

Getting started with STM32MP21x lines hardware development

Introduction

This application note shows how to use the STM32MP21x lines (MPUs). It describes the minimum hardware resources required to develop an application based on these products.

This document provides an overview of the hardware implementation of the development board, with focus on features like:

- Power supply
- Package selection
- Clock management
- Reset control
- Boot mode settings
- Debug management

Reference design schematics are also included in this application note. They show a description of the main components, interfaces, and modes.

1 General information

This document applies to the STM32MP21x lines, Arm®-based MPUs.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

Table 1. Reference documents

N°	Reference	Title
[1]	AN2867	Guidelines for oscillator design on STM8AF/AL/S and STM32 MCUs/MPUs
[2]	AN1709	EMC design guide for STM8, STM32 and legacy MCUs
[3]	AN5275	Introduction to USB DFU/USART protocols used in STM32MP1 and STM32MP2 MPU bootloaders
[4]	AN5723	Guidelines for DDR configuration on STM32MP2 MPUs
[5]	AN5724	Guidelines for DDR memory routing on STM32MP2 MPUs
[6]	AN5727	How to use STPMIC2x for a wall adapter-powered application on STM32MP25 MPUs
[7]	UMxxxx	Discovery kits with STM32MP215 MPUs
[8]	RM0506	STM32MP21x advanced Arm®-based 32/64-bit MPUs
[9]	DS14557	STM32MP21x A/D datasheet
[10]	DS14556	STM32MP21x C/F datasheet
[11]	AN4879	Introduction to USB hardware and PCB guidelines using STM32 MCUs

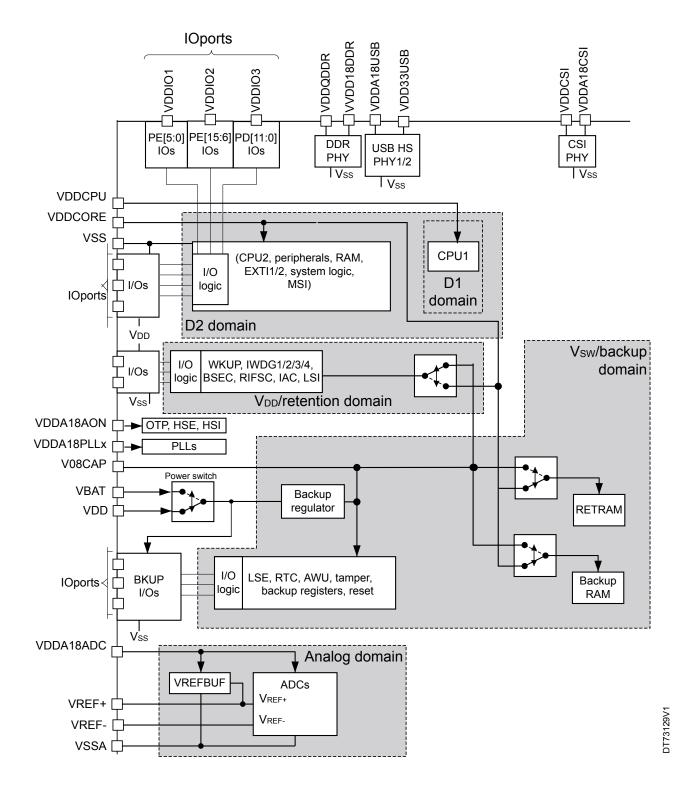
Table 2. Glossary

Term	Meaning
ADC	Analog-to-digital converter
AHB	Advanced high-performance bus
AXI	Advanced extensible interface bus. By extension, the interconnect matrix based on AXI
AXIM	AXI matrix. AXI-based interconnect
BKPSRAM	Backup SRAM
BSEC	Boot and security controller. OTP interface
CA35	Cortex®-A35
CM33	Cortex®-M33
CNT	Generic timer (inside Cortex®-A35)
CRYP	Cryptographic IP. Supporting DES, Triple-DES and AES
CSI	Camera serial interface
DAP	Debug access port
DCMI	Digital camera interface. Parallel interface
DDRCTRL	Double data rate SDRAM controller
DDRPERFM	DDR performance monitor, linked to DDRCTRL
DLYBQS	Delay block for QUASDPI. Compensate external signals timings to reach the highest data rates
DLYBSD	Delay block for SDMMC. Compensate external signals timings to reach the highest data rates
DMA	Direct memory access. A bus controller able to transfer autonomously data between peripheral and memory or between memories

AN6055 - Rev 1 page 2/73

Term	Meaning
DMAMUX	DMA request multiplexor
ETH	Ethernet controller
ETM	Embedded trace module
EXTI	Extended interrupt and event controller
FDCAN	Controller area network with flexible data-rate. Could also support time triggered CAN (TT)
FMC	Flexible memory controller
GIC	Generic interrupt controller
GMAC	Gigabit Ethernet media access controller
GPIO	General-purpose input/output
HASH	Cryptographic hash block. Supporting secure hash algorithm (SHA),
HDMI	High definition multimedia interface
HDP	Hardware debug port
HSE	High-speed external crystal oscillator
HSEM	Hardware semaphore. Helps multiprocessor resources sharing
HSI	High-speed internal oscillator
I ² C	Inter IC bus
I3C	Improved I ² C
I2S	Inter IC sound
IPCC	Inter-processor communication controller
IWDG	Independent watchdog
JTAG	Joint test action group. A debug interface
LCD	Liquid crystal display
LPTIM	Low-power timer
LSE	Low-speed external crystal oscillator
LSI	Low-speed internal oscillator
MSI	Multispeed internal oscillator
OCTOSPI	Octal data serial peripheral interface
LTDC	LDC TFT display controller
MDMA	Master direct memory access
MLAHB	Multilayer AHB. AHB-based interconnect
NVIC	Nested vectored interrupt controller (inside Cortex®-M4)
OTP	One time program memory
PCB	Printed circuit board
PHY	A mixed-signal physical interface. Generally, it enables adapting the internal logical level to a specific interface standard
PMB	Process monitor block
PMIC	Power management integrated circuit. It is an external circuit that provides various platform power supplies with large controllability through signals and serial interface
PTH	Plated through a hole. It is a drilled hole with a conductive wall using, for example, a layer of deposited copper.
PWR	Power control
RCC	Reset and clock control

AN6055 - Rev 1 page 3/73


Term	Meaning
RETRAM	Retention SRAM
RNG	Random number generator
ROM	Read-only memory
RTC	Real-time clock
SAI	Serial audio interface
SDMMC	Secure digital and multimedia card interface. Supports SD, MMC, eMMC, and SDIO protocols
SMPS	Switched-mode power supply
SPDIF	Sony/Philips digital interface format
SPI	Serial peripheral interface
SRAM	Static random-access memory
STGEN	System timing generation. Used for Cortex®-A7 timers
STGENC	STGEN control. Secure part of STGEN
STGENR	STGEN read. Read-only part of STGEN
STM	System trace macrocell
SW	Software
SWD	Serial wire debug
SWO	Single wire output. A trace port
SYSCFG	System configuration
SYSRAM	System SRAM
SysTick	System tick timer (inside Cortex®-M4)
TAMP	Tamper detection IP
TFT	Thin film transistor. An LCD technology process
TIM	Timer
TSGEN	Debug the time stamp generator. Used to ensure multiple core trace synchronizations
UART	Universal asynchronous receiver transmitter
USART	Universal synchronous/asynchronous receiver/transmitter
USB	Universal serial bus
USBH	USB host controller
USB hi-speed	USB 2.0 at 480 Mbit/s half-duplex
USB-OTG	USB on-the-go high-speed
USBPHYC	USB physical interface control
VREFBUF	ADC voltage reference buffer
WWDG	Window watchdog

AN6055 - Rev 1 page 4/73

2 Power supplies

Figure 1. Power supply scheme

AN6055 - Rev 1 page 5/73

2.1 Overview

Note:

See details and guaranteed operating points in the product datasheets.

Values in this section are for information only.

- The main I/Os voltage supply (V_{DD}) range is either 1.8 V or 3.3 V typ. There are as well dedicated independent I/Os supplies for some interfaces (V_{DDIO1}, V_{DDIO2}, and V_{DDIO3}).
- There are multiple analog and digital logic voltage supplies, see Section 2.2: Power supply schemes for details.
- The real-time clock (RTC) and backup registers can be powered from the V_{BAT} voltage when the main V_{DD} supply is powered off. This internal supply with automatic switch between V_{BAT} and V_{DD} is named V_{SW} supply voltage and is also used to supply PI8, PC13, PZ0, PZ1, PZ3 pins, and, only for TAMP_IN usage, the PC3, PC4, PC5, PF6, PF7, PG1, and PG3 pins.
 V_{BAT} voltage is typically 3 V when used with a coin-cell battery.

2.1.1 Independent ADC supply and reference voltage

To make sure that the conversion of signals is more accurate and can cover a wider range of values, the ADC (analog-to-digital converter) and reference have their own power supply that can be filtered separately. This helps to protect them from any interference or noise that may be present on the printed circuit board (PCB).

The analog operating voltage supply ($V_{DDA18ADC}$) is 1.8 V typ.

- The ADC/VREFBUF voltage supply input is available on a separate VDDA18ADC pin.
- An isolated supply ground connection is provided on the VSSA pin.
 In all cases, the VSSA pin must be externally connected to the same supply ground as the VSS

Warning: The ADC_INx I/Os must not exceed VDDA18ADC + 0.3 V as specified in the product datasheet.

External VREF

The user can connect a separate external reference voltage ADC input on VREF+. The voltage on VREF+ may range from 1.10 V to V_{DDA18ADC}.

Internal VREF

The user can enable in the VREFBUF block an internal reference voltage on VREF+.

The voltage on VREF+ can be either 1.21 V or 1.5 V.

The VREF+ pin has an internal reference voltage (VREF) that can be used externally, such as for an analog comparator reference. However, it is important to make sure that the amount of electrical current being used stays within the values specified in the datasheet.

Caution:

When available (depending on package), VREF- must be externally tied to V_{SSA}.

2.1.2 Battery backup

To retain the content of the backup registers, BKPSRAM and RETRAM, when V_{DD} is turned off, the VBAT pin can be connected to an optional standby voltage supplied by a battery or another source.

The VBAT pin also powers the RTC unit, allowing the RTC to operate even when the main digital supply (V_{DD}) is turned off. The switch to the V_{BAT} supply is controlled by the power down reset (PDR) circuitry embedded in the PWR.

If no external battery is used in the application, it is recommended to connect V_{BAT} externally to V_{DD}.

AN6055 - Rev 1 page 6/73

2.2 Power supply schemes

Note:

See the details and guaranteed operating points in the product datasheets. The values in this section are for information only.

The device is powered by multiple power supplies. Those supplies must be connected to external decoupling capacitors (see Table 3).

I/O supplies

- The V_{DD} is the main supply for I/Os and an internal part, kept powered during the standby mode
 - The voltage range is either 1.8 V or 3.3 V typ.
 - V_{DD} must be present whenever other I/Os supplies are present (except V_{BAT}, which is independent and V_{DDA18AON}, which is always present).
- V_{DDIO1}, V_{DDIO2}, and V_{DDIO3} are separate/dedicated I/Os supplies
 - Voltage values are either 1.8 V, 3.0 V, or 3.3 V typ.
 - Each of those supplies can have a different voltage or be shut down independently.
- The VBAT pin can be connected to the external battery
 - The voltage range is 2.3 V to 3.6 V (except when connected to V_{DD}).
 - If the application does not support a backup battery, it is recommended to connect this pin to V_{DD}.
 - If the application supports a backup battery, it is required to add a 2.2 μF capacitor and a resistor.
 (This is to limit the voltage slew rate when a backup battery is plugged, as explained in Table 3 note 2).
- V_{DDQDDR} is the DDR I/O supply
 - The voltage range is 1.283 V to 1.45 V for interfacing DDR3L memories (1.35 V typ.).
 - The voltage range is 1.14 V to 1.26 V for interfacing DDR4 memories (1.2 V typ.).
 - The voltage range is 1.06 V to 1.17 V for interfacing LPDDR4 memories (1.1 V typ.).

Digital logic supplies

- V_{DDCPU} digital CPU domain supply (Cortex[®]-A35)
 - It can be shut down during the Run2, Stop2, LP-Stop2, LPLV-Stop2, or Standby mode (using the PWR_CPU_ON signal).
 - The voltage range during run mode is 0.8 V typ. (0.91 V typ in overdrive ⁽¹⁾)
 - V_{DDCPU} is only present if V_{DD} is already present, as it is dependent on the V_{DD} supply.
 - V_{DDCPU} can be further reduced in specific Stop modes (LP-Stop1 or LPLV-Stop1). This involves
 either the PWR_ON (for example with the PMIC, an external power management IC) or PWR_LP
 signal.
- The V_{DDCORE} is the main digital voltage
 - V_{DDCSI} must usually be connected to V_{DDCORE}.
 - It can be shut down during the Standby mode (using a PWR ON signal).
 - The voltage range during run mode is 0.82 V typical.
 - V_{DDCORE} is dependent on the V_{DD} supply, so it is necessary for V_{DD} to be present before V_{DDCORE}.
 - V_{DDCORE} can be further reduced in a specific stop mode (LPLV-Stop1 or LPLV-Stop2). This involves
 either PWR_ON (for example with the STPMIC, an external power management IC) or PWR_LP
 signal.
- 1. Overdrive is only available on some part references. Overdrive affects the maximum Tj and reliability data.

1.8 V analog supplies

- V_{DDA18AON} power supply input for system analogs such as reset, power management, oscillators, and OTP, kept powered during the standby mode
 - The voltage range is 1.8 V typ.

AN6055 - Rev 1 page 7/73

- The VDDA18ADC pin is the analog (ADC/VREFBUF) supply.
 - The voltage range is 1.8 V typ.
 - Additional precautions can be taken to filter analog noise. V_{DDA18ADC} can be connected to a shared
 1.8 V supply through an inductor-based filter.
 - The VREF+ pin can be connected to the V_{DDA18ADC} external power supply. If a separate, internal, or
 external reference voltage is applied to VREF+, a decoupling capacitor must be connected between
 this pin and VREF- (see Table 3).

Refer to Section 2.1.1: Independent ADC supply and reference voltage.

The following supplies can be connected to a same source with independent decoupling whenever possible.

- The voltage range is 1.8 V typ.
- The VDDA18PLL1 and VDDA18PLL2 pins are the analog supply for PLLs.
- The VDDA18DDR pin is the analog supply for DDR PHY.
- The VDDA18CSI pin is the analog supply for CSI.
- The VDDA18USB pin is the analog supply for the USB HS PHY.

3.3 V USB supplies

They must be connected on a same source with independent decoupling whenever possible:

- The voltage range is 3.3 V typ.
- V_{DD33USB} is the USB high-speed PHY supply.

Caution:

All supply grounds (V_{SS} , V_{SSAON} , and V_{REF-}) must be all connected to power planes.

The following table must be used as a guideline only. The real count and values of the capacitors can be adapted depending on various parameters such as the capacitor size and dielectric, the PCB technology, and the product power integrity simulations.

The information in this table does not include capacitors on the supply sources (such as LDO or SMPS) or external devices (such as DDR memory, SD card, or e.MMC, flash memories).

Table 3. Amount of decoupling recommendation by package

This table must be used as a guideline only. The real count and values of capacitors can be adapted depending on various parameters: capacitor size and dielectric, PCB technology, product power integrity simulations, and so on.

The information in this table does not include capacitors on the supply sources (such as LDO or SMPS) or external devices (such as DDR memory, SD card, e.MMC, flash memories, and so on.)

Supply pins	Decoupling	Value	VFBGA225		TFBGA289	VFBGA361	Comments
очьы ы	point ⁽¹⁾	raido	(8 × 8)	(11 × 11)	(14 × 14)	(10 × 10)	
VBAT	VSS	2.2 µF (2)(3)	1	1	1	1	Decoupling could be skipped if $V_{BAT} = V_{DD}$
V08CAP	VSS	4.7 μF ⁽²⁾	1	1	1	1	Internal backup regulator decoupling
VDDCORE	VSS	1 μF ⁽²⁾	4	4	4	4	-
VDDCSI	VSS	100 nF	1	1	1	1	Supplies must be connected to VDDCORE.
VDDCPU	VSS	1 μF ⁽²⁾	4	4	4	4	-
VDDQDDR	VSS	1 µF ⁽²⁾	4	4	4	4	-
VDDA18AON	VSSAON	100 nF	1	1	1	1	-
VDDA18PLL1/2, VDDA18DDR, VDDA18USB, VDDA18CSI	VSS	100 nF	5	5	5	5	Supplies must be connected all together.
VDD	VSS	1 μF ⁽²⁾	3	3	3	3	-
VDDIO1 (4)	VSS	100 nF	1	1	1	1	Usually for SD card
VDDIO2 (4)	VSS	100 nF	1	1	1	1	Usually for e.MMC

AN6055 - Rev 1 page 8/73

Supply pins	Decoupling point ⁽¹⁾	Value	VFBGA225 (8 × 8)	VFBGA273 (11 × 11)	TFBGA289 (14 × 14)	VFBGA361 (10 × 10)	Comments
VDDIO3 (4)	VSS	100 nF	1	1	1	1	Usually for OCTOSPI1
VDD33USB	VSS	100 nF	1	1	1	1	-
VDDA18ADC	VSSA	2.2 µF ⁽²⁾	1	1	1	1	VSSA must be
VDDA 18ADC		VOOA	100 nF	1	1	1	1
VREF+	VREF - and VSSA	1 µF ⁽²⁾	1	1	1	1	VREF- must be
		100 nF	1	1	1	1	connected to VSSA then VSS plane (chained connection)

- 1. All VSSx and VSSA must be connected to a common VSS plane.
- 2. Multilayer ceramic capacitor type (MLCC)
- 3. Fulfilling a minimum rise time defined in the datasheet might require a resistor of a few ohms to be connected in series. The total RC must be at least equal to Tr * battery voltage. (For example, $RC = 60 \mu s$ for $Tr = 20 \mu s/V$ and a 3 V battery. This could be ensured by a 20 Ω resistor in series for a CR2032 battery type with an internal resistance of a minimum of 8 or 9 Ω). The rise time limitation can also be ensured by a ferrite bead and a capacitor.
- 4. Must be connected to V_{DD} if not used for a dedicated interface supply.

Note:

See package feature details in Section 3.1: Package selection. Not all I/Os are supplied by V_{DD} . See below in Table 4 the summary of the related supplies.

Table 4. I/O power domains

Supply pin	Pin names
VDD	NRSTC1MS, PA0, PA1, PA2, PA3, PA4, PA5, PA6, PA7, PA8, PA9, PA10, PA11, PA12, PA13, PA14, PA15, PB1, PB2, PB3, PB5, PB6, PB7, PB9, PB10, PB11, PB12, PB13, PB14, PB15, PC0, PC1, PC2, PC6, PC7, PC8, PC9, PC10, PC11, PC12, PD12, PD13, PD14, PD15, PF0, PF1, PF2, PF3, PF4, PF5, PF8, PF9, PF10, PF11, PF12, PF13, PF15, PG0, PG2, PG4, PG5, PG7, PG8, PG9, PG10, PG11, PG12, PG13, PG14, PG15, PH4, PH5, PH7, PH8, PH9, PH10, PH11, PH12, PH13, PI0, PI1, PI4, PI5, PI6
VDDIO1 (1)	PE0, PE1, PE2, PE3, PE4, PE5
VDDIO2 (2)	PE10, PE11, PE12, PE13, PE14, PE15, PE6, PE7, PE8, PE9
VDDIO3 (3)	PD0, PD1, PD10, PD11, PD2, PD3, PD4, PD5, PD6, PD7, PD8, PD9
VDDA18AON	OSC_IN, OSC_OUT, PDR_ON
VSW (4)	OSC32_IN, OSC32_OUT, PC13, PI8, PZ0, PZ1, PZ3
VDD/VSW ^{(4) (5)}	PC3, PC4, PC5, PF6, PF7, PG1, PG3

- 1. Usually used for SD cards using SDMMC1.
- 2. Usually used for eMMC or SD card using SDMMC2. On the VFBGA225 8 × 8 package, SDMMC2 is not a boot source.
- 3. Usually used for OCTOSPI1
- 4. VSW is supplied by VBAT in the absence of VDD.
- 5. Pins with two supplies; V_{SW} supply for enabled TAMP_INx additional function, V_{DD} supply for GPIO and other alternate function

Note: The I/O power domain table does not include analog cells, which have one or more dedicated supplies (such as PHYs).

AN6055 - Rev 1 page 9/73

VREFBUF

	table of capping acting for all accounts									
Supply pin	Usual connection	Supply option if not used ⁽¹⁾	Pins or functions	Signals connection if not used	Related block					
VDDCSI	V _{DDCORE}	V _{SS}								
VDDA18CSI	Global 1.8 V analog supply	V _{SS}	CSI_xxx pins	All open or all V _{SS}	CSI					
VDDA18USB	Global 1.8 V analog supply	V _{SS}	USBH_HS_DP/DM pins and USB-	All DP/DM to V _{SS} . All	USBH or USB- OTG					
VDD33USB	Dedicated 3.3 V supply	V _{SS}	OTG_DP/DM pins	TXRTUNE open	OIG					
	Dedicated 1.8 V supply or filtered global 1.8 V analog supply	V _{SSA}	ADC (internal and external channels)	-	ADC1 or ADC2					
VDDA18ADC			ANA0/ANA1	V _{SSA}						
	-	-	VREF+ pin	V _{SSA}	-					

Table 5. Supply usage for unused features

2.3 Specific I/O constrains related to voltage settings

 $V_{\rm DDIO1}$, $V_{\rm DDIO2}$, and $V_{\rm DDIO3}$ have specific register settings and control sequences to be respected when used at 3 V/3.3 V or 1.8 V typ. Refer to the PWR section in the product reference manual for details. See also I/O speed settings for constrains on I/O speed settings for $V_{\rm DD}$, $V_{\rm DDIO1}$, $V_{\rm DDIO2}$, and $V_{\rm DDIO3}$ domains.

VREFBUF usage

2.4 Reset and power supply supervisor

2.4.1 Power-on reset (POR)/power-down reset (PDR)

The device has an integrated POR/PDR circuitry that allows proper operation starting from 1.71 V.

The device remains in the Reset mode as long as V_{DD} and $V_{DD18AON}$ are below a specified threshold, and $V_{POR/PDR}$ is without the need for an external reset circuit. For more details concerning the power on/power down reset threshold, refer to the electrical characteristics in the product datasheets.

2.4.2 vddcore ok reset

The system has an integrated circuitry that allows proper startup operation of the $V_{\mbox{\scriptsize DDCORE}}$ (D2) domain.

The V_{DDCORE} domain remains in Reset mode when V_{DDCORE} is below the operation threshold vddcore_ok. Once the V_{DDCORE} supply level is above the operation threshold vddcore_ok, the V_{DDCORE} domain is taken out of reset. When the LVDS_D2 bit is set, the V_{DDCORE} supply level can be lowered in LPLV-Stop1 or LPLV-Stop2 modes.

For more details concerning the vddcore_ok reset threshold, refer to the electrical characteristics of the datasheet.

2.4.3 Specific I/O constrains related to voltage settings

 V_{DDIO1} , V_{DDIO2} , and V_{DDIO3} have specific register settings and control sequences to be respected when used at 3 V/3.3 V or 1.8 V typ. Refer to the PWR section in the product reference manual for details.

See also I/O speed settings for constrains on I/O speed settings for V_{DD}, V_{DDIO1}, V_{DDIO2}, and V_{DDIO3} domains.

2.4.4 vddcpu_ok reset

The system has an integrated circuitry that allows proper startup operation of the V_{DDCPU} (D1) domain.

The V_{DDCPU} domain remains in Reset mode when V_{DDCPU} is below the operation threshold vddcpu_ok. Once the V_{DDCPU} supply level is above the operation threshold vddcpu_ok, the V_{DDCPU} domain is taken out of reset. When the LVDS_D1 bit is set, the V_{DDCPU} supply level can be lowered in LPLV-Stop1 or LPLV-Stop2 mode. For more details concerning the vddcpu_ok reset threshold, refer to the electrical characteristics of the datasheet.

AN6055 - Rev 1 page 10/73

^{1.} Connection possible only when all related pins/functions are not used.

2.4.5 VDD18ADC monitoring mandatory before using the ADC

After boot, it is mandatory to monitor VDD18ADC before using the analog-to-digital converter (ADC). Refer to [8], "Power control (PWR)" chapter, "Peripheral voltage monitoring (PVM)" section, for the sequence to use

2.4.6 VDDCORE and VDDCPU monitoring

The system can monitor V_{DDCORE} and V_{DDCPU} through the use of the ADC2 watchdog if programmed accordingly. The ADC2 watchdogs are connected to the internal tampers. If enabled, they rise a tamper detection when V_{DDCORE} or V_{DDCPU} are outside the ADC2 watchdog-programmed range.

2.4.7 Programmable voltage detector (PVD)

The user can monitor the voltage level of the PVD_IN pin using the PVD (Programmable voltage detector). This can be achieved by comparing the voltage of the PVD_IN pin to the internal V_{REFINT} (Internal voltage reference) level.

The PVD is enabled by setting the PVDE bit in the PWR_CR3 register.

A PVDO flag is available to indicate whether the PVD_IN pin is higher or lower than the threshold. This event is internally connected to EXTI1 and can generate an interrupt if enabled through the EXTI1 registers. The PVD output interrupt can be generated when PVD_IN drops below the PVD threshold. It can also happen when PVD_IN rises above the PVD threshold depending on the EXTI line rising or falling edge configuration. As an example, the service routine can perform emergency shutdown tasks.

2.4.8 Peripheral voltage monitoring (PVM)

Only V_{DD} and $V_{DDA18AON}$ are monitored by default, as they are the only supplies required for all system-related functions. The other I/O supplies (V_{DDIO1} , V_{DDIO2} , V_{DDIO3} , $V_{DD33USB}$, and $V_{DDA18ADC}$) can be independent from V_{DD} and can be monitored with peripheral voltage monitoring (PVM).

A GPVMO flag is available, in the PWR control register 1 (PWR_CR1), to indicate if all enabled independent power supplies are higher or lower than the PVM threshold. This event is internally connected to the EXTI1 and can generate an interrupt if enabled through the EXTI1 registers. The GPVMO interrupt can occur in two situations: when all independent power supplies that are enabled increase above the PVM threshold, or when at least one enabled independent power supply decreases below the PVM threshold. The specific situation depends on how the EXTI1 line rising/falling edge configuration is set up. The PVM is not available in Standby mode.

The independent supplies (V_{DDIO1}, V_{DDIO2}, V_{DDIO3}, V_{DD33USB}, and V_{DDA18ADC}) are not considered as present by default, and logical and electrical isolation is applied to ignore any information coming from the peripherals supplied by these dedicated supplies.

- If the independent power supplies are connected to V_{DD} externally, the application must assume that they are available without requiring any peripheral voltage monitoring to be enabled. To remove the power isolation, the corresponding supply valid bits can be set.
- If these supplies are independent from V_{DD}, the peripheral voltage monitoring (PVM) can be enabled to confirm whether the supply is present or not.

2.4.9 Backup regulator voltage thresholds

The backup regulator voltage (V_{08CAP}) can be monitored by comparing it with two threshold levels.

Two flags are available in the PWR control register 2 (PWR_CR2) to indicate if V_{08CAP} is higher or lower than the threshold. Enabling or disabling the monitoring process can be done by using the MONEN bit in the PWR control register 2 (PWR_CR2). As an example, the levels can be used to trigger a routine to perform emergency saving tasks. The monitoring, when enabled, is also available in Standby and V_{BAT} modes. The flags are available on tamper signals.

2.4.10 Application and system resets

An application reset (app_rst) is generated from one of the following sources:

- A reset from NRST pad
- A reset from a POR/PDR signal (generally called power-on reset)
- A reset from BOR signal (generally called brownout)
- A reset from one of the independent watchdogs (IWDG)

AN6055 - Rev 1 page 11/73

- A software reset from the RCC
- A failure on HSE, when the clock security system feature is activated
- A RETRAM CRC error reset
- A RETRAM ECC failure reset

A system reset (sys_rstn) is generated from one of the following sources:

- A reset from app_rstn signal (application reset)
- A reset from vcore_rstn signal
- A reset from vcpu_rstn signal when the D1 domain does not exit from Standby

Note:

When the system is in Standby, the V_{DDCORE} and V_{DDCPU} are switched off, but V_{DD} and $V_{DD18AON}$ are still present. So when the system exits from Standby, the vcore_rst signal is activated, generating a nreset reset.

NRST pin is also activated when app_rstn is internally generated and low level duration could be adapted using RPCTL.

The NRSTC1MS pin is activated when sys_rstn is generated. The NRSTC1MS pin can be utilized to manage the power supply of external flash memory that is necessary for the initial boot of CPU1. This external flash memory may require a power cycle to guarantee a platform reboot, such as in the case of an SD card. Low level duration can be adapted using RPCTL.

For additional information on reset coverage and configuration, consult the RCC section of the product reference manual.

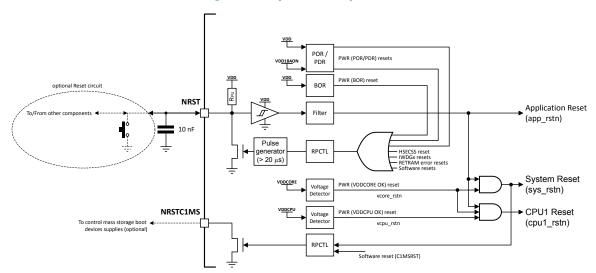


Figure 2. Simplified reset pin circuit

1. This is a very simplified view that enables only to give an overview of reset flows. It does not include all details. Details and specific behaviors are described in the product reference manual.

AN6055 - Rev 1 page 12/73

3 Packages

3.1 Package selection

The package must be selected by taking into account the constraints that are strongly dependent upon the application.

The list below summarizes the more frequent constraints:

- Number of interfaces required
 - Some interfaces might not be available on some packages.
 - Some interfaces combinations might not be possible on some packages.
 - Refer to product datasheets for details.
- PCB technology constraints
 - Small pitch and high ball density can require more PCB layers and a higher PCB class requiring stack-up with the microvia (laser via) technology.
- Package height
- PCB available area
- Thermal constraints
 - Larger packages have better thermal dissipation capabilities.

Table 6. Package availability summary

Size (mm) ⁽¹⁾	8 × 8	10 × 10	11 × 11	14 × 14
Pitch (mm)	0.5	0.5	0.5	0.8
Thickness (mm)	1.0	1.0	1.0	1.2
Sales number	VFBGA225	VFBGA361	VFBGA273	TFBGA289
STM32MP211x	STM32MP211xAO	STM32MP211xAL	STM32MP211xAN	STM32MP211xAM
STM32MP213x	STM32MP213xAO	STM32MP213xAL	STM32MP213xAN	STM32MP213xAM
STM32MP215x	STM32MP215xAO	STM32MP215xAL	STM32MP215xAN	STM32MP215xAM

^{1.} Typical body size

Note: Refer to the product datasheets on st.com for an up-to-date reference availability.

AN6055 - Rev 1 page 13/73

Table 7. STM32MP21xx differences per package

Features -		STM32MP21xxAO	STM32MP21xxAN	STM32MP21xxAM	STM32MP21xxAL	
Fea	tures	VFBGA225	VFBGA273	TFBGA289	VFBGA361	
	Body size (mm)	8 × 8	11 × 11	14 × 14	10 × 10	
Packages	Pitch (mm)	0.5	0.5	0.8	0.5	
	Thickness (mm)	xxx	xxx	xxx	xxx	
	Ball count	225	273	289	361	
GPIO	With interrupt (total count)	98	123	123	123	
	CSI	no	yes	yes	yes	
	FMC	8-bit, no FMC NOR	16-bit with D12 remapped	16-bit with D12 remapped	16-bit with D12 remapped ⁽¹⁾	
	ANA0/ANA1	no	yes	yes	yes	
	Tamper (in/out)	7/1	7/5	7/5	7/5	
	Wake-up pins	5	6	6	6	
	RTC_OUT	Only RTC1	x2	x2	x2	
	LPUART1	No	Yes	Yes	Yes	
	SPI2/I2S2	Yes, with signal remapped.	Yes	Yes	Yes	
Limitations per package	TIM16/17	No	Yes	Yes	Yes	
por puonago	LPTIM3/4/5	No	Yes	Yes	Yes	
	SDMMC2	4-bit No external level shifter control. Signal CK remapped. SDMMC2 not a boot source.	full	full	full	
	SDMMC3	No external level shifter control.	full	full	full	
	SAI4	Missing D1 (PDM)	full	full	full	
	TRACED	Missing TRACED [13, 12, 11, 8]	full	full	full	

^{1.} FMC 8-bit compatible with the STM32MP21x 10 \times 10 package.

AN6055 - Rev 1 page 14/73

3.2 Alternate function mapping to pins

Generally, for each used interface, it is recommended to keep ball choices together as close as possible to ease PCB routing and to avoid potential timing issues.

In addition, to fulfill timings, I3C signals like SDA/SCL pairs must be chosen thanks to Table 8.

Table 8. Possible combinations of I3C pins

SCL signals	SDA signals						
I3C1							
-		-	PI1	PA2			
PG13		-	YES	-			
PA3		-	-	YES			
	I3C2						
-		PF0	PG0	-			
PF2	,	YES	-	-			
PC12		-	YES	-			
		I3C3					
-	PZ0	PZ0 PZ3		PG2			
PZ1	YES YES		-	-			
PC12			YES	YES			
PG1	-	-	YES	YES			

To explore easily peripheral alternate functions mapping to pins, it is recommended to use the STM32CubeMX tool available on www.st.com.

Note:

STM32CubeMX might not support all features or options that are described in the product reference manual or datasheet. This is usually due to reduced features in software deliveries such as OpenSTLinux or STM32CubeMP2. This can evolve in future releases of the ecosystem.

AN6055 - Rev 1 page 15/73

Help File Window Untitled - Pinout & Configuration Clock Configuration Pinout & Configuration Project Manager Tools Q Pinout view System view System Core ✓ DMA GIC GPIO ✓ IPCC ✓ IWDG2 ✓ MDMA ✓ RCC WWDG1 Timers **(** Q Q

Figure 3. STM32CubeMX example screenshot

1. This is a screenshot example. It is not specific to the STM32MP21x lines. The appearance can also differ with future STM32CubeMX versions.

AN6055 - Rev 1 page 16/73

4 Clocks

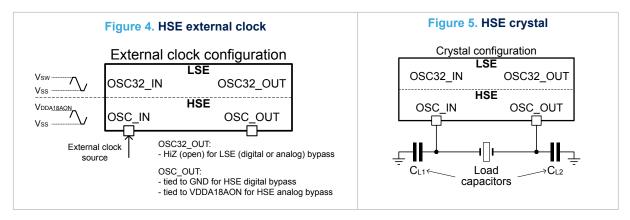
Different clock sources can be used to drive the subsystems clocks:

- HSI oscillator clock (high-speed internal clock signal): 64 MHz typical
- MSI oscillator clock (multispeed internal clock signal): 16 or 4 MHz typical
- HSE oscillator clock (high-speed external clock signal): 40 MHz typical
- PLL1 dedicated to Cortex-A35 core
- PLL2 dedicated to DDR subsystem
- PLL4/5/6/7/8 clocks
- PLL_USB to generate the USB clock (480 MHz)

The devices have two secondary clock sources:

- 32 kHz low-speed internal RC (LSI RC) that drives the independent watchdog and, optionally, the RTC used for automatic wake-up from the Stop/Standby modes.
- 32.768 kHz low-speed external crystal (LSE crystal) that optionally drives the real-time clock (RTCCLK)

Each clock source can be switched on or off independently when it is not used, to optimize the power consumption.


Refer to the reference manual and datasheet for the description of the clock tree, and for details of the possible clock frequencies.

4.1 HSE oscillator clock

The high-speed external clock signal (HSE) can be generated from two possible clock sources:

- HSE user external clock (see Figure 4).
- HSE external crystal (see Figure 5).

See also Section 8.1: Clock for recommended implementation.

1. Refer to the application note [1].

4.1.1 External source (HSE bypass)

Note:

In this mode, an external clock source must be provided. It can have a frequency from 16 to 48 MHz (refer to the corresponding datasheets for actual max value).

The external digital (V_{IL}/V_{IH}) or analog (amplitude of 200 mV pk-pk minimum) clock signal with a duty cycle of about 50%, has to drive the OSC_IN pin.

To allow USB boot, the boot ROM automatically selects the HSE mode by checking the OSC_OUT connection

during the startup phase (that is on the NRST rising edge):

- OSC OUT is tied to GND (max 1 kΩ): HSE digital bypass
- OSC_OUT is tied to V_{DDA18AON} (max 1 kΩ): HSE analog bypass
- OSC OUT high-Z or connected to a crystal: HSE crystal mode.

AN6055 - Rev 1 page 17/73

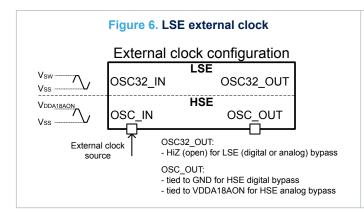
When utilizing a bypass, the activation of the external clock generator can be achieved through the PWR_ON feature for the purpose of power conservation (that is to say deactivated during Standby). In that case, the OSC IN clock input must be stable within 10 ms after the PWR ON rising edge occurs.

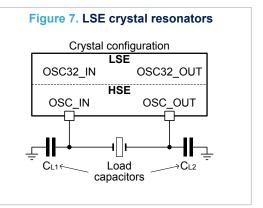
4.1.2 External crystal (HSE crystal)

The external oscillator frequency ranges from 16 to 48 MHz.

The external oscillator has the advantage of producing a very accurate rate on the main clock. The associated hardware configuration is shown in Figure 5. Using a 40 MHz crystal frequency is a good choice to get accurate USB high-speed clocks.

The crystal and the load capacitors have to be connected as close as possible to the oscillator pins in order to minimize output distortion and startup stabilization time. The load capacitance values must be adjusted according to the selected crystal.


For C_{L1} and C_{L2} it is recommended to use NP0/C0G capacitors selected to meet the load requirements of the crystal. C_{L1} and C_{L2} , have usually the same value. The crystal manufacturer typically specifies a load capacitance that is the series combination of C_{L1} and C_{L2} . The PCB and pin capacitances must be included when sizing C_{L1} and C_{L2} .


Refer to the application note and electrical characteristics sections in the product datasheet for more details.

4.2 LSE OSC clock

The LSE can be generated from two possible clock sources (see Figure 6 and Figure 7 below):

- LSE user external clock, see Figure 6
- LSE external crystal, see Figure 7

1. LSE crystal resonators: It is strongly recommended to use a crystal with a load capacitance CL≤12.5 pF.

4.2.1 External source (LSE bypass)

In this mode, an external clock source must be provided. It can have a frequency of up to 1 MHz. The external digital (V_{IL}/V_{IH}) or analog (amplitude of 200 mV pk-pk minimum) clock signal with a duty cycle of about 50% has to drive the OSC32_IN pin while the OSC32_OUT pin must be left high-Z (see Figure 6. LSE external clock). The configuration of the bypass mode as well as the selection between the digital and the analog is done within the RCC registers.

4.2.2 External crystal (LSE crystal)

The LSE crystal is a 32.768 kHz low-speed external crystal. It has the advantage of providing a low-power, but highly accurate clock source to the real-time clock peripheral (RTC) for clock/calendar or other timing functions.

The resonator and the load capacitors have to be connected as close as possible to the oscillator pins. The goal is to minimize output distortion and startup stabilization time. The load capacitance values C_{L1} and C_{L2} must be adjusted according to the selected oscillator. It is recommended to use medium-high or high drive on the LSE oscillator.

Refer to the application note and the electrical characteristics sections in the product datasheet for more details.

AN6055 - Rev 1 page 18/73

4.3 Clock security system (CSS)

Details can be found in the product reference manual [8].

4.3.1 CSS on HSE

The clock security system can be activated by software. In this case, the clock detector is enabled after the HSE oscillator startup delay, and disabled when this oscillator is stopped. If a failure is detected on the HSE oscillator clock, an application reset can be generated.

4.3.2 CSS on LSE

The clock security system can be turned on using software. When this happens, the clock detector is turned on after a delay in the LSE oscillator startup. The detector is turned off when the oscillator stops. If there is a problem with the LSE oscillator clock, the RTC/TAMP clock source is stopped and the TAMP block is notified for security protection and system wake-up.

AN6055 - Rev 1 page 19/73

5 Boot configuration

5.1 Boot mode selection

In the STM32MP21x lines, different boot modes can be selected by means of the BOOT[3:0] pins and OTP settings.

Table 9. Boot sources

BOOT[3:0] pins	Alternate OTP value									
		0b00 (default)		0b01	0b10	0b11			
	Primary	Primary Cortex [®] - M33 core	Primary Cortex [®] -M33 core ⁽¹⁾		Primary	Primary	Primary Cortex [®] -M33 ⁽¹⁾ core			
	Cortex [®] - A35 core		Cortex [®] -	Cortex [®] - M33	Cortex [®] -A35 core	Cortex [®] -M33 core	Cortex®-A35	Cortex [®] -M33		
0	UART and USB (2) (3)							,		
1	SD card	-	-	-	SD card	SD card	-	-		
2	e•MMC	-	-	-	e•MMC	e•MMC	e•MMC	Serial NOR		
3	Development boot ⁽²⁾									
4	Serial NOR	-	-	-	Serial NOR	Serial NOR	SLC NAND	Serial NOR		
5	Serial NAND	-	-	-	-	-	e•MMC (4).	Serial NOR		
6	SCL NAND	-	-	-	-	-	e•MMC (4)	HyperFlash™		
7	-	SD card	-	-	HyperFlash™	HyperFlash™	-	-		
8	-	e•MMC	-	-	Serial NAND	Serial NAND	e•MMC	HyperFlash™		
9	-		Serial NAND	Serial NOR	-		SD card ⁽⁵⁾ .	Serial NOR		
10	-		SCL NAND	Serial NOR	-		SD card ⁽⁵⁾	HyperFlash™		
11	-	Serial NOR	-	-	SLC NAND	SLC NAND	SLC NAND	HyperFlash™		
12	Development	boot ⁽²⁾		I				I		
13	-	-	e•MMC	Serial NOR	SD card ⁽⁵⁾	SD card ⁽⁵⁾	SD card	Serial NOR		
14	-	-	SD card	Serial NOR	e•MMC (4)	e•MMC (4)	SD card	HyperFlash™		
15	UART and US	SB ⁽³⁾	1	1	1			1		

- 1. Two flash memory configurations. Indirect Cortex-A35 boot (from Cortex-M33) or used during Cortex-A35 D1 Standby exit.
- 2. Cannot be overridden by OTP.
- 3. Wait for the incoming connection to USART2 or UART5 on the default pins and the USB high-speed device on OTG_HSDP_DP/DM.
- 4. e•MMC on SDMMC1
- 5. SD card on SDMMC2

The boot ROM samples the values on the boot pins after a reset. It is up to the user to set the BOOT[3:0] pins before reset exit to select the required boot mode. The software could also resample the boot pins later (for example by reading the BOOT[3:0]" field in the "SYSCFG_BOOTCR" register). Or the boot ROM could do it upon Standby mode exit. Consequently, the boot pins must be kept in the required boot mode configuration all the time.

AN6055 - Rev 1 page 20/73

5.2 Boot pin connection

Figure 8 shows an example of the external connection required to select the boot memory of the STM32MP21x lines devices.

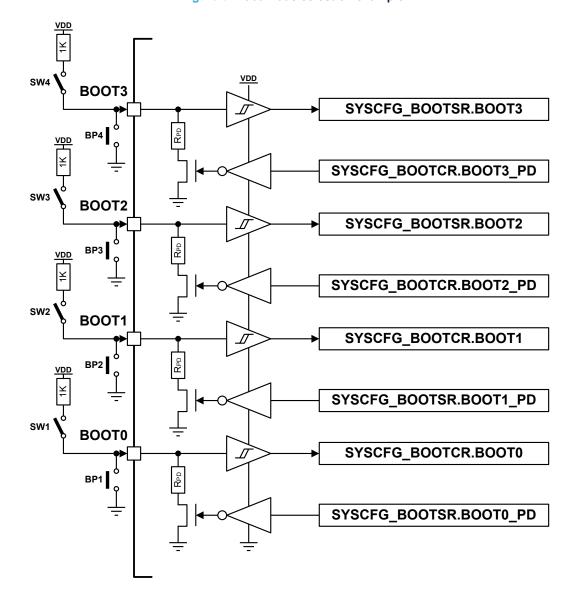


Figure 8. Boot mode selection example

Despite all the recovery cases in software, there is a risk that, with wrong or corrupted flash memory content (such as user mistake, bad flash memory content programmed, power lost), the system might not start (also known as 'bricked').

Note that on empty flash memories, the boot code automatically switches to UART/USB connection.

It might be required to have a way to force use of UART/USB connection in order to enable board flash memory reprogramming (for example: after sale services, firmware update).

There are also cases where initial boot is done on a different flash memory than regular boot (for example the initial boot from SD card, which copies binary data in another flash memory like serial NOR, serial NAND, eMMC, or SLC NAND). This is possible as the initial boot code could set relevant OTP bits to force future boot from the programmed flash memory (see Figure 10). This allows a simplified and flexible mass production without intervention on boot pins. The typical connections examples for a final board are described in Figure 9. Boot pins typical connection schematics.

The switches could be done by various ways such as pushbutton, solder bridges, connector contacts, test points. They are assumed 'open' by default during normal product boot to avoid current flow in external resistors.

AN6055 - Rev 1 page 21/73

Note that OTP configuration could force or forbid any of the boot sources in order to satisfy product security requirements.

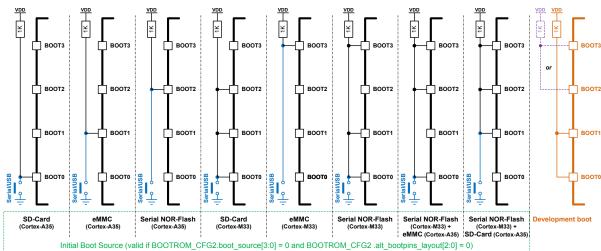


Figure 9. Boot pins typical connection schematics

In blue, antiquel appropriate to force Cariel as LICD heat (if not dischlad by OTD antique)

AN6055 - Rev 1 page 22/73

5.3 Embedded bootloader mode

This embedded bootloader is located in the boot ROM. During boot, the OCTOSPI, FMC, SDMMC, and USART peripherals operate with the internal 64 MHz oscillator (HSI).

The OTG_HSDP high-speed device, however, can function only if an external clock (HSE) is present with a recommended frequency of 40 MHz (alternatively, 16, 19.2, 20, 24, 25, 26, 28, 32, 36, 40 or 48 MHz could be used with OTP settings and/or automatic frequency detection).

For additional information, refer to the USB DFU/USART protocols used in STM32MP2 series bootloaders [3].

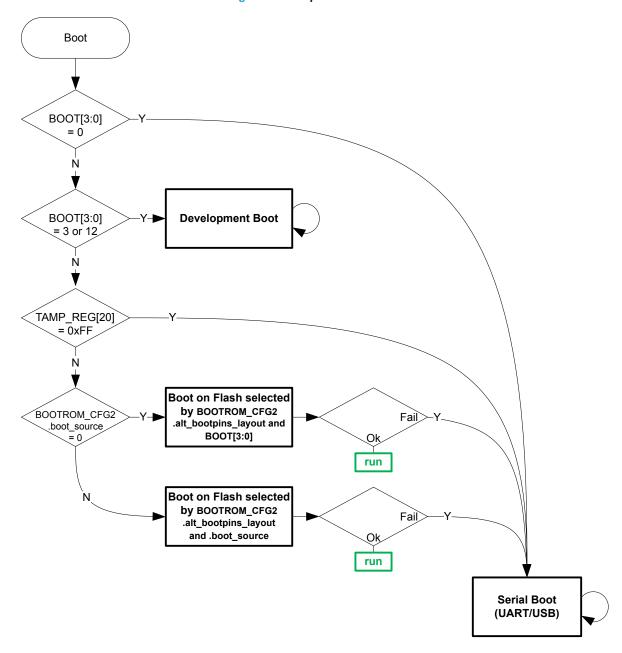
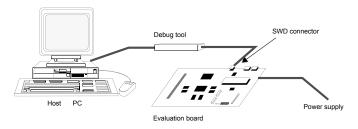


Figure 10. Simplified boot flow

AN6055 - Rev 1 page 23/73


6 Debug management

6.1 Introduction

The host/target interface is the hardware equipment that connects the host to the application board. This interface is made of three components: a hardware debug tool, a JTAG, or SWD connector and a cable connecting the host to the debug tool.

Figure 11 shows the connection of the host to the evaluation board.

Figure 11. Host-to-board connection

6.2 SWJ debug port (serial wire and JTAG)

The STM32MP21x lines core integrates the serial Wire/JTAG debug port (SWJ-DP). It is an Arm[®] standard CoreSight[™] debug port that combines a JTAG-DP (5-pin) interface and an SW-DP (2-pin) interface.

- The JTAG debug port (JTAG-DP) provides a 5-pin standard JTAG interface to the AHP-AP port
- The serial wire debug port (SW-DP) provides a 2-pin (clock + data) interface to the AHB-AP port

The two pins of the SW-DP are multiplexed with two of the five JTAG pins of the JTAG-DP.

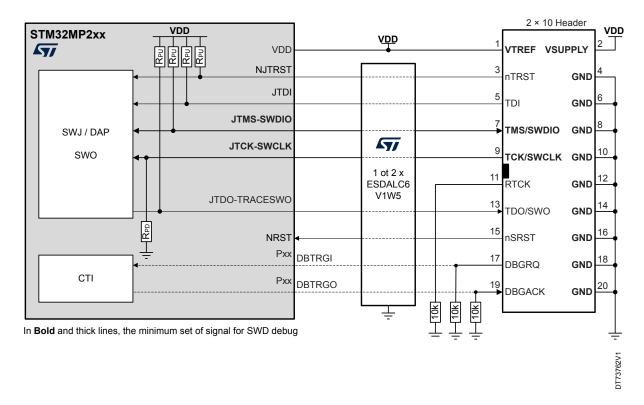
6.3 Pinout and debug port pins

6.3.1 Internal pull-up and pull-down resistors on JTAG pins

To avoid any uncontrolled I/O levels, the STM32MP21x lines embed internal pull-up and pull-down resistors on JTAG pins:

- NJTRST: Internal pull-up
- JTDI: Internal pull-up
- JTDO-TRACESWO: Internal pull-up
- JTMS-SWDIO: Internal pull-up
- JTCK-SWCLK: Internal pull-down

Note:


- The JTAG IEEE standard recommends adding pull-up resistors on TDI, TMS, and nTRST but there is no special recommendation for TCK. However, for the STM32MP21x lines, an integrated pull-down resistor is used for JTCK.
- Having embedded pull-up and pull-down resistors removes the need to add external resistors.
- In order to use the RMA (return material acceptance), the JTAG pins (JTDI, JTCK, JTMS) must be accessible. The JTDO pin might be needed too, depending on the tool that is used.

AN6055 - Rev 1 page 24/73

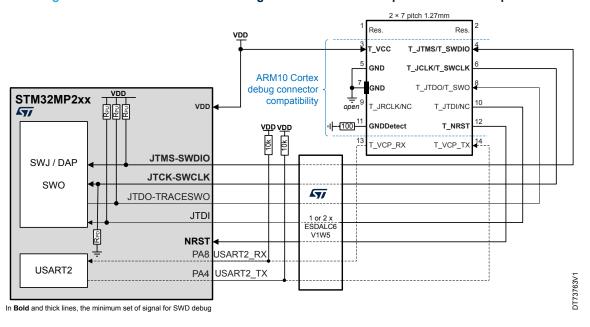
6.3.2 Debug port connection with standard JTAG connector

Figure 12 shows the connection between the STM32MP21x lines and a standard JTAG/SWD connector.

Figure 12. JTAG/SWD using Arm® JTAG 20 connector implementation example

Note: The single wire trace on the TRACESWO pin is only available for Cortex®-M33 core. To trace all cores activity, a parallel trace port must be used (see Parallel trace and HDP).

AN6055 - Rev 1 page 25/73



6.3.3 Debug port and UART connection with STDC14 connector

Figure 13 shows the connection between the STM32MP21x lines and an STDC14 connector including UART virtual comport connection.

Reference example for the STDC14 header is FTSH-107-01-L-DV-K-A.

Figure 13. JTAG/SWD/UART VCP using STDC14 connector implementation example

Note:

- The single wire trace on the TRACESWO pin is only available for Cortex®-M33 core. To trace all core activities, a parallel trace port must be used (see Parallel trace and HDP).
- STDC14 connector is respecting (from pin 3 to pin 12) the Arm10 pinout (Arm[®] Cortex[®] debug connector).

6.3.4 Parallel trace and HDP

Parallel trace

TRACED[15:0] and TRACECLK signals are available as alternate functions on I/Os pins. The number N of trace data can be = 1, 2, 4, 8 or 16 pins. Less trace data mean lower available trace bandwidth, so less information could be traced (such as the number of trace sources, code and/or data tracing) without trace overrun. For each product, a trade-off between available features and the trace bus could lead to have reduced feature while using trace during product development.

The trace is compliant with $Arm^{\mathbb{R}}$ CoreSight^{IM} trace. It needs a dedicated tracing tool in order to be interpreted and correlated with the debugging done through SWD or JTAG.

For more information on the Trace Port interface CoreSight[™] component, refer to the product reference manual [8] and the Arm[®] CoreSight[™] technical reference manual.

Note that for efficient tracing bandwidth, TRACECLK must run as fast as possible while maintaining good signal integrity on all parallel trace signals. This is dependent on board and connector choices, GPIO strength settings (GPIO_OSPEEDR registers), and V_{DD} voltage.

AN6055 - Rev 1 page 26/73

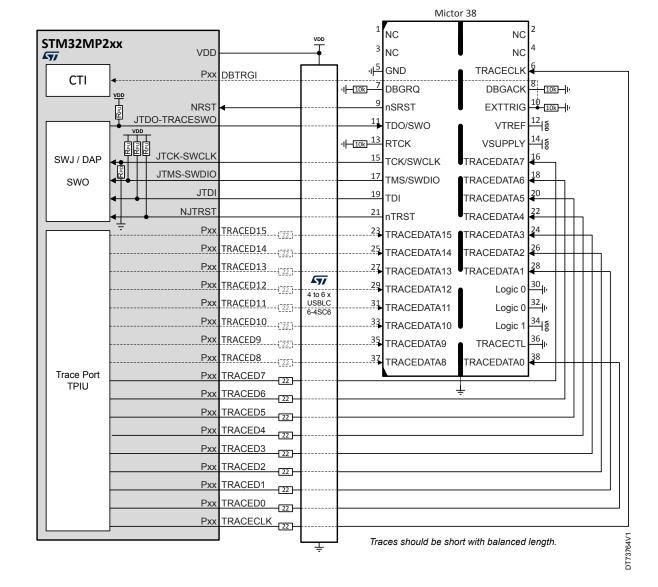


Figure 14. Parallel trace port with JTAG/SWD on Mictor-38 implementation example

Note: Missing TRACED[13,12,11,8] on VFBGA225 8x8 package.

Hardware debug port (HDP)

Some internal signals are available for deep debugging. Internal knowledge and an oscilloscope or logic analyzer are needed. For more information, refer to the product reference manual [8] and datasheets [9] [10].

6.3.5 Debug triggers and LEDs

The CoreSight[™] cross-trigger interface (CTI) is available on DBTRGI and DBTRGO pins.

DBTRGI could be generated by the external user signal. It could be programmed also inside CoreSight[™] components to start/stop traces or enter specific cores in debug mode (break).

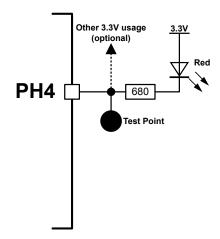
DBTRGO could be generated by CTI to see externally that a trigger condition is reached by one of the $CoreSight^{TM}$ components (core break, trace started, and so on.).

DBTRGO could be made available on PH4, PH5, PZ3 (except VFBGA225 8x8 package).

DBTRGI could be made available on PH4, PH5, PZ3 (except VFBGA225 8x8 package).

AN6055 - Rev 1 page 27/73

6.3.6 Debug LED


The PH4 pin has a specific BOOTFAILN behavior (see boot documentation for details):

- During the boot phase, in case of boot failure, the PH4 pin is set to low open-drain. The debug LED lights bright. Note that in most cases, without secure boot enabled, this failure is not visible as it immediately falls back to an UART/USB boot.
- During UART/USB boot, the PH4 pin toggles open-drain at a rate of few Hz until a connection is started.
 The debug LED blinks fast.
- With BOOT[3:0] = 0b0000 (development boot), PH4 is set to low open-drain. The debug LED lights bright.
- In all other cases, like normal boot, the PH4 pin is kept in its reset value, that is high-Z until further software setting.

A red LED can be connected to PH4 as shown in Figure 15. V_{DD} = 1.8 V, additional circuitry might be needed.

LEDs are useful for quick visual signaling of system activity. So, it is a good choice to use at least PH4 for quick low level boot error signaling. In most cases, the LED circuitry does not conflict with usage for other purposes (such as USBH HS OVRCUR).

Figure 15. PH4 LED connection (valid for VDD = 3.3V)

AN6055 - Rev 1 page 28/73

7 Recommendations

7.1 PCB

For technical reasons, it is mandatory to use a multilayer PCB with a separate layer dedicated to the ground (VSS), and another layer dedicated to power supplies like V_{DD} , V_{DDCPU} , and V_{DDCORE} . This provides good decoupling and a good shielding effect.

7.2 Component position

A preliminary layout of the PCB must separate the different circuits according to their EMI contribution. The aim is to reduce cross-coupling on the PCB that is noisy high-current circuits, low-voltage circuits, and digital components.

7.3 Ground and power supplies (V_{SSx}, V_{DDx})

Due to a large power and high frequencies involved in the STM32MP21x devices, it is mandatory to use PCB with at least four layers and with dedicated power planes for V_{SSx} and V_{DDx} .

7.4 Advanced GPIO configuration

To utilize ETH RGMII, DCMIPP parallel inputs, LTDC parallel outputs, or parallel TRACE outputs (TPIU), it is necessary to configure certain settings within the GPIOx_ADVCFG and GPIOx_DELAY registers. Refer to Table 10 below for recommended values.

Table 10. GPIO advance configuration recommended settings

	Mode		GP	'IOx_AD	_ADVCFGR bits		GPIOx_DELAY field
Interface		Signals	RET	INVCLK	DE	DLYPATH	DLY[3:0]
	RGMII	ETHx_RGMII_RX_CTL	1	0	1	0	0ь0000
		ETHx_RGMII_RXD[3:0]					
		ETHx_RGMII_TX_CTL					
		ETHx_RGMII_TXD[3:0]					
		Other ETHx_	0	0	0	0	0b0000
	RGMII_ID (GMAC side internal delays)	ETHx_RGMII_RX_CLK (on PA14)	0	0	0	1	0b0011
		ETH2_RGMII_RX_CLK (on PC0)	0	0	0	1	0b0100
ETH1, ETH2		ETH2_RGMII_RX_CLK (on PF6)	0	0	0	1	0b0110
		ETH1_RGMII_GTX_CLK	0	0	0	0	0b0101
		ETH2_RGMII_GTX_CLK	0	0	0	0	0b0110
		ETHx_RGMII_RX_CTL	1	0	1	0	060000
		ETHx_RGMII_RXD[3:0]					
		ETHx_RGMII_TX_CTL					
		ETHx_RGMII_TXD[3:0]					
		Other ETHx_	0	0	0	0	0b0000
	PIXCLK rising edge sampling	DCMIPP_PIXCLK	0	1	0	0	0b0000
DOMIND "		Other DCMIPP_	1	1	0	0	0b0000
DCMIPP parallel	PIXCLK falling edge sampling	DCMIPP_PIXCLK	0	0	0	0	0b0000
		Other DCMIPP_	1	1	0	0	0b0000

AN6055 - Rev 1 page 29/73

Interface	Mode		GPIOx_ADVCFGR bits			oits	GPIOx_DELAY field
		Signals	RET	INVCLK	DE	DLYPATH	DLY[3:0]
LTDC parallel	CLK rising edge sampling	LCD_CLK	0	0	0	0	0b0000
		Other LCD_	1	0	0	0	0b0000
	CLK falling edge sampling	LCD_CLK	0	1	0	0	0b0000
		Other LCD_	1	0	0	0	0b0000
TRACE (TPIU) parallel	Edge-aligned data	TRACECLK	1	0	0	0	0b0000
		Other TRACEx	1	0	0	0	0b0000
	Center-aligned data	TRACECLK	1	0	0	0	0b0000
		Other TRACEx	1	1	0	0	0b0000

^{1.} Use these settings only if a 2 ns internal delay is needed for RGMII timings. Delay values could be slightly tuned if required.

7.5 I/O speed settings

It is important to set the right output drive on I/Os to have sufficient rise and fall times. Moreover, it helps avoid any additional ringing and noise.

When there are no specific requirements for I/O speed, it is mandatory to set OSPEEDR to 0.

As a first approximation, the following drawings and tables could be used to choose quickly the right setting to apply according to signal frequency and capacitive load. This setting might need to be tailored in case of signal integrity issue.

Whenever an OSPEEDR value of two or three is used, related I/O compensation needs to be enabled in SYSCFG. There are five independent I/O compensations for each of the four independent I/O supplies: V_{DD} , V_{DDIO1} , V_{DDIO2} , and V_{DDIO3} . Refer to the product datasheet and reference manual for more details.

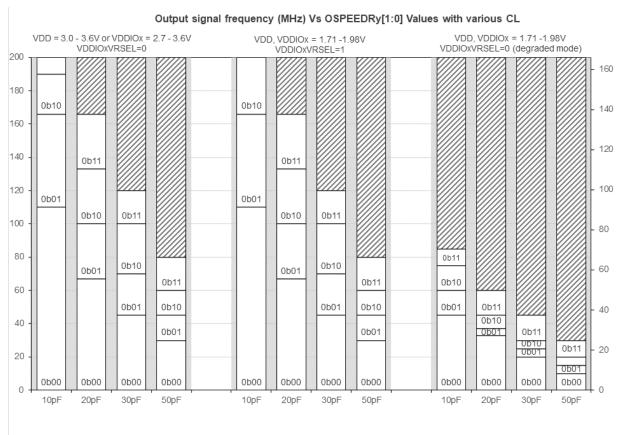
Note that there are four independent I/Os voltage sections (V_{DD} , V_{DDIO1} , V_{DDIO2} , or V_{DDIO3}), which, in some AFMUX settings cases, could be shared between different interfaces.

When V_{DD} , V_{DDIO1} , V_{DDIO2} , or V_{DDIO3} are held at 1.8 V, settings must be done in PWR_CR1.VDDIOxVRSEL (for VDD and VDDIO3) or PWR_CR7.VDDIO2VRSEL (for VDDIO2) or PWR_CR8.VDDIO1VRSEL (for VDDIO1). Without these settings, the I/Os are working in degraded mode.

Note: To avoid I/O damage due to mis-settings, in addition to PWR settings, there are OTP bits (HSLV_VDDIOx) which must be programmed when a specific domain (V_{DD} , V_{DDIO1} , V_{DDIO2} , or V_{DDIO3}) may be used below 2.5 V on a

product. See related sections in the product reference manual for details.

Note: In the case of asynchronous or single edge clocked data lanes (such as SDR), the maximum data frequency toggle is effectively half the data rate.


For example, an SPI running at 10 Mbit/s has a maximum frequency of 5 MHz on the data signal, like output serial data 01010101..., but 10 MHz on the clock signal.

On dual-edge clocked data lanes (such as DDR), the clock and data have the same maximum toggling frequency.

AN6055 - Rev 1 page 30/73

Figure 16. I/O speed summary with various loads and voltages

AN6055 - Rev 1 page 31/73

Table 11. OSPEEDR setting example for VDD = 3.3 V typ.(1)

Peripheral	Signals	Toggling rate (MHz)	OSPEEDR C _L = 30 pF		OSPEEDR C _L = 10 pF	
FMC async	Data/Controls	50	1	Medium speed	0	Low speed
FMC sync	CLK	100	2	High speed	0	Low speed
	Data/Controls	50	1	Medium speed	0	Low speed
OCTOCOM (CDD)	CLK	133	2(2)	High speed	1	Medium speed
OCTOSPI1 (SDR)	Data/Controls	66.5	1	Medium speed	0	Low speed
OCTOSPI1 (DDR)	All	66.5	1	Medium speed	0	Low speed
LTDC	CLK	150	3 (2)	3 (2) Very high speed		Medium speed
LTDC	Data/Controls	75	2	High speed	0	Low speed
LTDC	CLK	83	2	High speed	0	Low speed
LTDC	Data/Controls	41.5	0	Low speed	0	Low speed
TIM/LPTIM	All	5	0	Low speed	0	Low speed
I2C	All	1	0	Low speed	0	Low speed
USART	All	5	0	Low speed	0	Low speed
SPI	CLK	50	1	1 Medium speed		Low speed
SFI	Data/Controls	25	0	Low speed	0	Low speed
	MCLK	15	0	Low speed	0	Low speed
SAI	CLK	1	0	Low speed	0	Low speed
	Data/Controls	0.5	0	Low speed	0	Low speed
SDMMC (SDR)	CLK	133	2 (2)	2 (2) High speed		Medium speed
SDIVINIC (SDR)	Data/Controls	66.5	1	Medium speed	0	Low speed
SDMMC (DDR)	All	52	1	Medium speed	0	Low speed
FDCAN	All	5	0	Low speed	0	Low speed
ETH (MII)	CLK	25	0	0 Low speed		Low speed
ETH (WIII)	Data/Controls	12.5	0	0 Low speed		Low speed
ETH (RMII)	All	50	1	Medium speed	0	Low speed
EIT (KIVIII)	Data/Controls	25	0	Low speed	0	Low speed
ETH (RGMII)	All	125	2 (2)	High speed	1	Medium speed
ETH (MDIO)	MDIO	2.5	0	Low speed		Low speed
TRACE	All	133	2 (2)	High speed	1	Medium speed
INACE	All	100	2	High speed	0	Low speed

^{1.} VDDIOxVRSEL = 0

AN6055 - Rev 1 page 32/73

^{2.} Value for a 20 pF load.

Table 12. OSPEEDR setting example for VDD = 1.8 V typ.(1)

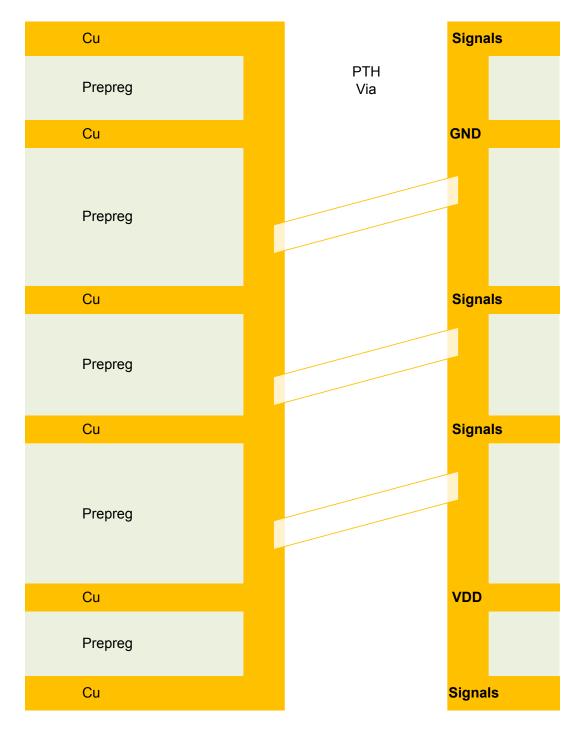
⁽¹⁾ Peripheral	Signals	Toggling rate (MHz)	os	PEEDR C _L = 30 pF	OSPEEDR C _L = 10 pF		
FMC async	Data/Controls	50	1	Medium speed	0	Low speed	
FMC sync	CLK	100	2	High speed	0	Low speed	
	Data/Controls	50	1	Medium speed	0	Low speed	
OCTOSPI1 (SDR)	CLK	133	2 (2)	High speed	1	Medium speed	
	Data/Controls	66.5	1	Medium speed	0	Low speed	
OCTOSPI1 (DDR)	All	66.5	1	Medium speed	0	Low speed	
	CLK	150	3 (2)	3 (2) Very high speed		Medium speed	
LTDC	Data/Controls	75	2	High speed	0	Low speed	
LTDC	CLK	83	2	High speed	0	Low speed	
LTDC	Data/Controls	41.5	0	Low speed	0	Low speed	
TIM/LPTIM	All	5	0	Low speed	0	Low speed	
I2C	All	1	0	Low speed	0	Low speed	
USART	All	5	0	Low speed	0	Low speed	
SPI	CLK	50	1	Medium speed	0	Low speed	
	Data/Controls	25	0	Low speed	0	Low speed	
	MCLK	15	0	Low speed	0	Low speed	
SAI	CLK	1	0	Low speed	0	Low speed	
	Data/Controls	0.5	0	Low speed	0	Low speed	
CDMMC (CDD)	CLK	133	2 (2)	High speed	1	Medium speed	
SDMMC (SDR)	Data/Controls	66.5	1	Medium speed	0	Low speed	
SDMMC (DDR)	All	52	1	Medium speed	0	Low speed	
FDCAN	All	5	0	Low speed	0	Low speed	
ETH (MIL)	CLK	25	0	0 Low speed		Low speed	
ETH (MII)	Data/Controls	12.5	0	0 Low speed		Low speed	
ETH (RMII)	All	50	1	Medium speed	0	Low speed	
	Data/Controls	25	0	Low speed	0	Low speed	
ETH (RGMII)	All	125	2 (2)	High speed	1	Medium speed	
ETH (MDIO)	MDIO	2.5	0	Low speed	0	Low speed	
TRACE	All	133	2 (2)	High speed	1	Medium speed	
	All	100	2	High speed	0	Low speed	

^{1.} VDDIOxVRSEL = 1

AN6055 - Rev 1 page 33/73

^{2.} Value for a 20 pF load.

7.6 PCB stack and technology


A trade-off between the PCB cost and easy electrical connections has to be made. Below, examples are, either for four or six layers PCB with only PTH (suited for 0.8mm pitch package), or for six layers PCB with both PTH and laser drilled vias (suited for 0.5mm pitch package).

Note that some STM32MP21x lines packages with an outer ball pitch of 0.5 mm provide power improved center ball matrix with depopulated matrix. It enables large PTH via in between balls.

This ensures better supply connection as well as optimized thermal conductivity than small buried laser drilled vias

AN6055 - Rev 1 page 34/73

Figure 17. 6-layer PTH PCB stack example

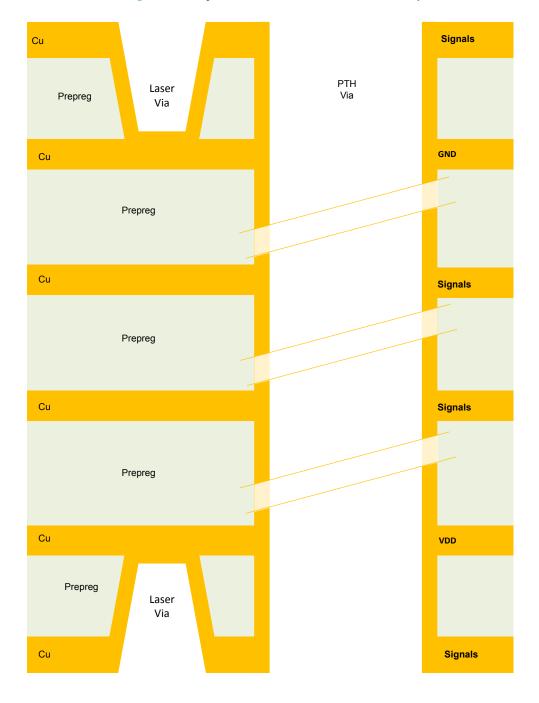


Figure 18. 6-layer PTH + laser vias PCB stack example

T68348V1

AN6055 - Rev 1 page 36/73

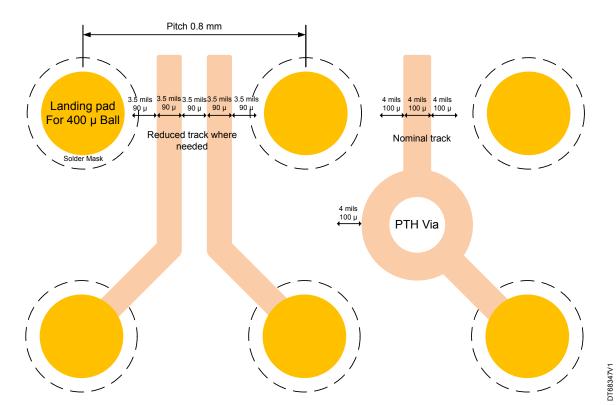
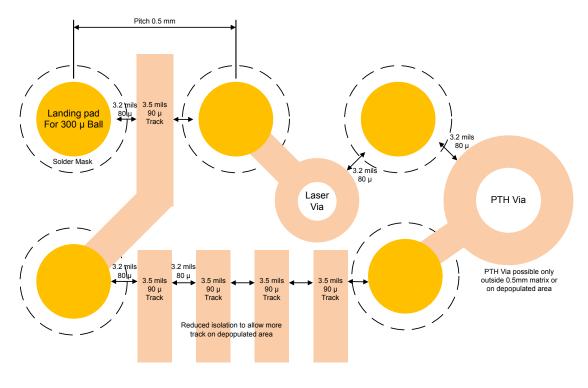
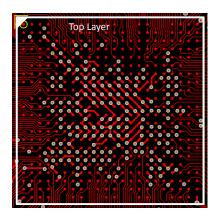
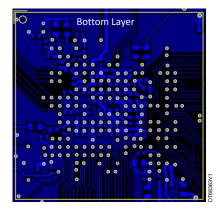



Figure 19. PCB rule for 0.8 mm pitch package (with PTH)

T68346V1

AN6055 - Rev 1 page 37/73




7.7 Decoupling

All the power supply and ground pins must be properly connected to the power supplies. These connections, including pins, tracks, and vias must have as low impedance as possible. This is typically achieved with thick track widths and, preferably, the use of dedicated power supply planes in multilayer PCBs.

In addition, each power supply pair must be decoupled with ceramic capacitors (most of the time 100 nF or 1 μ F, see Table 3. Amount of decoupling recommendation by package). These capacitors need to be placed as close as possible to, or below, the appropriate pins on the underside of the PCB. Exact values might depend on the application. Figure 21 shows the typical layout of such a decoupling placement.

Figure 21. Example of decoupling layout

7.8 ESD/EMI protections

Electrostatic discharge (ESD) and electromagnetic interference (EMI) must be taken into account from the beginning of a product development as it can be very complex and expensive to add them later.

ESD and EMI are driven by global standards (such as IEC 61000, JESD 22) which in most countries require a certification to allow mandatory marking to be applied on a product (such as CE, FCC).

ESD and EMI are also driven by standardized interface certification or requirements (for example USB).

Although the STM32MP21x lines embed device level ESD protection, the final product protection must be done by external components, more especially on interfaces having external user access in the final product (such as Ethernet, USB, SD card). Some components provide ESD protection as well as EMI common-mode filtering (for example ECMF02-2AMX6 used on USB). Some examples of ESD/EMI protections are provided in Section 8: Reference design examples.

For more details, refer to the application note [2] about the EMC design guide.

7.9 Sensitive signals

When designing an application, the EMC (electromagnetic compatibility) performance can be improved by closely studying the following points:

- Signals for which a temporary disturbance affects the running process permanently (such as interrupts and handshaking strobe signals, not the case for LED commands)
 - For these signals, a surrounding ground trace, shorter lengths, and the absence of noisy or sensitive traces nearby (crosstalk effect) improve the EMC performance. For digital signals, the best possible electrical margin must be reached for the two logical states and slow Schmitt triggers are recommended to eliminate parasitic states.
- Noisy signals (such as clock)
- Sensitive signals (such as high-Z ones)

Signals that do not allow negative injection, such as input/output signals on VSW supply, need to be handled with care to prevent undershoots. To avoid this, a series resistor (usually $22~\Omega$) can be added close to the signal source to match impedance, or a small capacitor (suited to the impedance and frequency of the signal) can be added near the input/output to reduce ringing. Refer to the product datasheet for more information.

For more details, refer to the application note [2] about the EMC design guide.

AN6055 - Rev 1 page 38/73

7.10 Unused I/Os and features

The STM32MP21x lines are designed for a wide range of applications and often a particular application does not use 100% of the resources.

To increase the EMC performance, unused clocks, counters, or I/Os must not be left free. For example, I/Os must be set to "0" or "1" (external or internal pull-up or pull-down to the unused I/O pins), and unused features must be "frozen" or disabled.

AN6055 - Rev 1 page 39/73

8 Reference design examples

This section provides examples to help the user to connect major and critical interfaces to the STM32MP21x devices.

8.1 Clock

Two clock sources are used for STM32MP21x lines, with the following choices:

- LSE: 32.768 kHz crystal for the embedded RTC
- HSE: 40 MHz crystal or external oscillator as STM32MP21x lines main clock

Refer to Section 4: Clocks.

Figure 22. HSE recommended schematics for both oscillator/crystal options

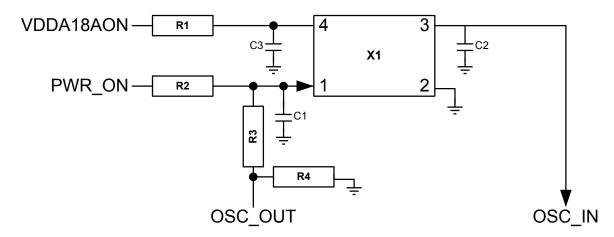


Table 13. HSE BOM for oscillator or crystal

-	Oscillator (OSC_OUT = logic 0)	Crystal (OSC_OUT = crystal pin)
X1	NZ2016SH 40 MHz	NX2016SA 40 MHz
R1	10 Ω	- (open)
R2	10 ΚΩ / 30 ΚΩ	- (open)
R3	- (open) / 33 KΩ	0 Ω
R4	1 ΚΩ	- (open)
C1	- (open)	6.8 pF
C2	- (open)	6.8 pF
C3	10 nF	- (open)

^{1.} Respectively for VDD = 3.3 V and VDD = 1.8 V. In case of VDD = 3.3 V, a resistor divider formed by R2/(R3+R4) is required as the oscillator pin 1 (Enable) must be limited to a VDDA18AON (1.8 V) voltage, which supplies the external oscillator.

8.2 Reset

The NRST reset signal in Figure 1 is active low. The reset sources include:

- Reset button
- Debugging tools via the JTAG connector

Refer to Section 2.4: Reset and power supply supervisor.

AN6055 - Rev 1 page 40/73

8.3 Boot mode

The boot option is configured by setting permanent wires or switches: SW4 (BOOT3), SW3 (BOOT2), SW2 (BOOT1) and SW1 (BOOT0) and internal OTP. Refer to Section 5.

If the UART boot uses one of the possible U(S)ARTx_RX pins (see Table 14), to avoid that a floating signal is sent to the host until the boot ROM has received and decoded the initialization character, it is required to have a 10 k Ω V_{DD} pull-up resistor on the respective U(S)ARTx_TX pin.

The $U(S)ART_RX$ pin used for the boot or system console must not be left floating to avoid dummy serial character decoding. This could be ensured in either of two ways:

- Defining an internal pull-up resistance in a uBoot/Linux device tree
- Using a 10 k Ω V_{DD} pull-up resistor on the board

The table below shows the default pins used for each boot interface.

Note: Most could be changed using OTP settings. This table is for default OTP settings.

Table 14. Minimum set of default pins used during the boot ROM phase

Most can be changed using OTP settings. This table is for default OTP settings.

Interface	Туре			Signal	Pin	I/O supply domain		
				FMC_NOE	PE15			
				FMC_RNB	PE13			
				FMC_NWE (2)	PE14	V (1)		
				FMC_NCE1	PE12	$V_{\rm DDIO2}^{(1)}$		
				FMC_ALE	PE8			
				FMC_CLE	PE11			
	01.0.010	ND 0 bits		FMC_D0	PE9			
	SLC NA	ND 8 bits		FMC_D1	PE6			
				FMC_D2	PE7			
				FMC_D3	PD15			
FMC			SLC NAND 16 bits	FMC_D4	PD14			
FIVIC			SEC NAIND TO DIES	FMC_D5	PB13			
				FMC_D6	PD12			
				FMC_D7	PB14	V		
				FMC_D8	PB5	V_{DD}		
				FMC_D9	PB6			
				FMC_D10	PB7			
				FMC_D11	PD13			
		-		FMC_D12	PB2			
				FMC_D13	PB9			
				FMC_D14	PB11			
				FMC_D15	PB10			
				OCTOSPI1_CLK	PD0			
	Serial NOR	Serial NAND		OCTOSPI1_NCS1	PD3			
OCTOODIA ====44	Jenai NOR	Genai IVAIND	I have a very set TM	OCTOSPI1_IO0	PD4	V _{DDIO3}		
OCTOSPI1 port1			HyperFlash [™]	OCTOSPI1_IO1	PD5			
	'			OCTOSPI1_IO2	PD6			
		-		OCTOSPI1_IO3	PD7	1		

AN6055 - Rev 1 page 41/73

Interface	Туре		Signal	Pin	I/O supply domain				
			OCTOSPI1_IO4	PD8					
			OCTOSPI1_IO5	PD9					
OCTOSPI1 port1	_	HyperFlash™	OCTOSPI1_IO6	PD10	$V_{\rm DDIO3}$				
COTOGITI PORTI		Пурен іазіі	OCTOSPI1_IO7	PD11	• DDIO3				
			OCTOSPI1_NCLK	PD1					
			OCTOSPI1_DQS	PD2					
			SDMMC1_CK	PE3					
SDMMC1	SD card or e•	SDMMC1_CMD	PE2	V_{DDIO1}					
		SDMMC1_D0 (3)	PE4						
		SDMMC2_CK	PE14						
SDMMC2 ⁽⁴⁾	SD card or e•	SDMMC2_CMD	PE15	$V_{DDIO2}^{(1)}$					
		SDMMC2_D0 (3)	PE13						
·	HOADTO		USART2_RX	PA8	\/				
	USART2		USART2_TX	PA4	V_{DD}				
					LIADTE		UART5_RX	PB15	
	UART5				V_{DD}				
	USART6		USART6_RX	PF4	V_{DD}				
	USARTU		USART6_TX	PF5	עט י				

- 1. Some FMC and SDMMC2 pins are shared: use of FMC is exclusive of use of SDMMC2.
- 2. On VFBGA225, FMC_NWE is mapped on GPIO PD13.
- 3. Only used as input by boot ROM.
- 4. On the VFBGA225 8 × 8 package, SDMMC2 is not a boot source.

8.4 SWD/JTAG interface

The reference design shows the connections between the STM32MP21x devices and some standard connector (refer to Section 6: Debug management).

Note:

If available, it is recommended to connect the debugger probe system reset pin to NRST. This action permits resetting the application from the debugger.

AN6055 - Rev 1 page 42/73

8.5 Power supply

The PMIC automatically applies power cycling when its RST_N pin is activated (for example, button, system reset). However, in the case of entering an RMA state, the power cycling must not be done. A 0 Ω resistance between NRST and PMIC RST_n pins can be provided and removed when using the procedure to enter an RMA state. Refer to Section 2.

8.5.1 Example of PMIC supplies for 3.3 V I/Os and DDR4

This reference design example targets a complex 3.3 V I/Os platform with DDR4 and high integration PMIC. Usually, all platform components can be powered by the PMIC. Full power supply control is supported thanks to PMIC I²C and side band signals. The Sleep mode, the Stop mode, and the Standby mode are supported. See the PMIC documentation for details of the PMIC components.

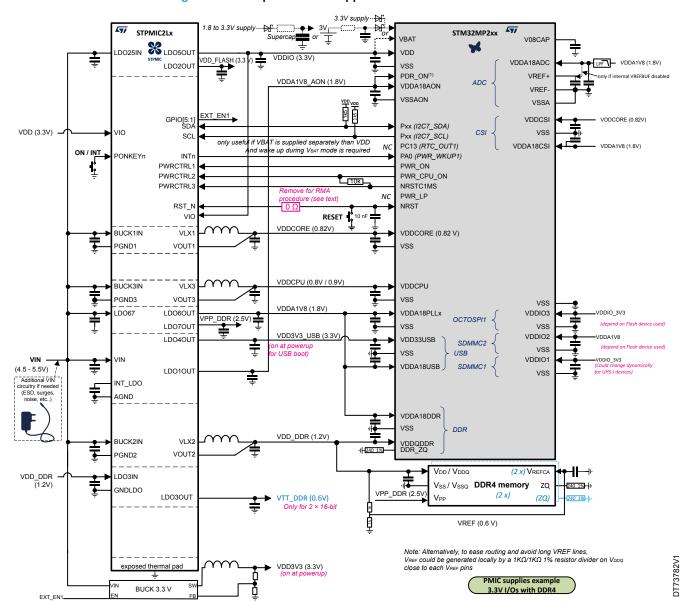


Figure 23. Example of PMIC supplies for 3.3 V I/Os and DDR4

1. PDR_ON must always be connected to VDDA18AON.

See Table 3. Amount of decoupling recommendation by package.

Note:

On a given I²C bus, it is not possible to share I²C devices controlled from both secure and nonsecure software. For example: secure software controls the PMIC in STMicroelectronics standard deliveries, and that PMIC belongs to a distinct and secured I²C controller.

AN6055 - Rev 1 page 43/73

8.5.2 Example of PMIC supplies for 1.8 V I/Os with LPDDR4

This reference design example targets a complex 1.8 V I/Os platform with low power LPDDR4 and high integration PMIC. Usually, all platform components can be powered by the PMIC. The full power supply control is supported thanks to PMIC I²C and side band signals. The Sleep mode, the Stop mode, and the Standby mode are supported as well as very-low power standby with LPDDR4 retention. See PMIC documentation for details of PMIC components.

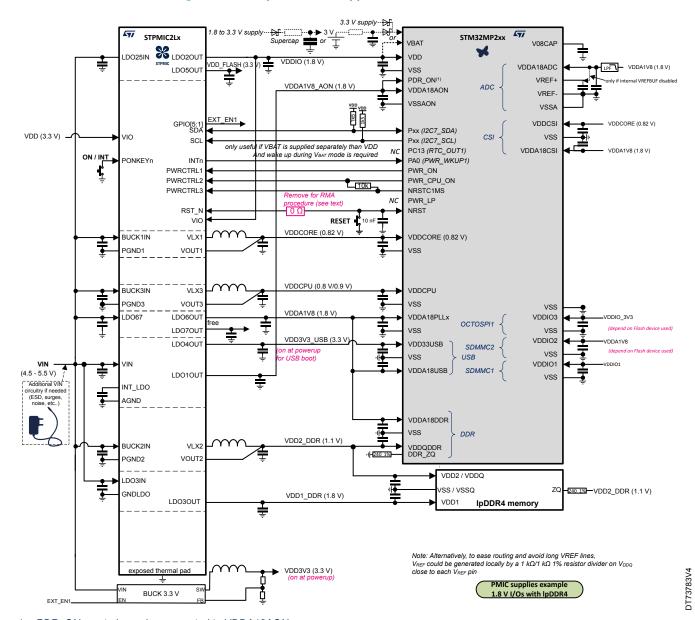


Figure 24. Example of PMIC supplies for 1.8 V I/Os with LPDDR4

PDR_ON must always be connected to VDDA18AON.

Note:

SD card supplies are not enabled in the STPMIC25A and STPMIC25B default NVM after shipment. They need to be specifically programmed in the customer production flow (using USB or UART boot) to allow SD card boot. Alternatively, if no SD card UHS-I is required, instead of using LDO7 and LDO8, the SD card supplies (VDDIO_SDCARD and VCC_SDCARD) could be both connected to a 2.7-3.6 V supply enabled with default the STPMIC25x NVM (for example, BUCK7 or LDO2).

See Table 3. Amount of decoupling recommendation by package.

AN6055 - Rev 1 page 44/73

DT73765V3

Note:

On a given I²C bus, it is not possible to share I²C devices controlled from both secure and nonsecure software. For example, secure software controls the PMIC in our standard deliveries and that PMIC belongs to a distinct and secured I²C controller.

8.6 DDR4 SDRAM

A 240 Ω 1% resistor must be connected between DDR_ZQ and V_{SS}. This resistor must not be shared with the ZQ resistors required on each DDR4 component.

16-bit DDR4 ALERT_n open 55 Ω traces unless otherwise noted **L**Y/ PAR STM32MP2xx traces must be short with balanced length TFN DDR_A2 CS0N CS_n DDR_A0 CKE0 CKE CLKP DDR_A4 CK_t 100Ω differential trace DDR_A5 CLKN CK_c DDR_A31 RASN_A16 RAS_n/A16 DDR_A29 CASN A15 CAS_n/A15 DDR_A30 WEN_A14 WE_n/A14 DDR_RESETN RESETN RESET_n 1 10k ODT0 DDR_A3 ODT DDR A17 ACTN ACT_n BA0 DDR_A26 BA0 DDR_A23 DDRPHYC (DDRPHY) BA1 DDR_A18 BG0 BG0 DDR_Ax(1) Ay(1) **DDRCTRL** A[13:0] DDR_DQ[15:8] Byte1 (bit swap allowed) DQU[7:0] DDR_DQS1P DQSU_t 100 Ω differential trace DDR_DQS1N DQSU_c DDR_DQM1 DMU_n/DBIU_n byte swap DDR_DQ[7:0] allowed Byte0 (bits swap allowed) DQL[7:0] DDR_DQS0P DQSL_t 100 Ω differential trace DDR_DQS0N DQSL_c DDR_DQM0 DML_n/DBIL_n DDR ZQ 70 VREF (0.6V)

Figure 25. 16-bit DDR4 connection example

Note:

- 1. See the table below.
- 2. Alternatively, to ease routing and avoid long V_{REF} lines, V_{REF} can be generated locally by a 1 $k\Omega$ 1% resistor divider on V_{DDQ} close to each VREF pin.
- 3. Supplies and decoupling capacitors not shown.
- 4. Detailed routing examples are described in the corresponding application note.

AN6055 - Rev 1 page 45/73

Table 15. 16-bit DDR4 pin mapping

DDRCTRL pin	Signal name	DDR4 ×16	Comments
DDR_RESETN	RESETN	RESET_n	10 kΩ pull-down resistor to memory VSS
DDR_ZQ	-	-	240 Ω 1% to VSS
-	ZQ	-	240 Ω 1% to memory VSS
DDR_VREF	-	-	Not used. Must be left open.
-	VREF	VREFCA	0.6 V reference voltage
-	-	PAR	Net and Markle and Add and Add
-	-	TEN	Not used. Must be connected to memory VSS.
-	-	ALERT_n	Not used. Must be left open.
DDR_A0	CKE0	CKE	-
DDR_A1	CKE1	-	Not used. Must be left open.
DDR_A2	CS0N	CS_n	-
DDR_A3	ODT0	ODT	-
DDR_A4	CLKP	CK_t	-
DDR_A5	CLKN	CK_c	-
DDR_A6	CS1N	-	Not used. Must be left open.
DDR_A7	ODT1	-	Not used. Must be left open.
DDR_A8	A9	A9	-
DDR_A9	A12_BCN	A12/BC_n	-
DDR_A10	A11	A11	-
DDR_A11	A7	A7	-
DDR_A12	A8	A8	-
DDR_A13	A6	A6	-
DDR_A14	A5	A5	-
DDR_A15	A4	A4	-
DDR_A16	not used	-	-
DDR_A17	ACTN	ACT_n	-
DDR_A18	BG0	BG0	-
DDR_A19	not used	-	Not used. Must be left open.
DDR_A20	A3	A3	-
DDR_A21	A2	A2	-
DDR_A22	A1	A1	-
DDR_A23	BA1	BA1	-
DDR_A24	-	-	-
DDR_A25	A13	A13	-
DDR_A26	BA0	BA0	-
DDR_A27	A10_AP	A10/AP	-
DDR_A28	A0	A0	-
DDR_A29	CASN_A15	CAS_n/A15	-
DDR_A30	WEN_A14	WE_n/A14	-
DDR_A31	RASN_A16	RAS_n/A16	-

AN6055 - Rev 1 page 46/73

DDRCTRL pin	Signal name	DDR4 ×16	Comments					
DDR_DQ[16:8]	DQ[15:8]	DQU[7:0]						
DDR_DQM1	DQM1	DMU_n/DBIU_n	Data bits could be swapped within a given byte.	Byte1 could be swapped with other bytes.				
DDR_DQS1P	DQS1P	DQSU_t	Data bits could be swapped within a given byte.	Byte i could be swapped with other bytes.				
DDR_DQS1N	DQS1N	DQSU_c						
DDR_DQ[7:0]	DQ[7:0]	DQL[7:0]						
DDR_DQM0	DQM0	DML_n/DBIL_n		Duta 0 apuld be awanned with other butes				
DDR_DQS0P	DQS0P	DQSL_t	Data bits could be swapped within a same byte.	Byte0 could be swapped with other bytes.				
DDR_DQS0N	DQS0N	DQSL_c						

8.7 LPDDR4 SDRAM

A 240 Ω 1% resistor must be connected between DDR_ZQ and V_{SS}. This resistor must not be shared with one or more ZQ resistors required on the LPDDR4 component.

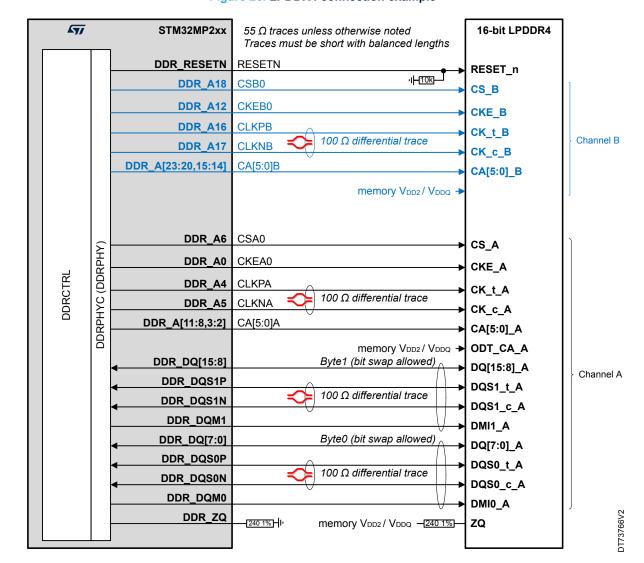


Figure 26. LPDDR4 connection example

Note:

- 1. Supplies and decoupling capacitors are not shown.
- 2. Detailed routing examples are described in the corresponding application note .

AN6055 - Rev 1 page 47/73

Table 16. LPDDR4 pin mapping

DDRCTRL pin	Signal name	LPDDR4	Comments
DDR_RESETN	RESETN	RESET_n	10 kΩ pull-down resistor to memory VSS
DDR_ZQ	-	-	240 Ω 1% to VSS
-	-	ZQ	240 Ω 1% to memory VDD2/VDDQ
-	-	ODT_CA_A	Must be connected to memory VDD2/VDDQ (CA terminations enabled by default, could be
-	-	ODT_CA_B	disabled later inside memory settings).
DDR_VREF	-	-	(1)
DDR_A0	CKEA0	CKE_A	-
DDR_A2	CA0A	CA0_A	-
DDR_A3	CA1A	CA1_A	-
DDR_A4	CLKPA	CK_t_A	-
DDR_A5	CLKNA	CK_c_A	-
DDR_A6	CSA0	CS_A	-
DDR_A8	CA2A	CA2_A	-
DDR_A9	CA3A	CA3_A	-
DDR_A10	CA4A	CA4_A	-
DDR_A11	CA5A	CA5_A	-
DDR_A12	CKEB0	CKE_B	-
DDR_A14	CA0B	CA0_B	-
DDR_A15	CA1B	CA1_B	-
DDR_A16	CLKPB	CK_t_B	-
DDR_A17	CLKNB	CK_c_B	-
DDR_A18	CSB0	CS_B	-
DDR_A20	CA2B	CA2_B	-
DDR_A21	CA3B	CA3_B	-
DDR_A22	CA4B	CA4_B	-
DDR_A23	CA5B	CA5_B	-
DDR_A24	-	-	-
DDR_A25	-	-	(1)
DDR_A26	-	-	(1)
DDR_A27	-	-	(1)
DDR_A28	-	-	(1)
DDR_A29	-	-	(1)
DDR_A30	-	-	(1)
DDR_A31	-	-	(1)
 DDR_DQ[16:8]	DQ[15:8]	DQ[15:8]_A	
DDR_DQM1	DQM1	DMI1_A	Data bits can be swapped within a given byte with an adequate DqLnSel setting inside
DDR_DQS1P	DQS1P	DQS1_t_A	DDRPHYC.
DDR_DQS1N	DQS1N	DQS1_c_A	Byte lanes within a channel (0 and 1) can be swapped with adequate programming of derate_byte used for MR4 polling by DDRCTRL for T derating polling.
DDR_DQ[7:0]	DQ[7:0]	DQ[7:0]_A	Swapping byte lanes between channels is not allowed.
DDR_DQM0	DQM0	DMI0_A	

AN6055 - Rev 1 page 48/73

DDRCTRL pin	Signal name	LPDDR4	Comments
DDR_DQS0P	DQS0P	DQS0_t_A	Data bits can be swapped within a given byte with an adequate DqLnSel setting inside DDRPHYC.
DDR_DQS0N	DQS0N	DQS0_c_A	Byte lanes within a channel (0 and 1) can be swapped with adequate programming of derate_byte used for MR4 polling by DDRCTRL for T derating polling. Swapping byte lanes between channels is not allowed.

^{1.} Must be left open if not used.

AN6055 - Rev 1 page 49/73

8.8 SD card

Note:

As boot is always done in 'Standard' mode (3 V IOs), if the card is used by the application in UHS-I, a power cycle on the card supply is required after a Reset mode or Standby mode. NRSTC1MS could be used for that purpose.

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers) and V_{DD} voltage.

When using V_{DDIO1} = 1.8 V, setting VDDIOxVRSEL might be required to ensure the adequate speed on pins used on SDMMC1 outputs.

If needed, the impedance matching resistor must be placed as close as possible to the output driver pin. The values in the example below must work in most cases, but could be tailored to I/O drive strengths and PCB impedance.

Before the V_{CC_SDCARD} shutdown (for example before a Standby mode), all signals going to the card must be set to 0 or high-Z by the SDMMC1 driver.

The example is independent from MPU I/O voltage V_{DD} and relies on variable VDDIO1 that could be set, either to 3.0 V/3.3 V, or 1.8 V typ. using one of the followings:

- SDVSEL1 ('0' or high-Z = 3 V/3.3 V (default), '1' = 1.8 V) connected to an external regulator or other component managing the V_{DDIO1} voltage.
- A regular GPIO output connected to an external regulator or other component managing the V_{DDIO1} voltage.
- An I²C bus in case of use with PMIC.

If a programmable V_{DDIO_SDCARD} is not available in the platform, V_{DDIO1} could be connected to V_{CC_SDCARD} . In that case, UHS-I is not supported.

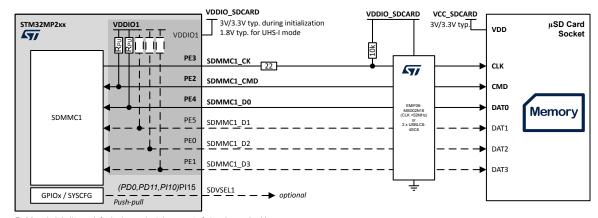


Figure 27. SD-Card with embedded level shifter connection

Bold and plain lines: default pins and minimum set of signals required by low level BootROM during SD Card Boot.

DT73767V1

Note:

When switching to UHS-I mode ($V_{DDIO1} = 1.8 \text{ V}$), VDDIOxVRSEL must be set only when V_{DDIO1} is within the 1.8 V allowed range. In case of reset of the SD card to the legacy 3 V/3.3 V range, to avoid damage on the I/Os, VDDIOxVRSEL must be cleared before the voltage is outside the 1.8 V allowed range.

AN6055 - Rev 1 page 50/73

8.9 eMMC flash

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers), and V_{DDIO2} voltage.

When using V_{DDIO2} = 1.8 V, a setting of VDDIOxVRSEL could be required to ensure the adequate speed on pins used on SDMMC2 outputs.

If needed, the impedance matching resistor should be placed as close as possible of the output driver pin. The values in the example below must work in most cases, but could be tailored to I/O drive strengths and PCB impedance.

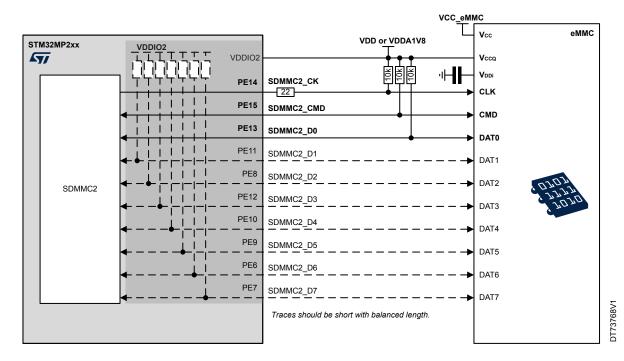


Figure 28. eMMC™ connection example

Note:

- In bold and plain lines, default pins and minimum set of signals required by low level boot ROM during eMMC boot.
- 2. Decoupling capacitors are not shown.
- 3. The VFBGA225 8 × 8 package only supports four bits on SDMMC2 with SDMMC2_CK remapped on PE6 (PE14 is not available).
- 4. The VFBGA225 8 × 8 package DOES NOT support SDMMC2 as a boot source. eMMC boot can be connected to SDMMC1 using either of the two:
 - 4 bits on the VDDIO1 supply
 - 8 bits on the VDDIO1 and VDDIO3 supplies

Hence, using eMMC at 1.8 V is only possible if all I/Os on VDDIO3 are at 1.8 V.

AN6055 - Rev 1 page 51/73

8.10 SLC NAND flash memory

Up to four 8 or 16-bit SLC NAND memory devices (CE# = FMC_NCE1, FMC_NCE2, FMC_NCE3 or FMC_NCE4) are supported.

Note that boot is only done on the SLC NAND memory device connected to FMC_NCE1.

STM32MP2xx VDD Up to 3 additionals NAND VDDIO2 Vcc 57 **NAND** RPU VDDIO4 10k 10k Pxx FMC_NCE[2..4] ◆ CE# VDDIO2 = VDD PE12 FMC_NCE1 CE# PE8 FMC_ALE ALE **PE11** FMC CLE CLE PE15 FMC_NOE RE# **PE14** FMC NWE WE# **PE13** FMC_RNB R/B# PE9 FMC_D0 **I/O0** PE6 FMC D1 1/01 PE7 FMC D2 **I/O2** PD15 FMC_D3 **I/O3** PD14 FMC D4 **FMC** 1/04 PB13 FMC_D5 **I/O5** PD12 FMC_D6 1/06 PB14 FMC_D7 1/07 PB5 FMC_D8 **I/O8** PB6 FMC_D9 **I/O9** PB7 FMC D10 I/O10 **PD13** FMC D11 **▶ I/O11** Only for 16-bit PB2 FMC_D12 NAND I/O12 PB9 FMC D13 **I/O13 PB11** FMC_D14 I/O14 **PB10** FMC D15 I/O15 Traces should be short with balanced length.

Figure 29. SLC NAND flash memory connection

 $In \ \textbf{Bold} \ and \ plain \ lines, \ default \ pins \ and \ minimum \ set \ of \ signals \ required \ by \ low \ level \ Boot \ ROM \ during \ NAND \ Boot.$

Note:

- 1. Pull-up on FMC_RNB is optional. The $4.7k\Omega$ value (lower than internal R_{PU}) can give better signal rise time that could reduce the wait time seen by FMC.
- 2. NAND flash memory V_{CC} supply (V_{DD_NAND}) must be cut for >1ms in order to allow reboot (on Reset or Standby mode exit). See NAND flash memory device for details.
- 3. Decoupling capacitors are not shown.
- 4. Only single level cell (SLC) NAND flash memory is supported, with either hamming, BCH4 or BCH8 error correction algorithms.
- 5. VFBGA225 8x8 package only supports 8-bit FMC (PB2, PB5, PB6, PB7, PB9, PB10 not available). FMC_NWE is remapped on PD13 (PE14 is not available).

AN6055 - Rev 1 page 52/73

8.11 Serial NOR/NAND flash memory

As boot is always done in SPI mode, if the serial flash memory is set by the application in multiple data lines, or if the sector addressing has been changed, a power cycle on a serial flash memory supply is required after Reset or Standby mode exit.

Note:

A good signal integrity is dependent on the board, GPIO strength settings (GPIO_OSPEEDR registers), and V_{DDIO3} voltage.

When using V_{DDIO3}= 1.8 V, a setting of VDDIOxVRSEL could be required to ensure the adequate speed on pins used on OCTOSPI1 outputs.

If needed, the impedance matching resistor must be placed as close as possible of the output driver pin. The values in the example below work in most cases, but can be tailored to I/O drive strengths and PCB impedance.

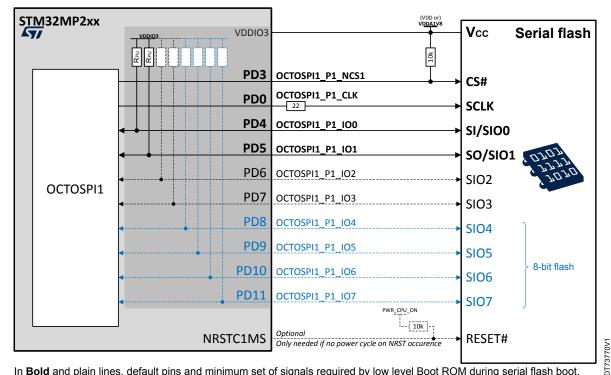


Figure 30. Serial flash memory connection example

In Bold and plain lines, default pins and minimum set of signals required by low level Boot ROM during serial flash boot.

Note:

- 1. If RESET# is not connected, the serial flash memory supply (VCC) must be cut for >1 ms to allow reboot (on reset or standby exit). See serial flash memory device documentation for details.
- 2. Decoupling capacitors are not shown.

power on reset and/or internal pull-up on the reset pin).

3. During SPI mode boot using SI/SO, some serial memories could use I/O2 and I/O3 pins as an additional feature like HOLD. To make this device boot, it might be necessary to set those pins to an inactive level by adding external pull-ups or by defining an internal pull-up during boot using OTP.

In case the memory I/O power supply VCC could be shut down independently than VDD, and NRSTC1MS is used for other purposes or other voltages on the platform, NRSTC1MS must not be directly connected to the memory reset pin and the following options could be used:

- Memory reset pin left open (assuming the memory has an internal power on reset and the NRSTC1MS is used to generate a power cycle on the memory)
- Connected through a Schottky diode with the cathode on the NRSTC1MS side

Otherwise, the NRSTC1MS might be pulled low by memory internal protections when memory I/O supply is not present (which could cause some unwanted reset of other platform devices using the NRSTC1MS pin). Refer to memory documentation to verify the memory reset pin requirements: especially the presence of internal

AN6055 - Rev 1 page 53/73

8.12 HyperFlash[™]

Note:

If the serial flash memory mode set by the application is not compatible with the expected mode by the boot ROM, a power cycle on the serial flash memory supply is required after Reset or Standby mode exit. NRSTC1MS could be used for that purpose.

Note that a good signal integrity is dependent on the board, GPIO strength settings (GPIO_OSPEEDR registers), and V_{DDIO3} voltage.

When using V_{DDIO3} = 1.8 V, a setting of VDDIOxVRSEL could be required to ensure the adequate speed on pins used on OCTOSPI1 outputs.

STM32MP2xx **HyperFlash** V_{cc}/ VDDIO3 Vcca 100Ω differential trace 10k PD3 | OCTOSPI1_P1_NCS1 CS# PD0 OCTOSPI1_P1_CLK CK PD1 OCTOSPI1_P1_NCLK CK# CK# is only present on 1.8V devices) PD2 OCTOSPI1_P1_DQS **RWDS** PD4 OCTOSPI1_P1_IO0 DQ₀ PD5 OCTOSPI1_P1_IO1 DQ1 OCTOSPI1 PD6 OCTOSPI1 P1 IO2 DQ2 PD7 OCTOSPI1_P1_IO3 DQ3 PD8 OCTOSPI1_P1_IO4 DQ4 PD9 OCTOSPI1_P1_IO5 DQ5 PD10 OCTOSPI1_P1_IO6 DQ₆ PD11 OCTOSPI1_P1_IO7 DQ7 PWR_CPU_ON -- 10k |--Optional
Only needed if no power cycle on NRST occurence NRSTC1MS RESET#

Figure 31. HyperFlash[™] connection example

In Bold and plain lines, default pins and minimum set of signals required by low level Boot ROM during serial flash boot.

Note:

- 1. If RESET# is not connected, HyperFlash[™] supply (V_{CC}/V_{CCQ}) must be cut for >1 ms to allow reboot (on Reset or Standby mode exit). See HyperFlash[™] device documentation for details.
- 2. Decoupling capacitors are not shown.

AN6055 - Rev 1 page 54/73

8.13 USB

Multiple USB options are possible. Examples are listed below:

- 1 × hi-speed USB device (Figure 32 or Figure 33)
- 1 × hi-speed USB device (Figure 32 or Figure 33) + 1 × USB hi-speed host (Figure 34)
- 1 × SuperSpeed USB host (Figure 1), see note below
- 1 × SuperSpeed USB dual-role
- 1 × SuperSpeed USB dual-role + 1 × USB hi-speed host (Figure 34)

The use case of multiple hi-speed USB hosts using an external USB hub component are not described here.

Note:

In case of on-board flash memory programming using the STM32CubeProgrammer, at least one USB with device capabilities is required. This is achieved with Figure 32, Figure 33. See also Figure 34.

Table 17. USB high-speed PCB routing recommendations

Recommendation	Min	Тур	Max	Unit
Differential impedance	76.5	90	103.5	Ω
Single-ended impedance	38.25	45	51.75	Ω
Length matching within a pair (including package(1))	-50	-	+50	mils
Length matching within a pair (including package ⁽¹⁾)	-1.27	-	14.07	mm
May traced length (up to connector or first active companent)	-	-	8	inches
Max traces length (up to connector or first active component)	-	-	103.5 51.75 +50 +1.27 8 203 2	mm
Max number of vias (recommended value)	-	-	2	-
Distance between any differential trace and other signals	S-2S	S-3S or more		(2)
Do no route over power plane split. No stubs (point to point only). No right angles	<u>'</u>			

^{1.} See High-speed differential lane PCB track length matching for PCB track length matching details.

8.13.1 USB hi-speed device (OTG)

A 200 Ω 1% resistor must be connected between USB3DR_TXRTUNE and V_{SS}.

- For GPIO V_{DD} (or V_{DDIOx}) supply of 3.3 V typical:
 - Ra = 82 kΩ (to GND)
 - Rb = 33 k Ω (to VBUS)
- For GPIO V_{DD} (or V_{DDIOx}) supply of 1.8 V typical:
 - Ra = 68 kΩ (to GND)
 - Rb = 82 k Ω (to VBUS)

Refer to the application note for more details on VBUS detection with GPIO.

AN6055 - Rev 1 page 55/73

^{2.} Definition could be found, for instance, in the DDR memory routing guidelines.

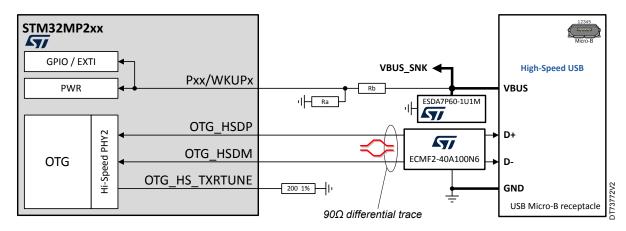
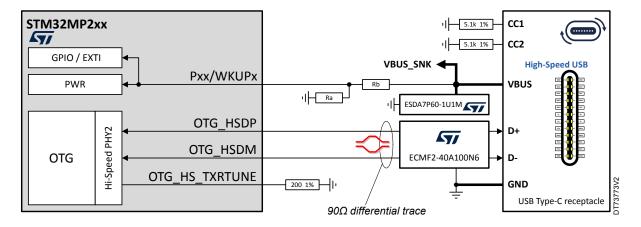



Figure 32. USB hi-speed device with Micro-B connector example

Figure 33. USB hi-speed device with Type-C connector example

8.13.2 USB hi-speed host with Type-A connector (USBH)

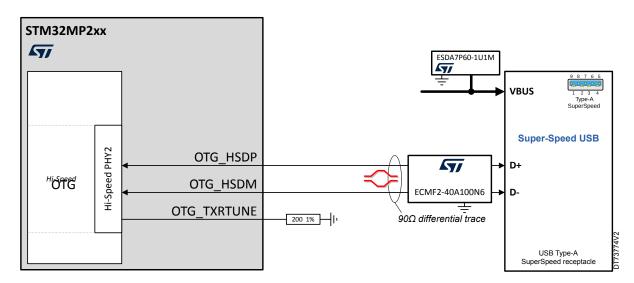
A 200 Ω 1% resistor should be connected between USBH_HS_TXRTUNE and VSS.

STM32MP2xx 5.1V 0.5A Supply 57 ESDA7P60-1U1M (PC9, PH4) USBH_HS_OVRCUR **High-Speed USB** VBUS 4 (PH5, PC10) USBH_HS_VBUSEN STMPS2151 10k USBH_HS_DP **USBH** Hi-Speed PHY1 D+ 4 USBH_HS_DM ECMF2-40A100N6 D-USBH_HS_TXRTUNE 200 1% USB Type-A receptacle 90Ω differential trace

Figure 34. USB hi-speed host example

Note: VBUS 1A is also possible using STMPS2171 instead of STMPS2151.

AN6055 - Rev 1 page 56/73


8.13.3 USB hi-speed host with Type-A connector (OTG)

A 200 Ω 1% resistor must be connected between OTG_TXRTUNE and VSS.

Note:

OTG hi-speed device is required by boot ROM when connected to a PC computer running a STM32CubeProgrammer in USB mode, for example, to program board flash memory devices. This is still possible with this USB SuperSpeed host use-case by using a nonstandard Type-A/Type-A USB hi-speed cable. It is possible only during STM32CubeProgrammer usage, and might need specific uBoot settings to allow this nonstandard usage.

Figure 35. USB hi-speed host connection example

AN6055 - Rev 1 page 57/73

8.14 Ethernet

8.14.1 10/100 Mbit/s Ethernet

Note:

A good signal integrity is dependent on the board, the GPIO strength settings (GPIO_OSPEEDR registers), and the V_{DD} voltage.

When using VDD = 1.8 V, a setting of VDDIOxVRSEL could be required to ensure the adequate speed on the pins used on the ETHx outputs.

If needed, the impedance matching resistors must be placed as close as possible to the output driver pin. Values in the example below work in most cases, but can be tailored to each side I/O drive strength and PCB impedance.

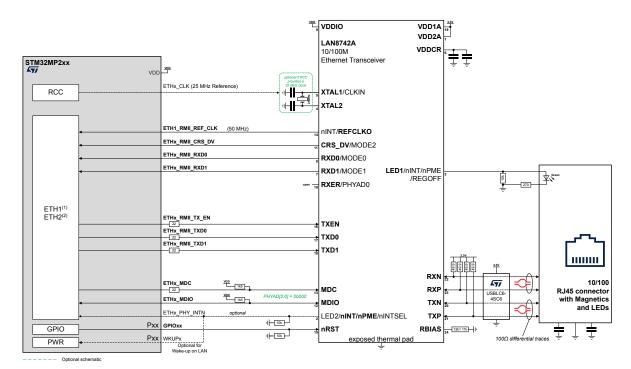


Figure 36. 10/100 Mbit/s Ethernet PHY connection example

- 1. ETH2 is not available on some part numbers.
- 2. Decoupling capacitors not shown.

Note:

- As RCC cannot provide the 25 MHz reference clock to the PHY during low-power modes, the dedicated 25 MHz crystal is required on the PHY in the case a wake-up on LAN (WOL) is needed for the platform.
- Setting the RCC PLLs to get a 25 MHz output for PHY clocking could constrain other RCC frequencies. In that case, it is more flexible to put a dedicated 25 MHz crystal on the PHY.

AN6055 - Rev 1 page 58/73

Alternatively, if the PHY allows it and if RCC can provide a precise 50 MHz clock (to be checked with respect to the HSE quartz frequency and other RCC peripheral/core clock frequency settings), the STM32MP21x devices can provide a 50 MHz ETH_CLK to the PHY. In this case, the REF_CLK is left unconnected on both sides. This saves BOM and area as well as some power on a few PHYs.

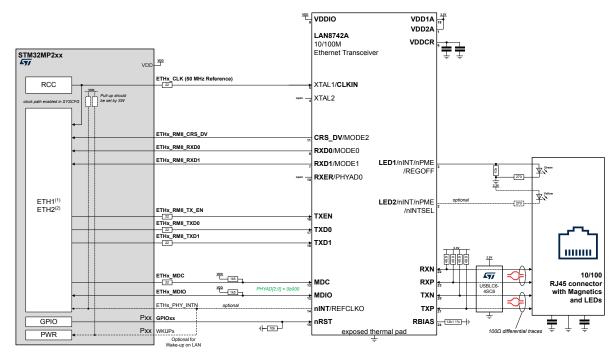


Figure 37. 10/100 Mbit/s Ethernet PHY connection (with REFCLK from RCC)

- 1. ETH2 is not available on some part numbers.
- 2. Decoupling capacitors are not shown.

Note:

- As the RCC cannot provide the 50 MHz reference clock to the PHY during low-power modes, this option is not possible in the case a wake-up on LAN (WOL) is needed for the platform.
- Setting the RCC PLLs to get a 50 MHz output for PHY clocking could constrain other RCC frequencies. In that case, this option is not possible.

AN6055 - Rev 1 page 59/73

Table 18. ETH RMII pins

Pin name	(1)	ETH1	ETH2 ⁽²⁾	ETH3	comments
ETHx_CLK	\rightarrow	PF3, PF5, PF8	PF4, PG3	_(3)	Optional 25 MHz or 50 MHz reference ⁽⁴⁾
ETHx_RMII_REF_CLK	←	PA14	PC0, PF6	PA5	Optional if ETHx_CLK provides 50 MHz
ETHx_RMII_CRS_DV	←	PA11	PC3, PF8	PA2	-
ETHx_RMII_RXD0	←	PF1	PG0	PA9	-
ETHx_RMII_RXD1	←	PC2	PC12	PA10	-
ETHx_RMII_TX_EN	\rightarrow	PA13	PC4	PA3	-
ETHx_RMII_TXD0	\rightarrow	PA15	PC7	PA6	-
ETHx_RMII_TXD1	\rightarrow	PC1	PC8	PA7	-
ETHx_MDC	\rightarrow	PA9, PF0, PF4	PC6, PG4, PH10	-	-
ETHx_MDIO	→ ←	PA10, PF2, PF5	PC5, PF9, PH11	-	-
ETHx_PHY_INTN	←	PA12, PC6, PF5	PF5, PG3	PA1	Optional

- 1. Signal direction: \rightarrow MPU to PHY, \leftarrow PHY to MPU
- 2. Not available on some part numbers
- 3. If needed, ETH1_CLK must be used.
- 4. As the RCC cannot provide the reference clock to the PHY during low-power modes, a dedicated 25 MHz crystal is required on the PHY if wake-up on LAN (WOL) is needed for the platform.

AN6055 - Rev 1 page 60/73

8.14.2 Gigabit Ethernet

Note that a good signal integrity is dependent on board, GPIO strength settings (GPIO_OSPEEDR registers), and V_{DD} voltage.

When using V_{DD} = 1.8 V, a setting of VDDIOxRSEL could be required to ensure the adequate speed on pins used on ETHx outputs.

If needed, the impedance matching resistors must be placed as close as possible of the output driver pin. Values in the example below must work in most cases, but could be tailored to each side I/O drive strengths and PCB impedance.

DVDD_RG AVDD3V3 DVDD3V3 VDD = 3.3V ± 5% (PHY 3.3V can be shut down during STANDBY) RTL8211F(I)-CG 10/100/1000M <u>VDD10 (1</u>.0V) STM32MP2xx Ethernet Transceiver REG_OUT VDD w ŧŧ AVDD10 ETHx_CLK (25 MHz Refe XTAL_OUT (EXT_CLK) AVDD10 Pull-up should be set by SW ┈╢┺ XTAL_IN DVDD10 CLKOUT RXC (PHY_AD1) AD1=0 -1 4k7 RXCTL(PHY_AD2) (CFG_LDO1) LED2 AD2=0 4k7 RGMII_RXD0 VDD RXDLY=1 RXD0 (RXDLY) _RGMII_RXD1 \(\frac{\text{VDD TXDLY=1}}{4k7}\) RXD1 (TXDLY) (CFG EXT) LED0 ETHx RGMII RXD2 22 RXD2 (PLLOFF) ETHx_RGMII_RXD3 PHY_ADD 1)-[4k7]-22 22 RXD3 (PHY_ADO) (CFG_LDOO) LED1 ETHx_RGMII_GTX_CLK ETH1⁽¹⁾ TXC ETHx_RGMII_TX_CTL ETH2⁽²⁾ TXCTL MDIN3 ETHx_RGMII_TXD0 MDIP3 TXD0 ETHx_RGMII_TXD1 TXD1 MDIN2 ETHX_RGMII_TXD2 TXD2 MDIP2 ETHx_RGMII_TXD3 TXD3 MDIN1 10/100/1000 ETHx_MDC DVDD 1k5 RJ45 connector MDC MDIP1 with Magnetics and LEDs ETHx_MDIO MDIO MDIN0 ETHx_PHY_INTN MDIP0 INTB / PMEB WKUPx Pxx up on LAN 10k PWR PHYRSTB RSET Ţ GPIOxx GPIO exposed thermal pad 100Ω differential traces 50Ω traces unless otherwise noted. Traces should be short with balanced length.

Figure 38. Gigabit Ethernet PHY connection with VDD = 3.3 V (RTL8211F)

our rades amos offermes noted. Nases should be short with balaness longth

AN6055 - Rev 1 page 61/73

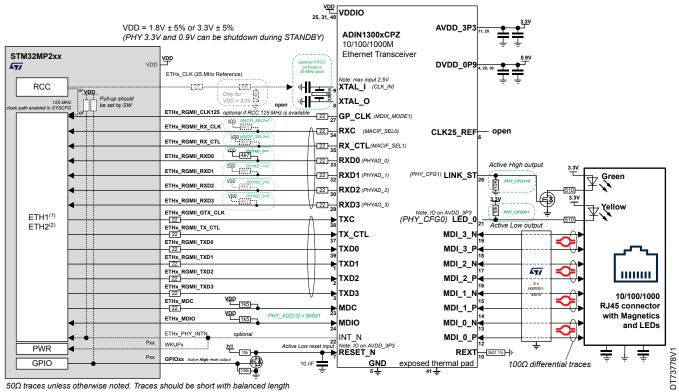


Figure 39. Gigabit Ethernet PHY connection (ADIN1300xCPZ)

3012 traces unices ourcrosse noted. Traces should be short with balanced length

Note: 1. ETH2 is not available on some part numbers.

2. Decoupling capacitors are not shown.

Note:

- As RCC cannot provide the 25 MHz reference clock to the PHY during low power modes, the dedicated 25 MHz crystal is required on the PHY in case wake-up on LAN (WOL) is needed for the platform.
- Setting RCC PLLs to get 25 MHz output for PHY could constrain other RCC frequencies. In that case, it is more flexible to put a dedicated 25 MHz crystal on the PHY.

AN6055 - Rev 1 page 62/73

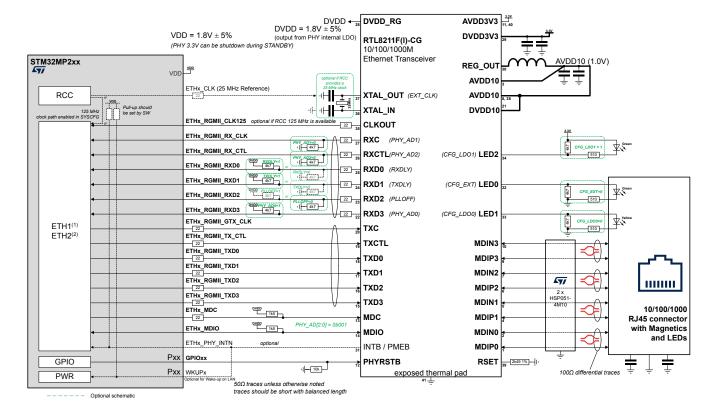


Figure 40. Gigabit Ethernet PHY connection with $V_{DD} = 1.8 \text{ V}$ (RTL8211F)

Note:

- 1. ETH2 is not available on some part numbers.
- 2. Decoupling capacitors are not shown.

Note:

- As RCC cannot provide the 25 MHz reference clock to the PHY during low power modes, the dedicated 25 MHz crystal is required on the PHY in case wake-up on LAN (WOL) is needed for the platform.
- Setting RCC PLLs to get 25 MHz output for PHY could constrain other RCC frequencies. In that case, it is more flexible to put a dedicated 25 MHz crystal on the PHY.

AN6055 - Rev 1 page 63/73

Table 19. ETH RGMII pins

Pin name	(1)	ETH1	ETH2 ⁽²⁾	comments
ETHx_CLK	\rightarrow	PF3, PF5, PF8	PF4, PG3	optional 25 MHz reference ⁽³⁾
ETHx_RGMII_CLK125	←	PC4, PH9	PF8, PG2	optional if 125 MHz is fed internally from RCC to ETH IP
ETHx_RGMII_RX_CLK	←	PA14	PF6	
ETHx_RGMII_RX_CTL	←	PA11	PC3	
ETHx_RGMII_RXD0	←	PF1	PG0	
ETHx_RGMII_RXD1	←	PC2	PC12	
ETHx_RGMII_RXD2	←	PH12	PF9	
ETHx_RGMII_RXD3	←	PH13	PC11	See also Table 10. GPIO advance configuration recommended settings
ETHx_RGMII_GTX_CLK	\rightarrow	PC0	PF7	See also Table 10. GF10 advance configuration recommended settings
ETHx_RGMII_TX_CTL	\rightarrow	PA13	PC4	
ETHx_RGMII_TXD0	\rightarrow	PA15	PC7	
ETHx_RGMII_TXD1	\rightarrow	PC1	PC8	
ETHx_RGMII_TXD2	\rightarrow	PH10	PC9	
ETHx_RGMII_TXD3	\rightarrow	PH11	PC10	
ETHx_MDC	\rightarrow	PA9, PF0, PF4	PC6, PG4, PH10	-
ETHx_MDIO	→ ←	PA10, PF2, PF5	PC5, PF9, PH11	-
ETHx_PHY_INTN	←	PA12 ⁽⁴⁾ , PC6, PF5	PF5, PG3	optional

- 1. Signal direction: \rightarrow MPU to PHY, \leftarrow PHY to MPU
- 2. Not available on some part numbers
- 3. As RCC cannot provide the reference clock to the PHY during low power modes, a dedicated 25MHz crystal is required on the PHY if wake-up on LAN (WOL) is needed for the platform.
- 4. PA12 is not available on VFBGA225 8x8 package.

AN6055 - Rev 1 page 64/73

8.15 Camera serial interface (CSI)

Note:

As the digital camera memory interface pixel processor (DCMIPP) processes the pixel data received by the CSI, the parallel high-resolution sensor interface is not available when the CSI is used. In that case, a second parallel low-performance sensor is still possible using DCMI. See the reference manual for details.

A 200 Ω 1% resistor should be connected between CSI_REXT and V_{SS}.

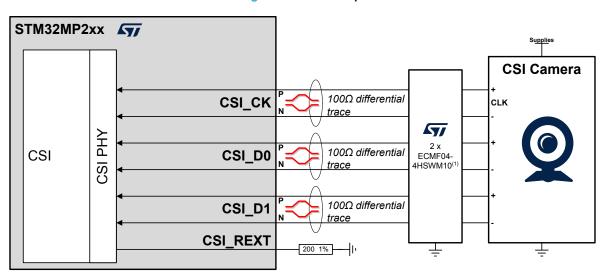


Figure 41. CSI example

Note:

- 1. Supplies and decoupling capacitors are not shown.
- 2. Image sensor controls are not shown (I2C for control, autofocus, and so on.)

Table 20. CSI PCB routing recommendations

Recommendation	Min	Тур	Max	Unit	
Differential impedance	90	100	110	Ω	
Single-ended impedance	45	50	55	Ω	
Landbards in this control of the land of t	-5.9	-	+5.9	mils	
Length matching within a pair (including package) ⁽¹⁾	-0.150	-	110 55 +5.9 +0.150 +50 +1.3 8 203 2	mm	
	-50	-	+50	mils	
Length matching between clock and data pairs	-1.3	-	110 55 +5.9 +0.150 +50 +1.3 8 203 2	mm	
Man Pala lagrath, Carlo Para anno ann dala antida	-	-0.150 - +0.150 -50 - +50 -1.3 - +1.3 8 203	inches		
Max link length (including camera module cables)	-	-	203	mm	
Max number of vias (recommended value)	-	-	2	-	
Distance between any differential trace and other signals	-	S-38	S-3S or more -		
Do no route over the power plane split. No stubs (point to point only). No rigl	ht angles.				

- 1. See Section 8.16: High-speed differential lane PCB track length matching for PCB track length matching details.
- 2. Definition could be found, for instance, in the DDR memory routing guidelines [5].

AN6055 - Rev 1 page 65/73

8.16 High-speed differential lane PCB track length matching

Each package has been optimized to provide easier length matching when differential ball pair signals (denoted by xM, xN, and xP) are not directly on adjacent balls. Example: for a package with a $0.8\,$ mm ball pitch, when differential pairs are on two different rows, the package already has around $800\,\mu m$ of internal length difference to allow the PCB track to match the total length with minimum or even no additional routing complexity. The following figure shows (for example, xN minus xP) the length difference (inside the package) at ball level that the PCB tool must consider.

Figure 42. Differential PCB track for a package with a 0.8 or 0.5 mm ball pitch

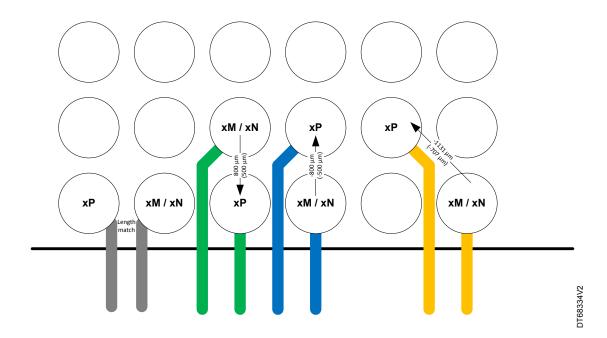


Table 21. Package length matching values

	VFBGA225		VFBGA361		VFBGA273		TFBGA289		
Pin name	(8 × 8 pitch 0.5 mm)		(10 × 10 pitch 0.5 mm)		(11 × 11 pitch 0.5 mm)		(14 × 14 pitch 0.8 mm)		
	Ball	Δlength (μm)	Ball	Δlength (μm)	Ball	Δlength (μm)	Ball	Δlength (μm)	
	CSI								
CSI_CKP	-	-	D1	-428	C4	333	C6	378	
CSI_CKN	-	-	D2	REF	D4	REF	D6	REF	
CSI_D0P	-	-	C2	-379	В3	120	C5	-95	
CSI_D0N	-	-	C1	REF	A3	REF	B5	REF	
CSI_D1P	-	-	E1	-33	B5	233	D7	291	
CSI_D1N	-	-	E2	REF	C5	REF	E7	REF	
			US	SB					
USBH_HS_DP	-	-	W11	355	AF21	1	AA16	19	
USBH_HS_DM	-	-	V11	REF	AG21	REF	AB16	REF	
OTG_HSDP	P14	256	W12	199	AF22	25	W17	173	
OTG_HSDM	R14	REF	V12	REF	AG22	REF	Y17	REF	

AN6055 - Rev 1 page 66/73

Revision history

Table 22. Document revision history

Date	Version	Changes
28-Aug-2025	1	Initial release.

AN6055 - Rev 1 page 67/73

Contents

1	Gen	eral info	ormation	2	
2	Pow	er supp	olies	5	
	2.1	Overvi	iew	6	
		2.1.1	Independent ADC supply and reference voltage	6	
		2.1.2	Battery backup	6	
	2.2	Power	supply schemes	7	
	2.3	Specifi	ic I/O constrains related to voltage settings	10	
	2.4 Reset and power supply supervisor			10	
		2.4.1	Power-on reset (POR)/power-down reset (PDR)	10	
		2.4.2	vddcore_ok reset	10	
		2.4.3	Specific I/O constrains related to voltage settings	10	
		2.4.4	vddcpu_ok reset	10	
		2.4.5	VDD18ADC monitoring mandatory before using the ADC	11	
		2.4.6	VDDCORE and VDDCPU monitoring	11	
		2.4.7	Programmable voltage detector (PVD)	11	
		2.4.8	Peripheral voltage monitoring (PVM)	11	
		2.4.9	Backup regulator voltage thresholds	11	
		2.4.10	Application and system resets	11	
3	Packages				
	3.1	Package selection			
	3.2	Alterna	ate function mapping to pins	15	
4	Cloc	ks		17	
	4.1	HSE o	scillator clock	17	
		4.1.1	External source (HSE bypass)	17	
		4.1.2	External crystal (HSE crystal)	18	
	4.2	LSE O	SC clock	18	
		4.2.1	External source (LSE bypass)	18	
		4.2.2	External crystal (LSE crystal)	18	
	4.3	Clock	security system (CSS)	19	
		4.3.1	CSS on HSE	19	
		4.3.2	CSS on LSE	19	
5	Boo	t config	juration	20	
	5.1	Boot m	node selection	20	
	5.2	Boot pin connection			
	5.3	Embed	dded bootloader mode	23	

6	Debug management			
	6.1	Introduction		
	6.2	SWJ debug port (serial wire and JTAG)		
	6.3	Pinout and debug port pins	24	
		6.3.1 Internal pull-up and pull-down resistors on JTAG pins	24	
		6.3.2 Debug port connection with standard JTAG connector	25	
		6.3.3 Debug port and UART connection with STDC14 connector	26	
		6.3.4 Parallel trace and HDP	26	
		6.3.5 Debug triggers and LEDs	27	
		6.3.6 Debug LED	28	
7	Reco	ommendations	29	
	7.1	PCB	29	
	7.2	Component position	29	
	7.3	Ground and power supplies (V _{SSx} ,V _{DDx})	29	
	7.4	Advanced GPIO configuration	29	
	7.5	I/O speed settings	30	
	7.6	PCB stack and technology	34	
	7.7	Decoupling	38	
	7.8	ESD/EMI protections	38	
	7.9	Sensitive signals	38	
	7.10	Unused I/Os and features	39	
8	Refe	erence design examples	40	
	8.1	Clock	40	
	8.2	Reset	40	
	8.3	Boot mode	41	
	8.4	SWD/JTAG interface	42	
	8.5	Power supply	43	
		8.5.1 Example of PMIC supplies for 3.3 V I/Os and DDR4		
		8.5.2 Example of PMIC supplies for 1.8 V I/Os with LPDDR4	44	
	8.6	DDR4 SDRAM	45	
	8.7	LPDDR4 SDRAM	47	
	8.8	SD card	50	
	8.9	eMMC flash	51	
	8.10	SLC NAND flash memory	52	
	8.11	Serial NOR/NAND flash memory		
	8.12	HyperFlash [™]		
	· -	¥1		

8.13	USB		55
	8.13.3	USB hi-speed host with Type-A connector (OTG)	57
8.14	Etherne	et	58
	8.14.1	10/100 Mbit/s Ethernet	58
	8.14.2	Gigabit Ethernet	61
8.15			
8.16	High-sp	peed differential lane PCB track length matching	66
ision l			
	_		
	8.14 8.15 8.16 ision I	8.13.1 8.13.2 8.13.3 8.14 Etherne 8.14.1 8.14.2 8.15 Camera 8.16 High-sp ision history of tables	8.14 Ethernet

List of tables

Table 1.	Reference documents	. 2
Table 2.	Glossary	. 2
Table 3.	Amount of decoupling recommendation by package	. 8
Table 4.	I/O power domains	. 9
Table 5.	Supply usage for unused features	10
Table 6.	Package availability summary	13
Table 7.	STM32MP21xx differences per package	14
Table 8.	Possible combinations of I3C pins	15
Table 9.	Boot sources	20
Table 10.	GPIO advance configuration recommended settings	29
Table 11.	OSPEEDR setting example for VDD = 3.3 V typ. ⁽¹⁾	32
Table 12.	OSPEEDR setting example for VDD = 1.8 V typ. ⁽¹⁾	33
Table 13.	HSE BOM for oscillator or crystal	40
Table 14.	Minimum set of default pins used during the boot ROM phase	41
Table 15.	16-bit DDR4 pin mapping	46
Table 16.	LPDDR4 pin mapping	48
Table 17.	USB high-speed PCB routing recommendations	55
Table 18.	ETH RMII pins	60
Table 19.	ETH RGMII pins	64
Table 20.	CSI PCB routing recommendations	65
Table 21.	Package length matching values	66
Table 22.	Document revision history	67

List of figures

Figure 1.	Power supply scheme	. 5
Figure 2.	Simplified reset pin circuit	12
Figure 3.	STM32CubeMX example screenshot	16
Figure 4.	HSE external clock	17
Figure 5.	HSE crystal	17
Figure 6.	LSE external clock	18
Figure 7.	LSE crystal resonators	18
Figure 8.	Boot mode selection example	21
Figure 9.	Boot pins typical connection schematics	22
Figure 10.	Simplified boot flow	23
Figure 11.	Host-to-board connection	24
Figure 12.	JTAG/SWD using Arm® JTAG 20 connector implementation example	25
Figure 13.	JTAG/SWD/UART VCP using STDC14 connector implementation example	
Figure 14.	Parallel trace port with JTAG/SWD on Mictor-38 implementation example	
Figure 15.	PH4 LED connection (valid for VDD = 3.3V)	
Figure 16.	I/O speed summary with various loads and voltages	
Figure 17.	6-layer PTH PCB stack example	
Figure 18.	6-layer PTH + laser vias PCB stack example	
Figure 19.	PCB rule for 0.8 mm pitch package (with PTH)	
Figure 20.	PCB rule for 0.5 mm pitch package (with laser via and PTH).	
Figure 21.	Example of decoupling layout	
Figure 22.	HSE recommended schematics for both oscillator/crystal options	
Figure 23.	Example of PMIC supplies for 3.3 V I/Os and DDR4	
Figure 24.	Example of PMIC supplies for 1.8 V I/Os with LPDDR4	
Figure 25.	16-bit DDR4 connection example	
Figure 26.	LPDDR4 connection example.	
Figure 27.	SD-Card with embedded level shifter connection.	
Figure 28.	eMMC™ connection example	
Figure 29.	SLC NAND flash memory connection	
Figure 30.	Serial flash memory connection example	
Figure 31.	HyperFlash [™] connection example	
Figure 32.	USB hi-speed device with Micro-B connector example.	
Figure 33.	USB hi-speed device with Type-C connector example	
Figure 34.	USB hi-speed host example	
Figure 35.	USB hi-speed host connection example.	
Figure 36.	10/100 Mbit/s Ethernet PHY connection example	
Figure 37.	10/100 Mbit/s Ethernet PHY connection (with REFCLK from RCC)	
Figure 38.	Gigabit Ethernet PHY connection with VDD = 3.3 V (RTL8211F)	
Figure 30. Figure 39.	Gigabit Ethernet PHY connection (ADIN1300xCPZ)	
Figure 39. Figure 40.	Gigabit Ethernet PHY connection with V _{DD} = 1.8 V (RTL8211F)	
	· · · · · · · · · · · · · · · · · ·	
Figure 41.	CSI example	66
CHITTE A./		

AN6055 - Rev 1 page 72/73

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics – All rights reserved

AN6055 - Rev 1 page 73/73