIFO_STATUS2	66
		7.2.9	FIFO_DATA_OUT_TAG	66
		7.2.10	FIFO_DATA_OUT	67
	7.3	FIFO b	patched sensors	68
	7.4	Main s	ensors	68
	7.5	Auxilia	ry sensors	70
	7.6	Virtual	sensors	72
		7.6.1	Step counter sensor	72
		7.6.2	SFLP-generated sensors	72
		7.6.3	MLC-generated sensors	73
	7.7	FIFO m	nodes	74
		7.7.1	Bypass mode	74
		7.7.2	FIFO mode	74
		7.7.3	Continuous mode	
		7.7.4	Continuous-to-FIFO mode	76

		7.7.5	Bypass-to-continuous mode	77
		7.7.6	Bypass-to-FIFO mode	78
		7.7.7	ContinuousWTM-to-full mode	79
	7.8	Retriev	ing data from the FIFO	80
	7.9	FIFO w	vatermark threshold	81
	7.10	FIFO co	ompression	83
		7.10.1	Time correlation	84
		7.10.2	Data format	85
		7.10.3	Disabling FIFO compression at runtime	86
		7.10.4	CFG-Change sensor with FIFO compression enabled	87
		7.10.5	Noncompressed data rate	87
		7.10.6	FIFO compression initialization	87
		7.10.7	FIFO compression example	88
	7.11	Timesta	amp correlation	89
8	Temp	erature	e sensor	90
	8.1	Examp	le of temperature data calculation	90
9	Self-	test		91
	9.1	Acceler	rometer self-test	91
	9.2		ope self-test	
Rev		,		

List of tables

Table 1.	Internal pin status	3
Table 2.	Registers	
Table 3.	Embedded functions registers	
Table 4.	Embedded advanced features registers - page 0	
Table 5.	Embedded advanced features registers - page 1	
Table 6.	Analog hub / vAFE channel ODR and bandwidth configuration	
Table 7.	Accelerometer power modes	
Table 8.	Accelerometer ODR	
Table 9.	Gyroscope power modes	
Table 10.	Gyroscope ODR	
Table 11.	Supply current (@VDD = 1.8 V, T = 25°C)	
Table 12.	Accelerometer bandwidth selection	
Table 13.	Accelerometer turn-on/off time (LPF2 and HP disabled)	
Table 14.	Accelerometer samples to be discarded	
Table 15.	Gyroscope overall bandwidth selection	
Table 16.	Gyroscope low-power mode bandwidth.	
Table 17.	Gyroscope turn-on/off time	
Table 18.	Gyroscope samples to be discarded (LPF1 disabled)	
Table 19.	Gyroscope chain settling time (LPF1 enabled)	
Table 20.	Content of output data registers vs. acceleration (FS_XL = $\pm 2 g$)	
Table 21.	Content of output data registers vs. angular rate (FS_G = ±250 dps)	
Table 22.	INT1_CTRL register	
Table 23.	MD1 CFG register	
Table 24.	INT2_CTRL register	
Table 25.	MD2_CFG register	
Table 26.	Free-fall threshold LSB value.	
Table 27.	Wake-up threshold resolution	
Table 28.	D6D_SRC register	
Table 29.	Threshold for 6D function	
Table 30.	D6D_SRC register in 6D positions	
Table 30.	TAP_PRIORITY_[2:0] bits configuration	
Table 31.	TAP_SRC register	
Table 32.	Target accelerometer ODR configuration for inactivity event	
Table 34.	Inactivity event configuration	
Table 34.	Activity/inactivity threshold resolution	
Table 36.	EMB FUNC SRC embedded functions register.	
		50
Table 37.		
	ODR _{coeff} values	
Table 39.	SFLP supply current (@VDD = 1.8 V, T = 25°C)	
Table 40.	k factor	
Table 41.	FIFO_CTRL1 register	
Table 42.	FIFO_CTRL2 register	
Table 43.	Forced noncompressed data write configurations	
Table 44.	FIFO_CTRL3 register	
Table 45.	Accelerometer batch data rate	
Table 46.	Gyroscope batch data rate	
Table 47.	Timestamp batch data rate	
Table 48.	Temperature sensor batch data rate	
Table 49.	FIFO_CTRL4 register	
Table 50.	COUNTER_BDR_REG1 register	
Table 51.	COUNTER_BDR_REG2 register	
Table 52.	FIFO_STATUS1 register	
Table 53.	FIFO_STATUS2 register	66

AN6120

List of tables

Table 54.	FIFO_DATA_OUT_TAG register	66
Table 55.	TAG_SENSOR field and associated sensor	67
Table 56.	Accelerometer output data format in FIFO	69
Table 57.	Gyroscope output data format in FIFO	69
Table 58.	Analog hub / vAFE output data format in FIFO	69
Table 59.	Temperature output data format in FIFO	70
Table 60.	Timestamp output data format in FIFO	70
Table 61.	CFG-Change output data format in FIFO	71
Table 62.	Step counter output data format in FIFO	
Table 63.	MLC results in FIFO	73
Table 64.	MLC filters or features in FIFO	73
Table 65.	FIFO compression tags and associated data	84
Table 66.	2xC compressed data output data format in FIFO	85
Table 67.	3xC compressed data output data format in FIFO	85
Table 68.	Example of disabled runtime compression	86
Table 69.	Example of device configuration change with FIFO compression enabled	87
Table 70.	UNCOPTR_RATE configuration	87
Table 71.	FIFO compression example	88
Table 72.	Content of output data registers vs. temperature	90
Table 73.	Document revision history	95

List of figures

Figure 1.	Pin connections	. 2
Figure 2.	vAFE external connections	11
Figure 3.	Accelerometer sampling chain	16
Figure 4.	Accelerometer composite filter	
Figure 5.	Accelerometer slope filter	
Figure 6.	Dual-channel mode	20
Figure 7.	Gyroscope digital chain	
Figure 8.	Data-ready signal	27
Figure 9.	Free-fall interrupt	
Figure 10.	Wake-up interrupt (using the slope filter)	35
Figure 11.	6D recognized orientations	
Figure 12.	Single-tap event recognition	
Figure 13.	Double-tap event recognition (LIR bit = 0)	41
Figure 14.	Single and double-tap recognition (LIR bit = 0)	
Figure 15.	Activity/inactivity recognition (using the slope filter)	47
Figure 16.	Tilt example	
Figure 17.	Main sensors and time slot definitions	69
Figure 18.	FIFO mode (STOP_ON_WTM = 0)	74
Figure 19.	Continuous mode	
Figure 20.	Continuous-to-FIFO mode	76
Figure 21.	Bypass-to-continuous mode	77
Figure 22.	Bypass-to-FIFO mode	78
Figure 23.	ContinuousWTM-to-full mode	79
Figure 24.	FIFO threshold (STOP_ON_WTM = 0)	81
Figure 25.	FIFO threshold (STOP_ON_WTM = 1) in FIFO mode	
Figure 26.	FIFO threshold (STOP_ON_WTM = 1) in continuous mode	
Figure 27.	Accelerometer self-test procedure	
Figure 28.	Gyroscope self-test procedure	94

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2024 STMicroelectronics – All rights reserved

AN6120 - Rev 1 page 102/102