

STM32Cube MCU package examples for STM32WBA series

Introduction

The STM32CubeWBA MCU package comes with a rich set of examples running on STMicroelectronics boards. The examples are organized by board, and are provided with preconfigured projects for the main supported toolchains (see figure below).

Figure 1. STM32CubeWBA firmware components

1 STM32CubeWBA examples

The examples are classified depending on the STM32Cube level they apply to. They are named as follows:

Examples

The examples use only the HAL and BSP drivers (middleware components are not used). Their objective is to demonstrate the product/peripherals features and usage. They are organized per peripheral (one folder per peripheral, for example, TIM). Their complexity level ranges from the basic usage of a given peripheral (for example, PWM generation using timer) to the integration of several peripherals (for example, how to use DAC for signal generation with synchronization from TIM6 and DMA). The usage of the board resources is reduced to the strict minimum.

Examples_LL

These examples only use the LL drivers (HAL drivers and middleware components are not used). They offer an optimum implementation of typical use cases of the peripheral features and configuration sequences. The LL examples are organized per peripheral (one folder for each peripheral, for example, TIM) and run exclusively on the Nucleo board.

Examples_MIX

These examples only use HAL, BSP, and LL drivers (middleware components are not used). They aim at demonstrating how to use both HAL and LL APIs in the same application to combine the advantages of both APIs:

- HAL drivers offer high-level function-oriented APIs, which have a high level of portability since they hide product/IP complexity to end-users.
- LL drivers offer low-level APIs at register level with better optimization.

The examples are organized per peripheral (one folder for each peripheral, for example, TIM) and run exclusively on the Nucleo board.

Applications

The applications demonstrate the product performance and how to use the available middleware stacks. They are organized either by middleware (one folder per middleware, for example USB host) or by product feature that requires high-level firmware bricks (for example, audio). The integration of applications that use several middleware stacks is also supported.

The examples are located under *STM32Cube_FW_WBA_VX.Y.Z\Projects*. They all have the same structure:

- \Inc folder, containing all header files.
- \Src folder, containing the source code.
- \EWARM, \MDK-ARM, and \STM32CubeIDE folders, containing the preconfigured project for each toolchain.
- readme.txt file, describing the example behavior and the environment required to run the example.

To run the example, proceed as follows:

- 1. Open the example using your preferred toolchain.
- 2. Rebuild all files and load the image into target memory.
- 3. Run the example by following the readme.txt instructions.

Note:

Refer to section "Development Toolchains and Compilers" and "Supported Devices and EVAL, Nucleo, and Discovery boards" of the firmware package release notes to know about the SW/HW environment used for the firmware development and validation. The correct operation of the provided examples is not guaranteed on some environments, for example when using different compiler or board versions.

The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board, provided it has the same hardware functions (LED, LCD display, push-buttons, etc.). The BSP is based on a modular architecture that can be easily ported to any hardware by implementing the low-level routines.

Table 1. STM32CubeWBA firmware examples contains the list of examples provided with STM32CubeWBA MCU Package.

Note:

STM32CubeMX-generated examples are highlighted with the STM32CubeMX icon. TrustZone indicates that the example is Arm® TrustZone® enabled.

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

Reference materials available on www.st.com/stm32cubefw.

AN5929 - Rev 8 page 2/39

using the interrupt programming model.

AN5929 STM32CubeWBA examples

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		I2C_TwoBoards_ComDMA_Autonomous_ Master	How to handle I2C data buffer transmission/reception between two boards, via DMA.	-	-	-	MX	-	-
		I2C_TwoBoards_ComDMA_Autonomous_ Slave	How to handle I2C data buffer transmission/reception between two boards, via DMA.	-	-	-	MX	-	-
		I2C_TwoBoards_ComIT	How to handle I2C data buffer transmission/reception between two boards, using an interrupt.	en two boards, using an interrupt. De handle I2C data buffer transmission/reception en two boards, in polling mode. De perform multiple I2C data buffer transmissions/	MX	-	-		
	I2C	I2C_TwoBoards_ComPolling	How to handle I2C data buffer transmission/reception between two boards, in polling mode.	-	-	-	MX	-	-
		I2C_TwoBoards_RestartAdvComIT	How to perform multiple I2C data buffer transmissions/ receptions between two boards, in interrupt mode and using a restart condition.	-	-	-	MX	MX	
		I2C_TwoBoards_RestartComIT	How to handle single I2C data buffer transmission/ reception between two boards, in interrupt mode and using a restart condition.	-	-	-	MX	-	-
	IWDG -	I2C_WakeUpFromStop	How to handle I2C data buffer transmission/reception between two boards, using an interrupt when the device is in Stop mode.	-	-	-	MX	-	-
Examples		IWDG_Reset	How to handle the IWDG reload counter and simulate a software fault that generates an MCU IWDG reset after a preset lapse of time.	-	-	-	MX	-	-
	IWDG	IWDG_WindowMode	How to periodically update the IWDG reload counter and simulate a software fault that generates an MCU IWDG reset after a preset lapse of time.	-	-	-	MX	-	-
		LPTIM_PulseCounter	How to use the LPTIM HAL API to configure and use the LPTIM peripheral to count pulses.	-	-	-	MX	-	-
	LPTIM	LPTIM_Timeout	How to use the LPTIM HAL API to implement a timeout with the LPTIMER peripheral, and wake up the system from a low-power mode.	-	-	-	MX	-	-
		PKA_ECCscalarMultiplication	How to use the PKA peripheral to execute ECC scalar multiplication. This enables the generation of a public key from a private key.	-	-	-	MX	-	-
	PKA	PKA_ECCscalarMultiplication_IT	How to use the PKA peripheral to execute ECC scalar multiplication. This enables the generation of a public key from a private key in interrupt mode.	-	-	-	MX	-	-
		PKA_ECDSA_Sign	How to compute a signed message using the elliptic curve digital signature algorithm (ECDSA).	-	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		PKA_ECDSA_Sign_IT	How to compute a signed message using the elliptic curve digital signature algorithm (ECDSA) in interrupt mode.	-	-	-	MX	-	-
		PKA_ECDSA_Verify	How to determine if a given signature is valid using the elliptic curve digital signature algorithm (ECDSA).	-	-	-	MX	-	-
		PKA_ECDSA_Verify_IT	How to determine if a given signature is valid using the elliptic curve digital signature algorithm (ECDSA) in interrupt mode.	-	-	-	MX	-	-
		PKA_ModularExponentiation	How to use the PKA peripheral to execute modular exponentiation. This enables the encryption and decryption of a text.	-	-	-	MX	-	-
	PKA	PKA_ModularExponentiationCRT	How to compute the Chinese remainder theorem (CRT) optimization.	-	-	-	MX	-	-
		PKA_ModularExponentiationCRT_IT	How to compute the Chinese remainder theorem (CRT) optimization in interrupt mode.	-	-	-	MX	-	-
Examples		PKA_ModularExponentiation_IT	How to use the PKA peripheral to execute modular exponentiation. This enables the encryption and decryption of a text in interrupt mode.	-	-	-	MX	-	-
Examples		PKA_PointCheck	How to use the PKA peripheral to determine if a point is on a curve. This enables the validation of an external public key.	-	-	-	MX	-	-
		PKA_PointCheck_IT	How to use the PKA peripheral to determine if a point is on a curve. This enables the validation of an external public key.	-	-	-	MX	-	-
		PWR_RUN_SMPS	How to use the SMPS PWR regulator.	-	-	-	MX	-	-
		PWR_SLEEP	How to enter Sleep mode and wake up from this mode by using an interrupt.	-	-	-	MX	-	-
	PWR	PWR_STANDBY	How to enter Standby mode and wake up from this mode by using an external reset or the WKUP pin.	-	-	-	MX	-	-
		PWR_STANDBY_RTC	How to enter Standby mode and wake up from this mode by using an external reset or the RTC wake-up timer.	-	MX	MX	MX	-	-
		PWR_STOP1	How to enter Stop 1 mode and wake up from this mode using an interrupt.	-	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
	PWR	PWR_STOP1_RTC	How to enter Stop 1 mode and wake up from this mode by using the RTC wake-up timer.	-	MX	-	MX	-	-
		PWR_STOP2	How to enter Stop 2 mode and wake up from this mode using an external reset or a wake-up interrupt.	-	-	MX	-	-	-
	RAMCFG	RAMCFG_Parity_Error	How to configure and use the RAMCFG HAL API to enable parity error detection and generate a parity error interrupt.	-	-	-	MX	-	-
	74411010	RAMCFG_WriteProtection	How to configure and use the RAMCFG HAL API to configure RAMCFG SRAM write-protection page.	-	-	-	MX	-	-
		RCC_ClockConfig	How to configure the system clock (SYSCLK) and modify the clock settings in Run mode, using the RCC HAL API.	-	MX	MX	MX	-	-
	RCC	RCC_ClockConfig_TrustZone	How to configure the system clock (SYSCLK) in Run mode from the secure application upon request from the nonsecure application, using the RCC HAL API, when TrustZone [®] security is activated (option bit TZEN = 1).	-	-	-	MX	-	-
Examples		RCC_LSEConfig	How to enable/disable the low-speed external (LSE) RC oscillator (approximately 32 KHz) at runtime, using the RCC HAL API.	-	-	-	MX	-	
		RCC_LSIConfig	How to enable/disable the low-speed internal (LSI) RC oscillator (approximately 32 KHz) at runtime, using the RCC HAL API.	-	-	-	MX	-	-
	DNO	RNG_MultiRNG	How to configure the RNG using the HAL API. This example uses the RNG to generate 32-bit long random numbers.	-	-	-	MX	-	-
	RNG	RNG_MultiRNG_IT	How to configure the RNG using the HAL API. This example uses RNG interrupts to generate 32-bit long random numbers.	-	-	-	MX	-	-
		RTC_ActiveTamper	How to configure the active tamper detection with backup register erase.	-	MX	-	-	-	-
	RTC	RTC_Alarm	How to configure and generate an RTC alarm using the RTC HAL API.	-	MX	-	MX	-	-
	RTC	RTC_Calendar	How to configure the calendar using the RTC HAL API.	-	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		UART_LowPower_HyperTerminal_DMA	How to perform low-power UART transmission (transmit/receive) in DMA mode between a board and a HyperTerminal PC application.	-	-	MX	-	-	-
	UART	UART_Printf	How to reroute the C library printf function to the UART.	-	-	MX	MX	-	-
		UART_TwoBoards_ComIT	How to perform UART transmission (transmit/receive) in interrupt mode between two boards.	-	-	-	MX	-	-
Examples	USART	UART_TwoBoards_ComPolling	How to perform UART transmission (transmit/receive) in polling mode between two boards.	-	-	-	MX	-	-
	USART	USART_SlaveMode	How to perform USART-SPI communication (transmit/ receive) between two boards where the USART is configured as a slave.	-	-	-	MX	-	-
	WWDG	WWDG_Example	How to configure the HAL API to periodically update the WWDG counter and simulate a software fault that generates an MCU WWDG reset when a predefined time period has elapsed.	-	-	-	MX	-	-
		Total number of	1	16	28	116	0	0	
		ADC_AnalogWatchdog_Init	How to use an ADC peripheral with an ADC analog watchdog to monitor a channel and detect when the corresponding conversion data is outside the window thresholds.	-	-	-	MX	-	-
		ADC_ContinuousConv_TriggerSW_LowPowerInit	How to use an ADC to convert a single channel with ADC low-power features auto wait and auto power-off.	-	-	-	MX	MX -	-
		ADC_ContinuousConversion_TriggerSW_Init	How to use an ADC peripheral to convert a single channel continuously, from a software start.	-	-	-	MX	-	-
Examples_LL	ADC	ADC_Oversampling_Init	How to use an ADC peripheral with oversampling.	-	-	-	MX	-	-
		ADC_SingleConversion_TriggerSW_DMA_ Init	How to use an ADC peripheral to perform a single ADC conversion on a channel at each software start. The converted data is transferred by DMA into a table in RAM.	-	-	-	MX	-	-
	WWDG	ADC_SingleConversion_TriggerSW_IT_Init	How to use ADC to convert a single channel at each software start. The conversion is performed using the interrupt programming model.	-	-	-	MX	-	-

		•	١
ı	1	ı	
		i	

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBAGM-WPAN	B-WBA5M-WPAN
		ADC_SingleConversion_TriggerSW_Init	How to use ADC to convert a single channel at each software start. The conversion is performed using the polling programming model.	-	-	-	MX	-	-
	ADC	ADC_SingleConversion_TriggerTimer_ DMA_Init	How to use an ADC peripheral to perform a single ADC conversion on a channel at each trigger event from a timer. The converted data is transferred by DMA into a table in RAM.	-	-	-	MX	-	-
		ADC_TemperatureSensor_Init	How to use an ADC peripheral to perform a single ADC conversion on the internal temperature sensor and calculate the temperature in degrees Celsius.	-	-	-	MX	-	-
	COMP	COMP_CompareGpioVsVrefInt_IT_Init	How to use a comparator peripheral to compare a voltage level applied on a GPIO pin to the internal voltage reference (V _{REFINT}), in interrupt mode.	-	-	-	MX	-	-
		COMP_CompareGpioVsVrefInt_OutputGpio_ Init	How to use a comparator peripheral to compare a voltage level applied on a GPIO pin to the internal voltage reference (V _{REFINT}) with a comparator output connected to a GPIO pin.	-	-	-	MX	-	-
Examples_LL	CORTEX	CORTEX_MPU	Presentation of the MPU features. This example first configures the MPU attributes of different MPU regions, then configures a memory area as privileged read only, and attempts to perform read and write operations in different modes.	-	-	-	MX	-	-
	CRC	CRC_CalculateAndCheck	How to configure the CRC calculation unit to compute a CRC code for a given data buffer, based on a fixed generator polynomial (default value 0x4C11DB7). The peripheral initialization is done using LL unitary service functions to optimize performance and size.	-	-	MX	MX	-	-
		CRC_UserDefinedPolynomial	How to configure and use the CRC calculation unit to compute an 8-bit CRC code for a given data buffer, based on a user-defined generating polynomial.	-	-	-	MX	-	-
	DMA	DMA_CopyFromFlashToMemory_Init	How to use a DMA channel to transfer a word data buffer from flash memory to the embedded SRAM. The peripheral initialization uses LL initialization functions to demonstrate LL init usage.	-	MX	-	MX	-	-
	EXTI	EXTI_ToggleLedOnIT_Init	How to configure the EXTI and use GPIOs to toggle the user LEDs available on the board when a user button is pressed. This example is based on the STM32WBAxx LL API. The peripheral initialization is done using the LL initialization function to demonstrate LL init usage.	-	MX	-	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		USART_Communication_Tx_Init	How to configure GPIO and USART peripherals to send characters asynchronously to a HyperTerminal (PC) in polling mode. If the transfer cannot complete within the allocated time, a timeout allows exiting from the sequence with a timeout error code. This example is based on the STM32WBAxx USART LL API. The peripheral initialization is done using LL unitary services functions to optimize performance and size.	-	-	-	мх	-	-
		USART_Communication_Tx_VCP_Init	How to configure GPIO and USART peripherals to send characters asynchronously to a HyperTerminal (PC) in polling mode. If the transfer cannot complete within the allocated time, a timeout allows exiting from the sequence with a timeout error code. This example is based on the STM32WBAxx USART LL API. The peripheral initialization is done using LL unitary services functions to optimize performance and size.	-	-	-	MX	-	-
Examples LL	USART	USART_HardwareFlowControl_Init	How to configure GPIO and USART peripherals to receive characters asynchronously from a HyperTerminal (PC) in interrupt mode with the hardware flow control feature enabled. This example is based on the STM32WBAxx USART LL API. The peripheral initialization uses LL unitary service functions to optimize performance and size.	-	-	-	MX	-	-
		USART_SyncCommunication_FullDuplex_ DMA_Init	How to configure GPIO, USART, DMA, and SPI peripherals to transmit bytes between a USART and an SPI (in slave mode) in DMA mode. This example is based on the STM32WBAxx USART LL API. The peripheral initialization uses LL unitary service functions to optimize performance and size.	-	-	-	MX	-	-
		USART_SyncCommunication_FullDuplex_ IT_Init	How to configure GPIO, USART, DMA, and SPI peripherals to transmit bytes between a USART and an SPI (in slave mode) in interrupt mode. This example is based on the STM32WBAxx USART LL API (the SPI uses the DMA to receive/transmit the characters sent from/received by the USART). The peripheral initialization uses LL unitary service functions to optimize performance and size.	-	-	-	мх	-	-
	UTILS	UTILS_ConfigureSystemClock	How to use the UTILS LL API to configure the system clock using PLL with HSI as the source clock.	-	-	MX	-	-	-
	WWDG	WWDG_RefreshUntilUserEvent_Init	How to configure the WWDG to periodically update the counter and generate an MCU WWDG reset when a user button is pressed. The peripheral initialization uses the LL unitary service functions to optimize performance and size.	-	-	-	MX	-	-

STM32CubeWBA examples	AN5929
les	29

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
Examples_LL		Total number of	f examples_II	0	8	4	70	-	0
	ADC	ADC_SingleConversion_TriggerSW_IT	How to use an ADC to convert a single channel at each software start. The conversion is performed using the interrupt programming model.	-	-	-	MX	-	-
	CRC	CRC_PolynomialUpdate	How to use the CRC peripheral through the STM32WBAxx CRC HAL and LL API.	-	-	-	MX	-	-
	DMA	DMA_FLASHToRAM	How to use a DMA to transfer a word data buffer from flash memory to embedded SRAM through the STM32WBAxx DMA HAL and LL API. The LL API is used for performance improvement.	-	-	-	MX	-	-
	I2C	I2C_OneBoard_ComSlave7_10bits_IT	How to perform I2C data buffer transmission/reception between one controller and two targets with different address sizes (7 bits or 10 bits). This example uses the STM32WBAxx I2C HAL and LL API (LL API usage for performance improvement) and an interrupt.	-	-	-	MX	-	-
	PWR	PWR_STOP1	How to enter Stop 1 mode and wake up from this mode by using an external reset or wake-up interrupt (all the RCC function calls use RCC LL API for minimizing footprint and maximizing performance).	-	-	-	MX	-	-
Examples_MIX		SPI_FullDuplex_ComPolling_Master	How to perform data buffer transmission/reception between two boards via SPI using polling mode.	-	-	-	MX	-	-
		SPI_FullDuplex_ComPolling_Slave	How to perform data buffer transmission/reception between two boards via SPI using polling mode.	-	-	-	MX	-	-
	SPI	SPI_HalfDuplex_ComPollingIT_Master	How to perform data buffer transmission/reception between two boards via SPI using polling (LL driver) and interrupt modes (HAL driver).	-	-	-	MX	-	-
		SPI_HalfDuplex_ComPollingIT_Slave	How to perform data buffer transmission/reception between two boards via SPI using polling (LL driver) and interrupt modes (HAL driver).	-	-	-	MX	-	-
	TIM	TIM_PWMInput	How to use the TIMER peripheral to measure an external signal frequency and duty cycle.	-	-	-	MX	-	-
	UART	UART_HyperTerminal_IT	How to use a UART to transmit data (transmit/receive) between a board and a HyperTerminal PC application in interrupt mode. This example describes how to use the USART peripheral through the STM32WBAxx UART HAL and LL API, the LL API being used for performance improvement.	-	-	-	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
Examples_MIX	UART	UART_HyperTerminal_TxPolling_RxIT	How to use a UART to transmit data (transmit/receive) between a board and a HyperTerminal PC application both in polling and interrupt modes. This example describes how to use the USART peripheral through the STM32WBAxx UART HAL and LL API, the LL API being used for performance improvement.	-	-	-	MX	-	-
		Total number of ex	xamples_mix	0	0	0	12	0	0
		OpenBootloader	This application exploits the OpenBootloader middleware to demonstrate how to develop an IAP application and how to use it.	-	-	-	х	-	-
	-	ROT	The STM32WBA55G-DK1 ROT project is based on a recursive copy of STM32WBA65I-DK1/Applications/ROT/ content and few changes.	-	х	х	х	-	-
		BLE_ApplicationInstallManager	The BLE_ApplicationInstallManager application, associated with a Bluetooth [®] LE application embedding OTA service, manages the over-the-air firmware update of a Bluetooth [®] LE application.	-	-	MX	MX	-	-
		BLE_Audio_GMAP_Central	How to use the Gaming Audio Profile profile in Unicast Client role (Unicast Game Gateway) and Broadcast Source role (Broadcast Game Sender) as specified by the Bluetooth [®] SIG.	MX	-	-	-	-	-
Applications		BLE_Audio_GMAP_Peripheral	How to use the Gaming Audio Profile profile in Unicast Server role (Unicast Game Terminal) and Broadcast Sink role (Broadcast Game Receiver) as specified by the Bluetooth [®] SIG.	MX	-	-	-	-	-
	BLE	BLE_Audio_HAP_Central	How to use the Hearing Access Profile (HAP) in Unicast Client role (Hearing Aid Unicast Client / Hearing Aid Remote Controller / Immediate Alert Client) as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-
		BLE_Audio_HAP_Peripheral	How to use the Hearing Access Profile in Unicast Server role (Hearing Aid role) as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-
		BLE_Audio_PBP_Sink	How to use the Public Broadcast profile in Sink role as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-
		BLE_Audio_PBP_Source	How to use the Public Broadcast profile in Source role as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		BLE_Audio_TMAP_Central	How to use the Telephony and Media Audio Profile (TMAP) in Unicast Client role (Call Gateway and/or Unicast Media Sender) and Broadcast Source role (Broadcast Media Sender) as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-
		BLE_Audio_TMAP_Peripheral	How to use the Telephony and Media Audio Profile (TMAP) in Unicast Server role (Call Terminal and/or Unicast Media Receiver), Broadcast Sink role (Broadcast Media Receiver) and Scan Delegator as specified by the Bluetooth® SIG.	MX	MX	-	-	-	-
		BLE_Beacon	How to advertise four types of beacon (tlm, uuid, url, iBeacon).	-	-	MX	MX	-	-
		BLE_BeaconHCI	How to advertise five types of beacon (Eddystone uid, Eddystone url, Eddystone uid+tlm, Eddystone url+tlm, iBeacon) using HCI.	-	-	MX	MX	-	-
		BLE_DataThroughput_Client	How to demonstrate point-to-point communication using the Bluetooth® LE component (as GATT server or GATT client).	-	-	MX	MX	-	-
Applications	BLE	BLE_DataThroughput_Server	How to demonstrate point-to-point communication using the Bluetooth® LE component (as GATT server or GATT client).	-	-	MX	MX	-	-
		BLE_GenericHealth_ECG_ota	How to use the Generic Health Sensor profile with the over-the-air firmware update feature.	-	-	MX	-	-	-
		BLE_HID_Mouse	How to use the Human Interface Device over GATT profile for a mouse, as specified by the Bluetooth [®] LE SIG.	-	MX	-	-	-	-
		BLE_HR_P2PServer	How to use the Bluetooth [®] LE Heart Rate and Bluetooth [®] LE peer-to-peer server application.	-	-	-	-	-	MX
		BLE_HealthThermometer	How to use the Health Thermometer Sensor is a GATT server to measure the temperature and expose it via the Health Thermometer Service.	-	-	MX	MX	-	-
		BLE_HeartRate	How to use the Heart Rate Profile, widely used in fitness applications, to define the communication process between a GATT-server of a Heart Rate Sensor device (such as a wrist band) and a GATT-client Collector device (such as a smartphone or tablet).	-	MX	MX	MX	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO-WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		BLE_HeartRateFreeRTOS	How to use the Heart Rate Profile, widely used in fitness applications, to define the communication process between a GATT-server of a Heart Rate Sensor device (such as a wrist band) and a GATT-client Collector device (such as a smartphone or tablet).	-	-	MX	MX	-	-
		BLE_HeartRateThreadX	How to use the Heart Rate Profile, widely used in fitness applications, to define the communication process between a GATT-server of a Heart Rate Sensor device (such as a wrist band) and a GATT-client Collector device (such as a smartphone or tablet).	-	-	MX	MX	-	-
		BLE_HeartRate_ota	How to use the Bluetooth [®] LE Heart Rate with the over-the-air firmware update feature.	-	-	MX	MX	-	-
		BLE_Power_Central	How to measure the central power consumption using the Bluetooth® LE component.	-	-	MX	MX	-	-
		BLE_Power_Peripheral	How to measure the peripheral power consumption using the Bluetooth [®] LE component.	-	-	MX	MX	-	-
Applications	BLE	BLE_Sensor	How to use the Bluetooth® LE sensor application.	-	-	-	-	New	MX
		BLE_SerialCom_Central	How to demonstrate point-to-point communication using the Bluetooth® LE component.	-	-	MX	MX	-	-
		BLE_SerialCom_Peripheral	How to demonstrate point-to-point communication using the Bluetooth® LE component.	-	-	MX	MX	-	-
		BLE_TransparentMode	How to communicate with the STM32CubeMonitor-RF tool using the transparent mode.	-	-	MX	MX	-	-
		BLE_TransparentMode_Ux_CDC	How to communicate with the STM32CubeMonitor-RF Tool using the transparent mode through USB Communication Device Class (CDC) ###Keywords Connectivity, BLE, BLE protocol.	-	-	New	-	-	-
		BLE_p2pClient	How to use an STM32WBA device as a Bluetooth [®] LE central and GATT client.	-	-	MX	MX	-	-
		BLE_p2pClient_Ext	How to demonstrate a Bluetooth® LE scanner with connections from extended and legacy advertising.	-	-	MX	MX	-	-

AN5929 STM32CubeWBA examples

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		RSA_PKCS1v1.5_SignVerifyCRT_HAL	How to use the PSA reference API to sign and verify a message using the RSA PKCS#1 v1.5 compliant algorithm.	×	-	-	-	-	-
		RSA_PKCS1v1.5_SignVerify_HAL	How to use the PSA reference API to sign and verify a message using the RSA PKCS#1 v1.5 compliant algorithm.	X	-	-	-	-	-
	MbedTLS_	RSA_PKCS1v2.2_EncryptDecryptCRT_HAL	How to use the PSA reference API to encrypt and decrypt a message using the RSA PKCS#1 v2.2 compliant algorithm.	Х	-	-	-	-	-
	HW_ALT	RSA_PKCS1v2.2_EncryptDecrypt_HAL	How to use the PSA reference API to encrypt and decrypt a message using the RSA PKCS#1 v2.2 compliant algorithm.	Х	-	-	-	-	-
		RSA_PKCS1v2.2_SignVerifyCRT_HAL	How to use the PSA reference API to sign and verify a message using the RSA PKCS#1 v2.2 compliant algorithm.	Х	-	-	-	-	-
		RSA_PKCS1v2.2_SignVerify_HAL	How to use the PSA reference API to sign and verify a message using the RSA PKCS#1 v2.2 compliant algorithm.	Х	-	-	-	-	-
Applications		Cipher_AES_CBC_EncryptDecrypt_MBED	How to use the PSA reference API to perform encryption and decryption using the AES CBC algorithm.	х	-	-	-	-	-
		Cipher_AES_GCM_AuthEncrypt_VerifDecrypt_ MBED	How to use the PSA reference API to perform authenticated encryption and verified decryption using the AES GCM algorithm.	х	-	-	-	-	-
		Cipher_ChachaPoly_AuthEnc_VerifDec_MBED	How to use the PSA reference API to perform authenticated encryption and verified decryption using the Chacha-Poly1305 algorithm.	х	-	-	-	-	-
	MbedTLS_	DRBG_RandomGeneration_MBED	How to use the PSA reference API to generate random numbers using the DRBG module.	х	-	-	-	-	-
	SW	ECC_ECDH_SharedSecretGeneration_MBED	How to use the PSA reference API to establish a shared secret using the ECDH algorithm over SECP256 curve.	х	-	-	-	-	-
		ECC_ECDSA_SignVerify_MBED	How to use the PSA reference API to sign and verify a message using the ECDSA algorithm over SECP256 curve.	х	-	-	-	-	-
		Hash_SHA2_Digest_MBED	How to use the PSA reference API to digest a message using the SHA256 algorithm.	X	-	-	-	-	-
		MAC_AES_CMAC_AuthenticateVerify_MBED	How to use the PSA reference API to authenticate and verify a message using the AES CMAC algorithm.	Х	-	-	-	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		Sequencer_gpio_toggle_lowpower	This example is based on the sequencer utilities.	-	-	-	MX	-	-
	Sequencer	Sequencer_task_pauseresume	This example is based on the sequencer utilities. It shows how the sequencer handles the task pause/ resume mechanism.	-	-	-	MX	-	-
	·	Sequencer_task_prio	This example is based on the sequencer utility. It shows how the sequencer manages the task priority.	-	-	-	MX	-	-
		Sequencer_task_waitevent	This example is based on the sequencer utility. It shows how the sequencer handles the task waiting for an event.	-	-	-	MX	-	-
		Thread_Cli_Cmd_FTD	How to control the Thread stack via Cli commands.	-	-	New	-	-	-
		Thread_Cli_Cmd_LTD	How to control the Thread stack via Cli commands.	-	-	New	-	-	-
Applications		Thread_Coap_Generic	How to build a Thread application based on Coap messages.	-	-	MX	MX	-	х
4,600,000		Thread_Coap_Generic_FreeRTOS	How to build a Thread application based on Coap messages.	-	-	MX	-	-	-
		Thread_Coap_Generic_ThreadX	How to build a Thread application based on Coap messages.	-	-	MX	-	-	-
	Thread	Thread_Coap_OTA	How to build a Thread application based on Coap messages.	-	-	MX	-	-	-
		Thread_Commissioning	How to build a Thread application based on Coap messages.	-	-	×	-	-	-
		Thread_OTA_Client	How to update over-the -air (OTA) firmware application and Copro wireless binary using Thread (server side).	-	-	MX	-	-	-
		Thread_OTA_Server	How to update the over-the-air (OTA) firmware application and Copro wireless binary using Thread (server side).	-	-	MX	-	-	-
		Thread_SED_Coap_Multicast	How to build a Thread sleepy end device application based on Coap messages.	-	-	MX	-	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK′	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
	Thread	Thread_Udp	How to transfer data using UDP.	-	-	MX	-	-	-
		Tx_CMSIS_Wrapper	This application provides an example of CMSIS RTOS adaptation layer for Eclipse [®] ThreadX [®] . It shows how to develop an application using the CMSIS RTOS 2 APIs.	-	-	-	Х	-	-
		Tx_FreeRTOS_Wrapper	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the FreeRTOS ^{TM} adaptation layer for ThreadX [®] .	-	-	-	Х	-	-
	ThreadX	Tx_LowPower	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] low-power feature.	-	-	MX	MX	-	-
		Tx_MPU	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] module feature.	-	-	Х	Х	-	-
Applications		Tx_SecureLEDToggle_TrustZone	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] when the TrustZone [®] feature is enabled (TZEN = 1).	-	-	MX	MX	-	-
		Tx_Thread_Creation	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] thread management APIs.	-	-	MX	MX	-	-
		Tx_Thread_MsgQueue	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] message queue APIs.	-	-	MX	MX	-	-
		Tx_Thread_Sync	This application provides an example of Eclipse [®] ThreadX [®] stack usage. It shows how to develop an application using the ThreadX [®] synchronization APIs.	-	-	MX	MX	-	-
	USBX	Ux_Device_CDC_ACM	This application provides an example of USBX stack usage on the NUCLEO-WBA65RI board. It shows how to develop a USB Device communication Class (CDC_ACM) application.	-	-	MX	-	-	-
		Ux_Device_HID_Standalone	This application provides an example of USBX stack usage on the NUCLEO-WBA65RI board. It shows how to develop a USB Device Human Interface (HID) mouse based bare metal application.	-	-	MX	-	-	-

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
		Zigbee_Messaging_Server_Router	How to use the messaging cluster on a device acting as a router within a centralized Zigbee [®] network.	-	-	-	MX	-	-
		Zigbee_Messaging_Server_Router_R22-SE	How to use the messaging cluster on a device acting as a router within a centralized Zigbee [®] network.	-	-	-	MX	-	-
		Zigbee_MeterId_Client_Coord	How to use the meter identification cluster on a device acting as a client within a centralized Zigbee® network.	-	-	-	MX	-	-
	Zigbee	Zigbee_MeterId_Server_Router	How to use the meter identification cluster on a device acting as a server within a centralized Zigbee [®] network.	-	-	-	MX	-	-
		Zigbee_OTA_Client_Router	How to use the OTA cluster on a device acting as a client within a centralized Zigbee [®] network.	-	-	-	x	-	-
		Zigbee_OTA_Server_Coord	How to use the OTA cluster on a device acting as a Server within a centralized Zigbee [®] network.	-	-	-	x	-	-
		Zigbee_OccupSensing_Client_Coord	How to use the occupancy sensing on a device acting as a client within a centralized Zigbee [®] network.	-	-	-	MX	-	-
Applications		Zigbee_OccupSensing_Server_Router	How to use the occupancy sensing on a device acting as a server within a centralized Zigbee® network.	-	-	-	MX	-	-
		Zigbee_OnOff_Client_Distrib	How to use the on/off cluster on a device acting as a client within a distributed Zigbee [®] network.	-	-	MX	MX	-	-
		Zigbee_OnOff_Client_Router	How to use the on/off cluster on a device acting as a client within a centralized Zigbee® network.	MX	MX	MX	MX	-	MX
		Zigbee_OnOff_Client_Router_FreeRtos	How to use the on/off cluster on a device acting as a client within a centralized Zigbee [®] network.	-	MX	-	MX	-	-
		Zigbee_OnOff_Client_Router_OTA	How to use the OTA cluster on a device acting as a client within a centralized Zigbee [®] network.	-	-	-	x	-	-
		Zigbee_OnOff_Client_Router_ThreadX	How to use the on/off cluster on a device acting as a client within a centralized Zigbee [®] network.	-	-	-	MX	-	-
		Zigbee_OnOff_Client_SED	How to use the on/off cluster on a device acting as an ED client within a centralized Zigbee [®] network.	-	-	-	MX	-	-
		Zigbee_OnOff_Server_Coord	How to use the on/off cluster on a device acting as a server within a centralized Zigbee [®] network.	MX	MX	MX	MX	-	MX

h
ı
Į

Level	Module name	Project name	Description	STM32WBA65I-DK1	STM32WBA55G-DK1	NUCLEO- WBA65RI	NUCLEO- WBA55CG	B-WBA6M-WPAN	B-WBA5M-WPAN
Applications	Zigbee	Zigbee_Thermostat_Server_Router	How to use the thermostat cluster on a device acting as a server within a centralized Zigbee [®] network.	MX	MX	-	MX	-	-
		45	15	61	83	1	5		
		OEMiROT	This section provides an overview of the available scripts for OEMiROT boot path.	х	-	-	-	_	-
ROT_Provisionin g	-	OEMiRoT_OEMuRoT	This section provides an overview of the available scripts for OEMiROT_OEMuROT boot path.	Х	-	-	-	-	-
	Total number of applications			2	0	0	0	0	0
Total number of projects				53	42	96	284	4	8

2 Reference documents

The reference documents are available on www.st.com/stm32cubefw:

- Latest release of STM32CubeWBA firmware package
- Getting started with STM32CubeWBA for STM32WBA series (UM3131)
- Description of STM32WBAxx HAL and LL drivers (UM3140)

Note:

Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5929 - Rev 8 page 35/39

Revision history

Table 2. Document revision history

Date	Version	Changes
6-Mar-2023	1	Initial release.
29-Jun-2023	2	Section 1 STM32CubeWBA examples updated.
28-Mar-2024	3	Section 1 STM32CubeWBA examples updated.
10-Jul-2024	4	Section 1 STM32CubeWBA examples updated.
27-Nov-2024	5	Section 1 STM32CubeWBA examples updated.
25-Feb-2025	6	Section 1 STM32CubeWBA examples updated.
24-Jun-2025	7	Section 1 STM32CubeWBA examples updated.
12-Nov-2025	8	Section 1: STM32CubeWBA examples updated.

AN5929 - Rev 8 page 36/39

Contents

1	STM32CubeWBA examples	.2
2	Reference documents	35
Rev	rision history	36

List of tables

Table 1.	STM32CubeWBA firmware examples	. 3
Γable 2.	Document revision history	36

AN5929 - Rev 8 page 38/39

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice.

In the event of any conflict between the provisions of this document and the provisions of any contractual arrangement in force between the purchasers and ST, the provisions of such contractual arrangement shall prevail.

The purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

The purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of the purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

If the purchasers identify an ST product that meets their functional and performance requirements but that is not designated for the purchasers' market segment, the purchasers shall contact ST for more information.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2025 STMicroelectronics - All rights reserved

AN5929 - Rev 8 page 39/39