

Migrating microcontroller applications from STM32F427/437 and STM32F429/439 to STM32H573/563 and STM32H562 MCUs

Introduction

The designers of STM32 microcontroller applications must have the possibility to easily replace one microcontroller type with another one from the same product family or products from a different family. The reasons for migrating an application to a different microcontroller can be for example:

- · To fulfill higher product requirements, extra demands on memory size, or an increased number of I/Os
- To meet cost reduction constraints that require to switch to smaller components and shrink the PCB area.

This application note details the steps required to migrate from an existing design based on the STM32F427/437 or STM32F429/439 MCUs, to one based on the STM32H573/563 and STM32H562 MCUs.

This document provides the full set of features available for the STM32F427/437 and STM32F429/439 devices, and the equivalent features on the STM32H573/563 and STM32H562 product lines. This document also provides guidelines on both hardware and peripheral migration.

To better understand the information inside this application note, the user must be familiar with the STM32 microcontroller family.

This application note is a complement to the STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562 datasheets and reference manuals. For additional information, refer to the product datasheets and reference manuals.

Table 1. Reference documents

Document number	Title
[1]	STM32F405/415, STM32F407/417, STM32F427/437 and STM32F429/439 advanced Arm®-based 32-bit MCUs reference manual (RM0090)
[2]	STM32H563/H573 and STM32H562 Arm [®] -based 32-bit MCUs reference manual (RM0481)
[3]	STM32F427/429xx datasheet (DS9405)
[4]	STM32F439x datasheet (DS9484)
[5]	Arm® Cortex®-M33 32-bit MCU+TrustZone®® + FPU, 375 DMIPS 250 MHz, 2-Mbyte flash memory, 640 Kbytes RAM, Crypt datasheet (DS14121)
[6]	Arm® Cortex®-M33 32-bit MCU+TrustZone®+ FPU, 375 DMIPS 250 MHz, 2-Mbyte flash, 640 Kbytes RAM, Math accelerators datasheet (DS14258)

1 General information

STM32F427/437, STM32F429/439, STM32H573/563 and STM32H562 MCUs are 32-bit microcontrollers based on the Arm $^{\$}$ Cortex $^{\$}$ processor.

Note: Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

arm

AN5688 - Rev 2 page 2/50

2 STM32H573/563 and STM32H562 MCUs overview

2.1 Main features

The STM32H573/563 and STM32H562 cryptographic include a larger set of peripherals and with more advanced features, compared to the STM32F427/437 and STM32F429/439.

Some of the improved peripherals for STM32H573/563 and STM32H562 are:

- Security
 - TrustZone[®]-aware and securable peripherals
 - Active tamper, secure firmware installation, secure firmware upgrade support, secure data storage with hardware unique key
 - Preconfigured immutable root of trust (ST-iROT)
 - Flexible life cycle scheme with secure debug authentication
 - Up to eight configurable SAU regions
 - Additional encryption accelerator engine
 - Advanced encryption hardware accelerator (AES)
 - Public key accelerator (PKA)
 - Secure AES coprocessor (SAES)
 - On-the-fly decryption engine on OCTOSPI (OTFDEC)

Performance

- Frequency up to 250 MHz
- Direct access to flash interface through ICACHE
- ICACHE for internal and external memories
- DCACHE for external memories
- Power supply
 - Embedded regulator (LDO)
 - SMPS step-down converter
 - Depending on the package configuration (SMPS or LDO), the regulator is selected by hardware. SMPS and LDO regulator are exclusively selected
 - Both regulators can provide four different voltages (voltage scaling) and can operate in Stop modes
- New peripherals
 - Filter mathematical accelerator (FMAC)
 - CORDIC coprocessor
 - New communication interface: I3C, FDCAN, LPUART, USB Type-C[®] connector/USB power delivery interface (UCPD), PSSI

Note:

This document only manages the differences between STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 for the common features. The new features of STM32H573/563 and STM32H562, mainly linked to the TrustZone® support, are not covered. The detailed list of available features and packages for each product is available in the respective product datasheet.

The table below summarizes the memory availability of the STM32F427/437, STM32F429/439, STM32H573/563 and STM32H562 MCUs.

Table 2. Memory availability

Products	Flash memory		RAM size (Kbytes)			s)	Feature level
Flouncis	Size	Bank	SRAM1	SRAM2	SRAM3	BKPSRAM	
STM32H573	2 Mbytes	Dual	256	64	320	4	With hardware crypto: AES, PKA, SAES, and OTFDEC
STM32H563	2 Mbytes	Dual	256	64	320	4	NA
STM32H562	2 Mbytes	dual	256	64	320	4	Without Ethernet

AN5688 - Rev 2 page 3/50

Products	Flash memory RAM size (Kbytes		RAM size (Kbytes)			s)	Feature level
Floudels	Size	Bank	SRAM1	SRAM2	SRAM3	BKPSRAM	
STM32F427/ STM32F429	2 Mbytes	Dual	112	16	64	4	NA
STM32F437/ STM32F439	2 Mbytes	Dual	112	16	64	4	With cryptographic processor (CRYP)

2.2 System architecture

The STM32H573/563 and STM32H562 MCUs embed:

- High-speed memories (2 Mbytes of dual-bank flash memory and 640 Kbytes of SRAM)
- a flexible external memory controller (FMC) for devices with packages of 100 pins and more
- one Octo-SPI memory interface (at least one Octo-SPI available on all packages) and an extensive range of enhanced I/Os and peripherals connected to three APB buses,
- three AHB buses and a 32-bit multi-AHB bus matrix.

The following table illustrates the bus matrix differences between STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562.

Table 3. Bus matrix

Bus type	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
	Up to 8 masters:	Up to 13 masters:
AHB bus matrix masters	CPU I-bus, D-bus, and S-bus, DMA1 memory bus, DMA2 memory bus, DMA2 peripheral bus, Ethernet DMA bus, USB OTG HS, DMA bus	Fast C-bus, Slow C-bus, CPU S-bus for internal memories, CPU S-bus for external memories, GPDMA1 (featuring two master ports), GPDMA2 (featuring two master ports), SDMMC1, SDMMC2, Ethernet MAC ⁽¹⁾
	Up to 7 slaves:	Up to 10 slaves:
AHB bus matrix slaves	Internal flash memory ICode bus, Internal flash memory DCode bus, SRAM1, SRAM2, AHB1 peripherals (including AHB to APB bridges and APB peripherals), AHB2 peripherals, FSMC	Internal flash memory, SRAM1, SRAM2, SRAM3, AHB1 peripherals (including APB1 and APB2), backup RAM, AHB2 peripherals, FMC, OCTOSPI, AHB3 peripherals, AHB4 peripherals

1. Not available on STM32H562 devices.

The bus matrix provides access from a master to a slave, enabling concurrent access and efficient operation even when several high-speed peripherals work simultaneously.

The figures below show the system architectures of STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562.

AN5688 - Rev 2 page 4/50

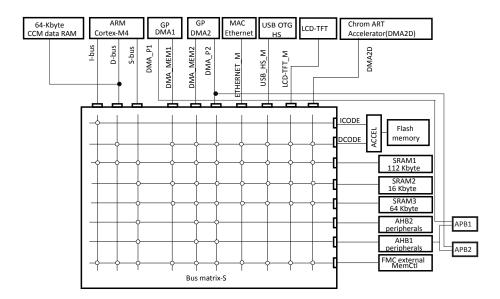
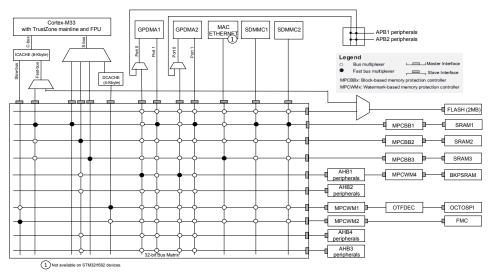



Figure 1. STM32F427/437 and STM32F429/439 devices system architecture

DT71818V1

3 Hardware migration

This section presents the package and pinout compatibility details for the hardware migration.

3.1 Package availability

The STM32H573/563 and STM32H562 devices offer eight packages from 64 to 176 pins, and two options of pinout:

- LDO option, without internal SMPS: most packages are partial compatible with STM32F427/437 and STM32F429/439 devices
- Internal SMPS option: versions with internal SMPS, fully new packages. For this pinout version, the SMPS step-down converter and the LDO are embedded in parallel to provide the VCORE supply.

All STM32H573/563 and STM32H562 packages are available with two options LDO or SMPS supply for the VCORE (except for LQFP64, WLCSP and VFQFPN68 packages).

For more details on the pinout, refer to the product datasheets.

The table below lists the available packages on the STM32H573/563 and STM32H562 compared to STM32F427/437 and STM32F429/439.

Package (Size in mm x mm)	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562 (LDO version)	STM32H573/563 and STM32H562 (SMPS version)
LQFP208 (28 x 28 mm)	X ⁽²⁾	NA	NA
LQFP176 (24 x 24 mm)	X	X	X
LQFP144 (20 x 20 mm)	X	X	X
LQFP100 (14 x 14 mm)	X	X	X
LQFP64 (10 x 10 mm)	NA	X	NA
TFBGA216 (13 x 13 mm)	X ⁽²⁾	NA	NA
UFBGA176 (10 x 10 mm)	X	X	X
UFBGA169 (7 x 7 mm)	X	X	X
VFQFPN68 (8 x 8 mm)	NA	X	NA
WLCSP	WLCSP143	NA	WLCSP80

Table 4. Packages available

3.2 Pinout compatibility

The STM32F427/437 and STM32F429/439 devices are not identical with the STM32H573/563 and STM32H562 devices in term of MCU port assignment to package terminals, that is, in term of pinout or ballout. This holds for all common package types of the package listed in Table 4. Packages available .

For the LQFP176 and UFBGA176 packages, the BYPASS_REG pin is replaced in the STM32H573/563 and STM32H562 with a VSS pin.

For the STM32F427/437 and STM32F429/439 devices, the BYPASS_REG pin connected to VDD permits to select the mode where the internal regulator is switched off and the core supply is externally provided.

For the STM32H573/563 and STM32H562 devices, there is no dedicated pin that defines if the regulator is in bypass mode or which regulator(s) is used. Both LDO and SMPS regulators are enabled by hardware depending on package configuration. The regulator is enabled on power-on reset. To supply the VCORE from external source, it is possible to disable the regulator by setting the BYPASS bit.

For the LQFP100 and LQFP144 packages, the VCAP_1 and VCAP_2 pins are replaced in the STM32H573/563 and STM32H562 with a VSS and VDDUSB pin, respectively.

The following sections show the packages pinout figures and the packages pinout differences tables.

AN5688 - Rev 2 page 6/50

^{1.} X = available. NA = not available

^{2.} Not available for STM32F437 devices.

3.2.1 LQFP100 package

Figure 3. STM32H573/563 and STM32H562 LQFP100 pinout

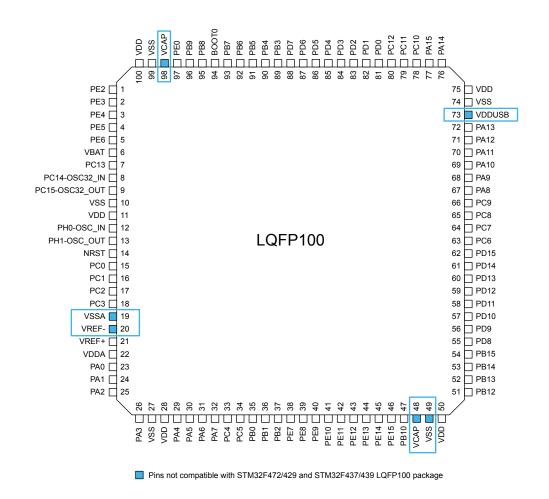


Table 5. LQFP100 pinout differences

LQFP100 pin number	STM32F427/437 and STM32F429/439 pinout	STM32H573/563 and STM32H562 pinout
19	VDD	VSSA
20	VSSA	VREF-
48	PB11	VCAP
49	VCAP_1	VSS
73	VCAP_2	VDDUSB
98	PE1	VCAP

AN5688 - Rev 2 page 7/50

3.2.2 LQFP144 package

Figure 4. STM32H573/563 and STM32H562 LQFP144 pinout

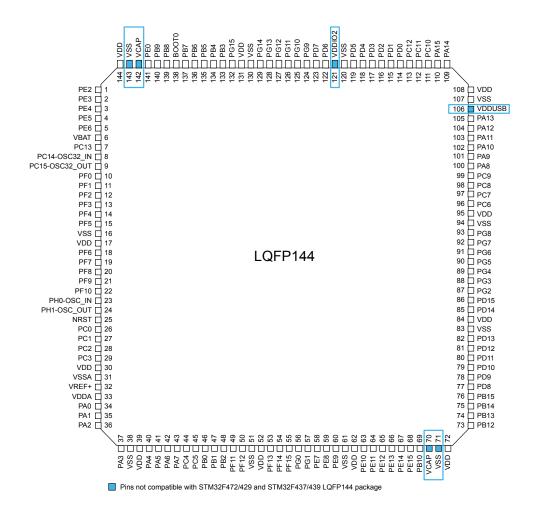


Table 6. LQFP144 pinout differences

LQFP144 pin number	STM32F427/437 and STM32F429/439 pinout	STM32H573/563 and STM32H562 pinout
70	PB11	VCAP
71	VCAP_1	VSS
106	VCAP_2	VDDUSB
121	VDD	VDDIO2
142	PE1	VCAP
143	PDR_ON	VSS

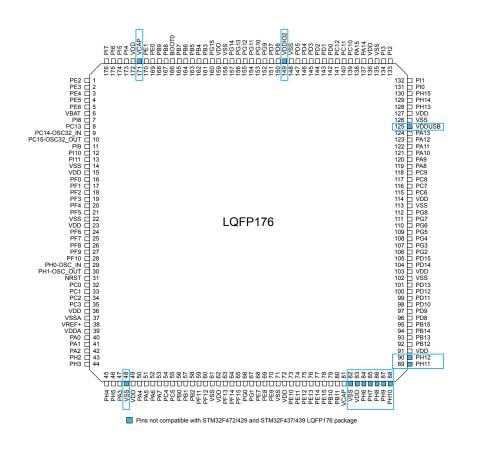
DT69907V2

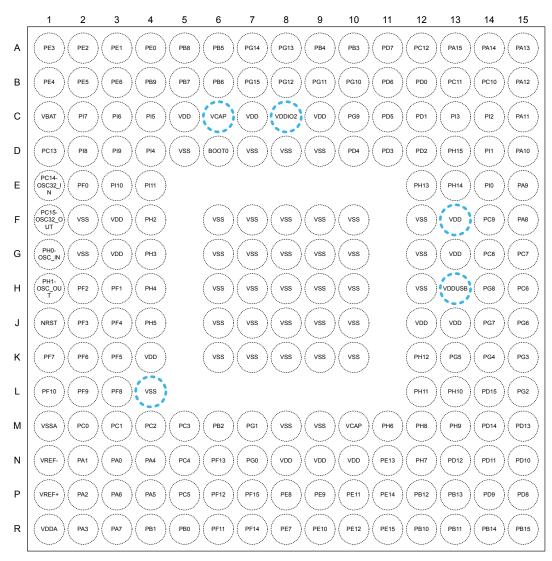
AN5688 - Rev 2 page 8/50

DT69908V2

3.2.3 LQFP176 package

Figure 5. STM32H573/563 and STM32H562 LQFP176 pinout




Table 7. LQFP176 pinout differences

LQFP176 pin number	STM32F427/437 and STM32F429/439 pinout	STM32H573/563 and STM32H562 pinout	
48	BYPASS_REG	VSS	
82	VDD	VSS	
83	PH6	VDD	
84	PH7	PH6	
85	PH8	PH7	
86	PH9	PH8	
87	PH10	PH9	
88	PH11	PH10	
89	PH12	PH11	
90	VSS	PH12	
125	VCAP_2	VDDUSB	
149	VDD	VDDIO2	
171	PDR_ON	VCAP	

AN5688 - Rev 2 page 9/50

3.2.4 UFBGA176 + 25 package

Figure 6. STM32H573/563 and STM32H562 UFBGA176 + 25 ballout

Balls not compatible with STM32F472/429 and STM32F437/439 UFBGA176 + 25 package

Table 8. UFBGA176 + 25 ballout differences

UFBGA176 + 25 ball number	STM32F427/437 and STM32F429/439 ballout	STM32H573/563 and STM32H562 ballout
C6	PDR_ON	VCAP
C8	VDD	VDDIO2
F13	VCAP_2	VDD
H13	VDD	VDDUSB
L4	BYPASS_REG	VSS

T69909V2

AN5688 - Rev 2 page 10/50

3.2.5 UFBGA169 package

For UFBGA169 package, STM32F427/437 and STM32F429/439 devices are not compatible with the STM32H573/563 and STM32H562 devices.

AN5688 - Rev 2 page 11/50

4 Boot mode compatibility

4.1 Boot mode selection

In STM32F427/437 and STM32F429/439, three different boot modes can be selected through the BOOT[1:0] pins as shown in the table below.

Table 9. Boot modes for STM32F427/437 and STM32F429/439

Boot mode selection pins		Boot mode	Aliasing	
BOOT1	воот0	Boot mode	Allasiliy	
Х	0	Main flash memory	Main flash memory is selected as the boot space	
0	1	System memory	System memory is selected as the boot space	
1	1	Embedded SRAM	Embedded SRAM is selected as the boot space	

STM32H573/563 and STM32H562 embed an SBS peripheral that controls boot and security features. For these devices, the main boot control actions are listed below:

- Run the product with or without TrustZone[®] enabled.
- Select between ST-iROT or OEM-iROT (refer to the reference manual for more details).
- Boot when launching a debug authentication sequence.
- Select boot between the bootloader or the user flash memory boot.
- Initialize the HDPL boot value.

For STM32H573/563 and STM32H562 devices, the boot configurations are selected considering the product settings:

- BOOT0: to select booting on user flash memory or RSS (root secure services).
- BOOT_UBE: option byte to select the iROT between ST-iROT and OEM-iROT.
- TZEN: option byte to activate/deactivate the TrustZone[®].
- **sbs boot addresses**: list of addresses defined by the flash memory:
 - NSBOOTADD: nonsecure boot address
 - SECBOOTADD: secure boot address
- **PRODUCT_STATE**: option byte to activate the different security mechanisms depending on the product use.
- **sbs_dbg_req:** used to launch the debug authentication protocol when booting.

The tables below present the STM32H573 boot modes, when TrustZone[®] is disabled or enabled.

Table 10. STM32H573 Boot modes when TrustZone® is disabled (TZEN=0xC3)

PRODUCT_STATE	BOOT0 pin	BOOT_UBE FLASH_OPTSR[29:22]	Boot address option-byte selection	Boot area	ST programmed default value
Open	0	NA	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000
	1	NA	NA	Bootloader	Bootloader
Provisioning	x	NA	NA	RSS	RSS
Provisioned, Closed, Locked	x	NA	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000

AN5688 - Rev 2 page 12/50

Table 11. 31 W32H373 BOOL HOURS WHEH TrustZolle" IS eliabled (1ZEN-0XD4	Table 11. STM32H573 Boot modes when	TrustZone® is enabled	(TZEN=0xB4)
---	-------------------------------------	-----------------------	-------------

PRODUCT_STATE	BOOT0 pin	BOOT_UBE FLASH_OPTSR[29:22]	Boot address option- byte selection	Boot area	ST programmed default value
Open	0	x	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000
Ореп	1	0xB4	NA	Bootloader	Bootloader
	1	0xC3	NA	ST-iROT	ST-iROT
Provisioning	х	NA	NA	RSS	RSS
Provisioned, TZ_Closed, Closed, Locked	x	0xC3	ST-iROT	ST-iROT	ST-iROT
	x	0xB4	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000

The tables below illustrate the STM32H56x boot modes, when TrustZone[®] is disabled or enabled.

Table 12. STM32H563 Boot mode when TrustZone® is disabled (TZEN=0xC3)

PRODUCT_STATE	BOOT0 pin	Boot address option- byte selection	Boot area	ST programmed default value
Open	0	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000
	1	NA	Bootloader	Bootloader
Provisioning	х	NA	RSS	RSS
Provisioned, Closed, Locked	x	NSBOOTADD[31:8]	Boot address defined by user option byte NSBOOTADD[31:8]	Flash: 0x0800 0000

Table 13. STM32H563 Boot mode when TrustZone® is enabled (TZEN=0xB4)

PRODUCT_STATE	BOOT0 pin	Boot address option- byte selection	Boot area	ST programmed default value
Open	0	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000
	1	NA	Bootloader	Bootloader
Provisioning	х	NA	RSS	RSS
Provisioned, TZ_Closed, Closed, Locked	X	SECBOOTADD[31:8]	Boot address defined by user option byte SECBOOTADD[31:8]	Flash: 0x0C00 0000

4.2 System bootloader

The system bootloader is in the system memory, programmed by STMicroelectronics during the production. It is used to reprogram the flash memory using one of the following serial interfaces.

The following table shows the supported communication peripherals by the system bootloader. For more details, refer to the application note *STM32 microcontroller system memory boot mode* (AN2606).

AN5688 - Rev 2 page 13/50

Table 14. Bootloader communication peripherals

System bootloader peripherals	STM32F42xxx/F43xxx I/O pin	STM32H573/563 and STM32H562 I/O pin
DFU ⁽¹⁾		PA11/PA12
USART1		PA10/PA9
USART2	NA	PA3/PA2
USART3	PB10 / PB11 and PC10 / PC11	PD9/PD8
CAN	CAN2 (PB5/PB13 PB8/PB9)	FDCAN2(PB5/PB13) (2)
I2C3	NA	PA8/PC9
I2C4	NA	PD12/PD13
I3C1	NA	PB6/PB7
SPI1	NA	PA7/PA6/PA5/PA4
SPI2	NA	PC1/PB14/PB10/ PB12
SPI3	NA	PC12/PC11/PC10/PA15

^{1.} On STM32H5, USB DFU bootloader does not need an external quartz. It uses internal HSI48.

AN5688 - Rev 2 page 14/50

^{2.} On STM32H5xx, FDCAN bootloader does not use an external quartz. It uses HSI and PLL.

5 Peripheral migration

5.1 Cross-compatibility between STM32 products

STM32 microcontrollers embed a set of peripherals that can be classified in the following groups:

- Group1: peripherals by definition common to all products
 Those peripherals are identical, so they have the same structure, registers, and control bits. There is no need to perform any firmware change to keep the same functionality at the application level after migration.
 All the features and behavior remain the same.
- Group2: peripherals shared by all products but with only minor differences (in general to support new features)
 - The migration from one product to another is very easy and does not need any significant new development effort.
- Group3: peripherals that have considerable changes from one product to another (new architecture or new features for example)
 - For this group of peripherals, the migration requires a new development at application level.

For STM32H563/573 and STM32H562, all of the following can be configured as trusted or untrusted: each GPIO or peripheral, DMA channel, clock configuration register, ICACHE, DCACHE, and every small part of flash memory or SRAM. The following table summarizes the available peripherals in STM32F427/437 and STM32F429/439 compared to STM32H573/563 and STM32H562.

Table 15. STM32 peripheral compatibility between products

Peripherals		STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Core		Cortex [®] -M4	Cortex [®] -M33
Maximum CPI	J frequency	Up to 180 MHz	Up to 250 MHz
Flash me	emory	2 Mbytes	2 Mbytes
	System	256 Kbytes	640 Kbytes
SRAMs	System	(112+16+64+64)	(256+64+320)
	Backup	4 Kbytes	4 Kbytes
	General purpose	2 (32 bits) and 8 (16 bits)	2 (32 bits) and 8 (16 bits)
	Advanced control	2(16 bits)	2 (16 bits)
	Basic	2 (16 bits)	2 (16 bits)
Timers	Low power ⁽¹⁾	No	6 (16 bits)
	SysTick timer	1	2
	Watchdog timers (independent, window)	2	2
	SPI/I2S	Up to 6 SPIs, 2 with muxed full-duplex I2S	Up to 6x SPIs. Including three muxed with full-duplex I2S and up to 5x additional SPI from 5x USART when configured in Synchronous mode (one additional SPI with OctoSPI)
	I2C	3 (Sm and Fm interfaces (SMBus/PMBus)	4 (Sm, Fm, and FM+ interfaces (SMBus/PMBus)
Communication interfaces	I3C ⁽¹⁾	No	1
	USART/UART	4 / 4	6 / 6
	LPUART ⁽¹⁾	No	1
	USB	USB OTG FS and USB OTG HS	USB FS
	UCPD (1)	No	Yes

AN5688 - Rev 2 page 15/50

Peripherals		STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
	CAN	2	2 FDCAN ⁽¹⁾
	SAI	1	2
Communication interfaces	SDIO/SDMMC	1	2
Communication interfaces	DCMI	Yes	Yes
	PSSI ⁽¹⁾	No	Yes
	Ethernet	Yes	Yes (not available on STM32H562)
Flexible memory of	controller (FMC)	Yes (8,16,32-bit data bus width)	Yes (8,16-bit data bus width)
остоя	SPI ⁽¹⁾	No	1
HDMI-C	CEC ⁽¹⁾	No	Yes
CR	С	Yes	Yes
LCD-TFT displ	ay controller	Yes	No
Chrom-ART Acce	elerator DMA2D	Yes	No
DM	A	2	2 GPDMA ⁽¹⁾ (featuring two master ports) TrustZone [®] support/linked- list
CORDIC cop	rocessor ⁽¹⁾	No	Yes
Filter mathematical ad	ccelerator (1)(FMAC)	No	Yes
Real-time clock (RTC)		Yes	Yes
Random number generator (RNG)		Yes	Yes
SAES, A	AES ⁽¹⁾	No	Yes
Public key accel	erator ⁽¹⁾ (PKA)	No	Yes
HASH (SI	HA-512)	Yes	Yes
Cryptographic pro	ocessor (CRYP)	Yes	No
On-the-fly decryption	engine ⁽¹⁾ (OTFDEC)	No	Yes
GPI	Os	Up to 168	Up to 140
ADC (12 bits)	count	3 (12-bit ADC 2.4 MSPS and 7.2 MSPS in triple interleaved mode)	2 (12-bit ADC with up to 5 MSPS)
	Number of channels	16/24	20/20
DAG ((21))	Count	1	1
DAC (12 bits)	Number of channels	2	2
RC	С	Yes	Yes
Operating ter	mperatures	Ambient temperature: : -40 to +85°C /-40 to +105°C	Ambient operating temperature: – 40 to 85°C/– 40 to 125°C
operating temperatures		Junction temperature: –40 to + 125°C	Junction temperature: – 40 to 105°C/– 40 to 130°C
Operating	voltage	1.7 to 3.6 V	1.71 to 3.6 V
Internal voltage r	eference buffer	No	Yes

^{1.} New versus STM32F427/437 and STM32F429/439.

AN5688 - Rev 2 page 16/50

5.2 Migration of system peripherals

5.2.1 Embedded flash memory (FLASH)

The following table compares the flash memory interface on the STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices.

Table 16. FLASH features

Flash memory	STM32F427/429 and STM32F437/439	STM32H573/563 and STM32H562
Main / program memory	 Up to 2 Mbytes (dual bank) 4 sectors of 16 Kbytes 1 sector of 64 Kbytes 6 sectors of 128 Kbytes 	 Up to 2 Mbytes of nonvolatile memory (dual bank) Flash memory read operations supporting multiple lengths: 128 bits, 64 bits, 32 bits, 16 bits, or one byte 8 Kbytes sector erase, bank erase and dual-bank mass erase
Features	F	Read while write (RWW)
Error code correction (ECC)	No	One error detection/correction or two error detections per 128-bit flash word using 9 ECC bits, on 16-bit words with 6 bits within configurable Flash high-cycle data area
Wait states	Up to 8 (depending on the supply voltage and frequency)	Up to 6 (depending on the supply voltage and frequency)
One time programmable (OTP) memory	512 bytes (OTP) for user data	2 Kbytes (OTP) area
FLASH security and protections	 Read protection (RDP) Write protections Proprietary code readout protection (PCROP) 	 TrustZone[®] backed watermark and block security protection HDP protection providing temporal isolation Configuration protection Write protection Device nonvolatile security life cycle and application boot state management
		NRST_STBY
	nRST_STDBY	NRST_STOP
	nRST_STOP	IWDG_SW
	WDG_SW	WWDG_SW
	BOR_LEV	IWDG_STBY, IWDG_STOP
	BFB2	BOR_LEV
	OPTSTRT	BORH_EN
User option bytes (1)	OPTLOCK	BOOT_UBE
	DB1M	OPTSTRT
	nWRP	OPTLOCK
	RDP	WRPSG
	USER	PRODUCT_STATE
	SPRMOD	VDDIO_HSLV
		SWAP_BANK

^{1.} Refer to the "Option-byte organization" table in the Reference Manual that provides all user option bytes.

5.2.2 SRAMs

In STM32F427/437 and STM32F429/439, the control of SRAM is integrated within the SYSCFG.

The RAMCFG controller, a new peripheral available on STM32H573/563 and STM32H562, is dedicated to control SRAM1, SRAM2, SRAM3, and BKPSRAM. Refer to section *RAMs configuration controller* section in the corresponding reference manual for more details.

AN5688 - Rev 2 page 17/50

Table 17. SRAM features

Features	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Size	Up to 256 Kbytes of system SRAM including 64 Kbytes of CCM (core coupled memory) data RAM Main internal SRAM1 (112 KB) Auxiliary internal SRAM2 (16 KB) Auxiliary internal SRAM3 (64 KB) Kbytes of backup SRAM	Up to 644 Kbytes: 256-Kbyte SRAM1 64-Kbyte SRAM2 320-Kbyte SRAM3 4-Kbyte BKPSRAM
Access by DMA and CPU	BKPSRAM (system bus) Bytes, half-words (16 bits), or full words (32 bits) possible access	Bytes, half-words (16 bits), or full words (32 bits) possible access
CPU access	System bus or I-Code/D-ode buses BKPSRAM (system bus)	System bus or C-bus BKPSRAM (only system bus)
Retention		BKPSRAM: Optional retention in Standby mode Optional retention in VBAT mode
Security	NA	When the TrustZone® security is enabled, all SRAMs are secure after reset The SRAMs can be programmed as nonsecure, using the MPCBB with a block granularity of 512 bytes
Hardware and software erase conditions	The backup SRAM is not mass erased by a tamper event Backup SRAM is only erased when the RDP changes from level 1 to 0	SRAM1 and SRAM2 erase can be requested by executing a specific software sequence, detailed in section <i>RAMCFG</i> of the product reference manual SRAM2 and optionally backup SRAM are protected by the tamper detection circuit, and is erased by hardware in case of tamper detection SRAM2 is deleted in case of regression
System reset erase	NA	SRAM2 can be erased with a system reset using the option bit SRAM2_RST option bit in the Flash memory user option bytes SRAM1 and SRAM3 are erased when a system reset occurs if the SRAM13_RST option bit is selected in the Flash memory user option bytes
Error detection and correction	NA	 Single error detection and correction with interrupt generation Double error detection with interrupt or NMI generation The ECC is supported by SRAM2, SRAM3, and BKPSRAM when enabled with the SRAM2_ECC, SRAM3_ECC, and BKPRAM_ECC user option bits ECC: 7 bits are added per 32 bits Interrupts are generated when single- and/or double-ECC errors are detected: Two ECC RAMCFG interrupts One ECC NMI interrupt
Write protection	NA	SRAM2 can be write-protected with a page granularity of 1 Kbyte Each 1-Kbyte page can be write-protected by setting its corresponding PxWP (x = 0 to 63) bit in RAMCFG registers
Read access latency	NA	3-bit programmable wait-states depending on AHB clock frequency (HCLK) and voltage scaling range

AN5688 - Rev 2 page 18/50

5.2.3 System configuration controller

The table below illustrates the system configuration controller (SYSCFG) main differences between STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices.

Note:

For STM32H5 series, the SYSCFG (system configuration controller) is integrated in the SBS (system configuration, boot, and security).

Table 18. System configuration features

ST	M32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
•	Managing the I/O compensation ce Select the Ethernet PHY interface	
	Remap the memory accessible in the code area Manage the external interrupt line connection to the GPIOs	NA
	NA	 Enabling/disabling the FMP high-drive mode of some I/Os and voltage booster for I/O analog switches Configuring TrustZone[®] security register access Tracking the PVT conditions to control the current slew-rate and output impedance in I/O buffer through compensations cells Two compensation cells are embedded, one for the I/Os supplied by VDDIO power rail and one for the I/Os supplied by VDDIO2 power rail

5.2.4 Instruction and data caches (ICACHE/DCACHE)

The STM32H573/563 and STM32H562 embed an ICACHE (8 Kbytes) and a DCACHE (4 Kbytes) that allows more efficient use of the external memory through OCTOSPI and FMC ports.

The STM32F427/437 and STM32F429/439 devices do not embed these caches.

5.2.5 Direct memory access controller (DMA)

The STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 have different DMA architecture and features.

All devices embed two DMA controllers:

- DMA1 (8 channels) and DMA2 (8 channels) for STM32F427/437 and STM32F429/439
 Each channel is dedicated to manage the memory access requests from one or more peripherals. The devices embed also an arbiter for handling the priorities among the DMA requests
- GPDMA1 (8 channels) and GPDMA2 (8 channels) for STM32H573/563 and STM32H562
 Each GPDMA instance has the same channel-based implementation and is connected to the same requests and triggers

STM32F427/437 and STM32F429/439 embed also a Chrom-ART Accelerator (DMA2D) that is a specialized DMA dedicated to image manipulation. The following table illustrates the main differences between DMA requests in STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562.

AN5688 - Rev 2 page 19/50

Table '	19.	DMA	features
---------	-----	-----	----------

Peripherals	STM32F427/437 and	nd STM32F429/439 STM32H573/563 and ST		and STM32H562
reliplietais	DMA1	DMA2	GDMA1	GDMA2
Architecture	Each instance of I	DMA controllers can acce	ss memory and per	ripherals
Number of instances	1	1	1	1
Number of masters	Dual AHB master bus	Dual AHB master bus	AHB master bus Dual bidirectional AHB maste	
Number of channels	8	8	8	8
TrustZone [®] security				
Privileged/unprivileged DMA	NA		Yes	
Linked-List				

5.2.6 Reset and clock control (RCC)

The table below presents the main differences related to the RCC (reset and clock controller) between the STM32F427/437, STM32F429/439, STM32H573/563 and STM32H562 devices.

Table 20. RCC features

RCC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562		
HSI	16 MHz RC oscillator	64 MHz RC oscillator		
		CSI: low-power RC oscillator that can be used directly as system clock, peripheral clock, or PLL input:		
		low-cost clock source since no external crystal is required		
CSI	NA	faster startup time than HSI (a few microseconds)		
		very low-power consumption.		
		The CSI provides a clock frequency of about 4 MHz.		
HSI48	NA	48 MHz RC oscillator		
113140	NA.	HSI48 can drive USB and RNG.		
LSI		32 kHz RC		
Loi	Lower cons	consumption, higher accuracy		
HSE	From 4 to 26 MHz	From 4 to 50 MHz		
LSE	32.768 kHz	32.768 kHz		
LSE	32.700 KTZ	Configurable drive/consumption		
PLL	Three PLLs: PLLI2S and PLLSAI generate an accurate clock A main PLL (PLL) clocked by the HSE or HSI oscillator and featuring two different output clocks: One output generates the high-speed system clock (up to 180 MHz) One output for USB OTG FS, RNG, and SDIO	Three PLLs: Main PLL (PLL1) provides clocks for CPU and some peripherals PLL2 and PLL3 generate the kernel clock for peripherals Each PLL offers three outputs with postdividers. Input frequency range: 2 to 16 MHz for the VCO in wide-range mode 1 to 2 MHz for the VCO in low-range mode		
AHB frequency	Up to 180 MHz	Up to 250 MHz		
APB1 frequency	Up to 45 MHz	Up to 250 MHz		
APB2 frequency	Up to 90 MHz	Up to 250 MHz		

AN5688 - Rev 2 page 20/50

RCC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
RTC clock source	LSE, LSI, or HSE/ 32		
Kernel clock	NA	Independent kernel clock for each IP, allowing frequency scaling without impact on communication interfaces	
System clock source	HSI, HSE, or PLL	HSI, CSI, HSE, or PLL1	
Clock security system	CSS on HSE	CSS on HSE CSS on LSE	
MCO clock source	 MCO1 pin (PA8): HSI, LSE, HSE, or PLL MCO2 pin (PC9): HSE, PLL, SYSCLK, or PLLI2S 	MCO1 pin (PA8): HSI,LSE,HSE, PLL1 or HSI48 MCO2 pin (PC9): SYSCLK, PLL2, HSE, PLL1,CSI, or LSI	

Peripheral clock configuration

The peripherals presented below have a dedicated clock source, that is used to generate the clock required for their operation. This section presents the difference between STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices, for peripherals with different clock sources.

Table 21. Peripherals with different clock sources

Peripherals	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
		pll1_q_ck
	PLLI2S_Q	pll2_p_ck
SAI	PLLSAI_Q	pll3_p_ck
	External clock mapped on the I2S_CKIN pin	AUDIOCLK
		per_ck
		rcc_pclk1 ⁽¹⁾
		rcc_pclk2 ⁽²⁾
		pll2_q_ck
U(S)ART	APB1 or APB2 clock (PCLK1 or PCLK2)	pll3_q_ck
		hsi_ker_ck
		csi_ker_ck
		lse_ck
	APB1 clock (PCLK1)	rcc_pclk1 ⁽³⁾
I2Cs		rcc_pclk3 ⁽⁴⁾
1205		pll3_r_ck
		hsi_ker_ck
		rcc_pclk2 ⁽⁵⁾
		rcc_pclk3 ⁽⁶⁾
		pll2_q_ck ⁽⁷⁾
		pll3_q_ck ⁽⁷⁾
SPI	APB clock (PCLK)	hsi_ker_ck ⁽⁷⁾
		hse_ck ⁽⁷⁾
		csi_ker_ck ⁽⁷⁾
		pll1_q_ck ⁽⁸⁾
		pll2_p_ck ⁽⁸⁾

AN5688 - Rev 2 page 21/50

Peripherals	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
		pll3_p_ck ⁽⁸⁾	
		AUDIOCLK ⁽⁸⁾	
		per_ck ⁽⁸⁾	
		pll1_q_ck	
	PLLI2S	pll2_p_ck	
128	External clock mapped on I2S_CKIN pin	pll3_p_ck	
	External clock mapped on 123_CKIN pin	AUDIOCLK	
		per_ck	
		hse_ck	
CAN	APB clock (PCLK)	pll1_q_ck	
		pll2_q_ck	
		rcc_hclk	
	APB2 clock (PCLK2)	sys_ck	
		pll2_r_ck	
ADC		hse_ck	
		hsi_ker_ck	
		csi_ker_ck	
		hsi48_ker_ck	
USB FS		pll1_q_ck	
		pll3_q_ck	
	PLL 48 MHz derived from main PLL VCO (PLLQ clock)	hsi48_ker_ck	
RNG		pll1_q_ck	
KNG		lse_ck	
		lsi_ker_ck	
	SDIO/SDMMC1:	SDMMCx (x= 1,2):	
SDMMC	PLL48CLK	pll1_q_ck	
	PLL40GLN	pll2_r_ck	
IWDG	LSI		

- 1. Only for UARTx (x=4,5,7,8,9,12) and USARTx (x=2,3,6,10,11).
- 2. Only for USART1.
- 3. Only for I2Cx (x=1,2).
- 4. Only for I2Cx (x=3,4).
- 5. Only for SPIx (x=4,6).
- 6. Only for SPI5.
- 7. Only for SPIx (x=4,5,6).
- 8. Only for SPIx (x=1,2,3).

5.2.7 Power (PWR)

The table below presents the PWR controller differences between STM32F427/437, STM32F429/439 devices, and STM32H573/563 and STM32H562 devices. Both dynamic and static power-consumption were optimized for the STM32H573/563 and STM32H562 devices.

AN5688 - Rev 2 page 22/50

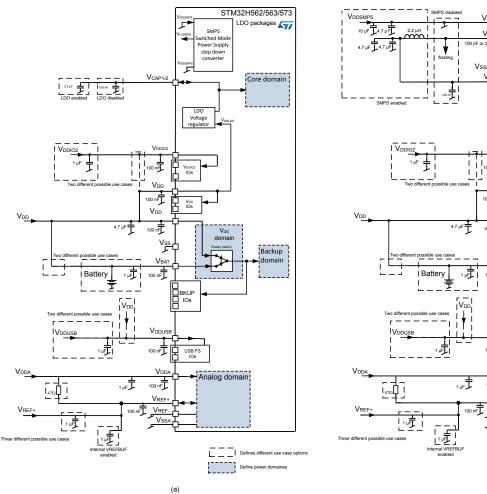
Table 22. PWR features

PWR	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
	VDD = 1.7 to 3.6 V: external power supply for I/Os and the internal regulator (when enabled), provided externally through VDD pins	VDD = 1.71 V to 3.6 V: external power supply for the I/Os, the internal regulator and the system analog such as reset, power management and internal clocks. It is provided externally through the VDD pins.	
	VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, DAC, reset blocks, RCs, and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively.	VDDA = 1.62 V ADCs / 1.8 V (DAC), 2.1 V (VREFBUF) to 3.6 V external analog power supply for A/D converters, D/A converters, and voltage reference buffer. The VDDA voltage level is independent from the VDD voltage.	
	V12: voltage source through VCAP_1 and VCAP_2 pins/ around 1.2 V	VCAP = 1.0 V to 1.35 V: power supply for digital peripherals, SRAMs (except BKPSRAM), and embedded flash memory	
	VBAT = 1.65 to 3.6 V:		
Power supplies	when VDD is not present, VBAT is power supply for RTC, external clock 32 kHz oscillator, and backup registers	VBAT = 1.2 V to 3.6 V: when VDD is not present, VBAT is the power supply for RTC, external clock 32 kHz oscillator, backup registers, and optionally backup SRAM	
		(1)(2)	
	NA	VDDSMPS = 1.71 V to 3.6 V: external power supply for the SMPS step- down converter. It is provided externally through VDDSMPS supply pin and must be connected to the same supply as VDD pin.	
		VLXSMPS is the switched SMPS step-down converter output	
		An external coil with typical value of 2.2 μH to be connected between the dedicated VLXSMPS pin to VSSSMPS, via a capacitor of 10 μF VSSSMPS is an isolated supply ground.	
	NA	VDDUSB = 3.0 V to 3.6 V: external independent power supply for USB transceivers	
		The VDDUSB voltage level is independent from the VDD voltage.	
	NA	VDDIO2 = 1.08 V to 3.6 V: external power supply for 10 I/Os (PD6, PD7, PG9:14, PB8, PB9).	
		This voltage is independent from the VDD voltage.	
	RTC with backup registers LSE		
Battery	Backup SRAM when the low-	RTC with backup registers (128 bytes) LSE	
backup domain	power backup regulator is enabled.	PC13 to PC15 I/Os plus PI8 I/O (when available)	
	PC13 to PC15 I/Os, plus PI8 I/O (when available)		
	POR, PDR, BOR, PVD		
Power supply supervisor		AVD	
Super visor	NA	Backup domain voltage and temperature monitoring	
Sleep mode wake-up sources		Any peripheral interrupt/wakeup event	
	WKUP pin PA0 on rising edge		
Standby mode, wake- up sources	RTC event (RTC ALARM, Tamper event, Time stamp event)	WKUPx pin edge, RTC event, external reset in NRST pin, IWDG reset, BOR reset	
	IWDG reset		

AN5688 - Rev 2 page 23/50

PWR	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
	External reset in NRST pin		
Stop mode, wake-up sources	Any EXTI line (configured in the EXTI registers, internal and external lines)	Any EXTI line (configured in the EXTI registers) Specific peripherals events	
Wakeup system clock	Stop: HSI RC oscillator	Stop: CSI when STOPWUCK = 1 in RCC_CFGR HSI with the frequency before entering the Stop mode, up to 64 MHz, when STOPWUCK Standby: HSI clock at 64 MHz	
	Sleep mode	Sleep mode	
Low-power modes	Stop mode	Stop mode: To further optimize the power consumption, the unused RAMs can be totall or partially Shut-off.	
	Standby mode	Standby mode	

- Supply for the SMPS power stage (available on SMPS packages)/The SMPS power supply pins are available only on a specific package with SMPS step-down converter option.
- 2. VDDSMPS, VLXSMPS only available for STM32H563/H573 devices.


The STM32H573/563 and STM32H562 devices embed two regulators: one LDO or one SMPS to provide the VCORE supply for digital peripherals, SRAMs (except BKPSRAM), and embedded flash memory. These regulators can provide four different voltages (voltage scaling) and can operate in Stop modes. Depending on the package configuration (SMPS or LDO), the regulator is selected by hardware. SMPS and LDO regulator are exclusively selected.

The following figures present the power supply for the STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices. The differences are summarized in the previous table.

AN5688 - Rev 2 page 24/50

Figure 7. STM32H573/563 and STM32H562 power supply overview with (a) LDO (b) SMPS

VDDSMPS

SMPS desabled

VDDSMPS

SMPS packages

SMP

(b)

AN5688 - Rev 2 page 25/50

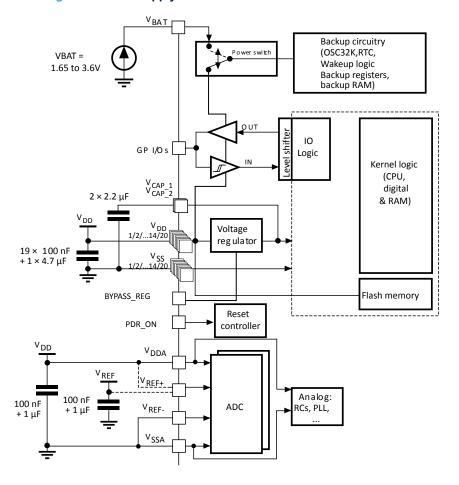


Figure 8. Power supply overview for STM32F42xxx and STM32F43xxx

5.2.8 General-purpose I/Os (GPIO)

STM32H573/563 and STM32H562 implement the same GPIO features than STM32F427/437, STM32F429/439, but with main differences.

For STM32H573/563 and STM32H562, each GPIO port has four 32-bit configuration registers (GPIOx_MODER, GPIOx_OTYPER, GPIOx_OSPEEDR and GPIOx_PUPDR), two 32-bit data registers (GPIOx_IDR and GPIOx_ODR), a 16 bits reset register (GPIOx_BRR) and a 32-bit set/reset register (GPIOx_BSRR).

In addition, all GPIOs have a 32-bit locking register (GPIOx_LCKR), two 32-bit alternate function selection registers (GPIOx_AFRH and GPIOx_AFRL), a secure configuration register (GPIOx_SECCFGR) and a high-speed low-voltage register (GPIOx_HSLVR).

Each general-purpose I/O pin of GPIO port in STM32H573/563 and STM32H562 can be individually configured as secure through the GPIOx_SECCFGR register. After reset, all GPIO ports are secure.

All GPIO registers can be read and written by privileged and unprivileged accesses, whatever the security state secure or nonsecure.

- Additional TrustZone® security support.
 The TrustZone® security is activated by the TZEN option byte in the Flash Option Byte register. When the TrustZone® is active (TZEN = 0xB4), each I/O pin of GPIO port can be individually configured as secure through the GPIOx_SECCFGR register.
- I/Os state retention during Standby mode.
 In the Standby mode, the I/Os in STM32H573/563 and STM32H562 are by default in floating state. If the IORETEN bit in the PWR_IORETR register is set, the I/Os state is sampled during standby entry. The state of I/Os is applied to the pin via pull-up and pull-down resistors. The pull-up and pull-down resistors remains applied after Standby wake-up until software clears the IORETEN bit in the PWR_IORETR register.

AN5688 - Rev 2 page 26/50

High-speed low-voltage mode (HSLV)
 Some I/Os have the capability to increase their maximum speed at low voltage by configuring them in
 HSLV mode. The I/O HSLV bit controls whether the I/O output speed is optimized to operate at 3.3 V
 (default setting) or at 1.8 V (HSLV = 1).

For more information about the STM32H573/563 and STM32H562 GPIO and TrustZone[®] security, refer to the *General-purpose I/Os (GPIO)* section of the reference manual and to the product datasheet for detailed description of the pinout and alternate function mapping.

5.2.9 Extended interrupt and event controller (EXTI)

5.2.9.1 EXTI main features in STM32H573/563 and STM32H562

The extended interrupts and event controller (EXTI) manages the individual CPU and system wakeup through configurable event inputs. It provides wakeup requests to the power control and generates an interrupt request to the CPU NVIC and events to the CPU event input. For the CPU, an additional event generation block (EVG) is needed to generate the CPU event signal.

The STM32H573/563 and STM32H562 feature TrustZone[®] security support and privileged/unprivileged mode selection and do not feature direct event inputs.

EXTI security protection

When security is enabled for an input event, the associated input event configuration and control bits can only be modified and read by a secure access. A nonsecure write access is discarded and a read returns 0.

EXTI privilege protection

When privilege is enabled for an input event, the associated input event configuration and control bits can only be modified and read by a privileged access. An unprivileged write access is discarded and a read returns 0.

The table below describes the difference of EXTI features between STM32F427/437, STM32F429/439 devices, and STM32H573/563 and STM32H562 devices.

EXTI	STM32F427/437 and STM32F429/439		STM32H573/563 and STM32H562
Features	Generation of up to 23 software event/interrupt requests	•	58 input events supported TrustZone [®] support Privileged/unprivileged mode

Table 23. EXTI features

5.2.9.2 EXTI block diagram in STM32H573/563 and STM32H562

As shown in the figure below, the EXTI consists of

- a register block accessed via an AHB interface
- an event input trigger block
- a masking block, and EXTI mux as shown in the figure below.

The register block contains all the EXTI registers. The event input trigger block provides event input edge trigger logic.

AN5688 - Rev 2 page 27/50

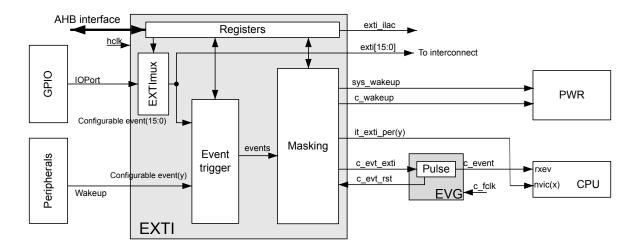


Figure 9. EXTI block diagram on STM32H573/563 and STM32H562

The table below presents the EXTI line differences between STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices.

Table 24. EXTI line differences

EXTI line	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
0-15	16 external interrupt lines	GPIO
16	PVD output	PVD/AVD output
17	RTC alarm event	RTC nonsecure
18	USB OTG FS wakeup event	RTC secure
19	Ethernet wakeup event	TAMP nonsecure
20	USB OTG HS (configured in FS) wakeup event	TAMP secure
21	RTC tamper and TimeStamp events.	I2C1 wakeup
22	RTC wakeup event	I2C2 wakeup
23		I2C3 wakeup
24		I3C wakeup
25		USART1 wakeup
26		USART2 wakeup
27		USART3 wakeup
28		UART4 wakeup
29		UART5 wakeup
30		USART6 wakeup
31	NA	UART7 wakeup
32		UART8 wakeup
33		UART9 wakeup
34		USART10 wakeup
35		USART11 wakeup
36		UART12 wakeup
37		LPUART1 wakeup
38		LPTIM1

AN5688 - Rev 2 page 28/50

EXTI line	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
39		LPTIM2
40		SPI1 wakeup
41		SPI2 wakeup
42	NA	SPI3 wakeup
43		SPI4 wakeup
44		SPI5 wakeup
45		SPI6 wakeup
46		ETH wakeup
47		USB FS wakeup
48		USBPD1 wakeup
49		LPTIM2 CH1
50		DTS wakeup
51	No.	HDMI-CEC wakeup
52	NA NA	I2C4 wakeup
53		UVM output
54		LPTIM3
55		LPTIM4
56		LPTIM5
57		LPTIM6

5.2.10 CRC calculation unit

The table below presents the CRC differences between the STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562 devices.

Table 25. CRC features

CRC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
	 Uses CRC-32 (Ethernet) polynomial Single input/output 32-bit data register CRC computation done in 4 AHB clock cycles (HCLK) for the 32-bit data size General-purpose 8-bit register (can be used for temporary storage) 		
Features	Handles 32-bit data size	 Handles 8-,16-, 32-bit data size fully programmable polynomial with programmable size (7, 8, 16, 32 bits) Programmable CRC initial value Input buffer to avoid bus stall during calculation Reversibility option on I/O data Accessed through AHB slave peripheral by 32-bit words only, with the exception of CRC_DR register that can be accessed by words, right-aligned half-words and right-aligned bytes 	
	CRC data register (CRC_DR)		
CRC	CRC independent data register (CRC_IDR) CRC control register (CRC_CR)		
registers	CRC register map		
	_	CRC initial value (CRC_INIT)	
	_	CRC polynomial (CRC_POL)	

AN5688 - Rev 2 page 29/50

5.3 Migration of security peripherals

5.3.1 Random number generator (RNG)

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. The table below presents the RNG features of STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439.

Table 26. RNG features

RNG	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
Features	 RNG delivers 32-bit random numbers 40 periods of the RNG_CLK clock signal between two consecutive random numbers RNG passed the FIPS PUB 140-2 tests with a success ratio of 99% Monitoring of the RNG entropy to flag abnormal behavior 	 RNG delivers 32-bit true random numbers Can be used as entropy source to construct a non-deterministic random bit generator (NDRBG) Tested using German BSI statistical tests of AIS-31 (T0 to T8) Embeds start-up and NIST SP800-90B approved continuous health tests AHB slave peripheral, accessible through 32-bit word single accesses only RNG internal tamper event signal to TAMP Can be enabled with an automatic low-power mode (default configuration) 	
	Can be disabled to reduce power consumption		

In STM32H573/563 and STM32H562, the RNG is transparently used by SAES and PKA.

When an unexpected error is found by the RNG an internal tamper event is triggered in TAMP peripheral, and the RNG stops delivering random data. When this event occurs, secure application needs to reset the RNG peripheral either using the central reset management or the global SoC reset. Then a proper initialization of the RNG is required, again.

5.3.2 Hash processor (HASH)

The following table illustrates the differences between HASH features in STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562.

AN5688 - Rev 2 page 30/50

Table 27. HASH features

HASH	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
	 Secure HASH algorithm (SHA-1, SHA-224, SHA-256) MD5 (message-digest algorithm 5) hash algorithm HMAC (keyed-hash message authentication code) 	Secure HASH algorithm (SHA-1, SHA-2 family) HMAC (keyed-hash message authentication code) algorithm	
	 FIPS PUB 180-2 Secure HASH standard specifications (SHA-1, SHA-224 and SHA-256) IETF RFC 1321 (internet engineering task force request for comments number 1321) specifications (MD5) 	 FIPS PUB 180-4 Secure HASH standard (SHA-1 and SHA-2 family) FIPS PUB 186-4, digital signature standard (DSS) Internet engineering task force (IETF) request for comments RFC 2104, 	
Features	Fast computation of SHA-1, SHA-224 and SHA-256, and MD5 (SHA-224 and SHA-256 are available on STM32F43xxx only)	Fast computation of SHA-1, SHA2-224, SHA2-256, SHA2-384, and SHA2-512	
	8x 32-bit words (H0 to H7) on STM32F43xxx for output message digest	8x 32-bit words (H0 to H15) for output message digest	
	32-bit data words for input data, supporting word, half- word, byte and bit bit-string representations, with little- endian data representation only	Single 32-bit, write-only, input register associated to an internal input FIFO, corresponding to a 64-byte block size (16 x 32 bits)	
	Automatic data flow control supporting direct memory access (DMA)	 Automatic data flow control supporting direct memory access (DMA) Support for both single and fixed DMA burst transfers of four words 	
	 AHB slave peripheral Corresponding 32-bit words of the digest from consecutive message blocks are added to each other to for the digest of the whole message Automatic padding to complete the input bit string 		

5.3.3 On-the-fly decryption engine (OTFDEC)

The OTFDEC decrypts in real-time the encrypted content stored in the external OCTOSPI memories used in Memory-mapped mode. The OTFDEC uses the AES-128 algorithm in counter mode (CTR).

The STM32H573/563 and STM32H562 embed one OTFDEC peripheral. While in STM32F427/437 and STM32F429/439, this peripheral is not supported.

5.3.4 Public key accelerator (PKA)

The STM32H573/563 and STM32H562 devices embed one PKA peripheral intended for the computation of cryptographic public key primitives within the Montgomery domain.

All needed computations are performed within the accelerator, so no further hardware/software elaboration is needed to process the inputs or the outputs.

The STM32F427/437 and STM32F429/439 devices do not support a PKA peripheral.

5.3.5 AES and SAES hardware accelerators

The STM32H573/563 and STM32H562 embed two AES accelerators: one secure AES (SAES) and a faster AES. The SAES is a new feature in STM32H573/563 and STM32H562. The AES is replacing the cryptographic processor (CRYP) that is available in STM32F427/429 and STM32F437/439 devices.

In STM32H573/563 and STM32H562, the SAES with hardware-unique key embeds protection against differential power analysis (DPA) and related side channel attacks.

When an unexpected hardware fault occurs, an output tamper event is triggered, and the AES automatically clears key registers. A reset is required for the AES to be usable again.

AN5688 - Rev 2 page 31/50

The AES peripheral can use the SAES peripheral as security coprocessor. In this case, the secure application performs two actions:

- prepares the key in the robust SAES peripheral
- when they key is ready, the AES can load this prepared key through a dedicated hardware key bus.

5.3.6 Global TrustZone controller (GTZC)

The security architecture of STM32H573/563 and STM32H562 is based on Arm® TrustZone® with the Armv8-M mainline extension.

Each GPIO or peripheral, DMA channel, clock configuration register, DCACHE/ICACHE, or small part of Flash memory or SRAM can be configured as trusted or untrusted.

The GTZC embedded in the STM32H573/563 and STM32H562 is used to configure secure TrustZone[®] and privileged attributes within the full system. All details about GTZC are described in the product reference manual. This controller is a new feature of STM32H573/563 and STM32H562 and is not embedded in STM32F427/437

5.4 Migration of communication peripherals

5.4.1 Serial peripheral interface (SPI)

and STM32F429/439.

This section highlights the SPI features⁽¹⁾ implemented on STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices.

Table 28. SPI features

SPI	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562		
Instances	6x SPIs	6x SPIs		
Speed	Up to 45 Mbit/s	Max 50 Mbps		
Features	SPI + I2S			
i catules	2 with muxed full-duplex	Including 3 muxed with full-duplex I2S		
Full-duplex synchronous transfer on three lines	X	X		
Half-duplex	X	X		
Simplex synchronous transfer on two lines	With or without a bidirectional data line	With unidirectional data line		
Data size	8- or 16-bit transfer frame format selection	From 4-bit up to 32-bit data size selection or fixed to multiply of 8-bit		
Multimaster mode capability	X	X		
Baudrate prescalers	8 master mode baud rate prescalers (fPCLK/2 max.)	Baud rate prescaler up to kernel frequency/2 or bypass from RCC in master mode		
Protection of configuration and settings	NA	X		
Slave select (SS) management	NSS management by hardware or software for both master and slave: dynamic change of master/slave operations	Hardware or software management of SS for both master and slave		
Configurable SS signal polarity and timing	NA	Configurable SS signal polarity and timing, MISO x MOSI swap capability		
Programmable transaction data	NA	Programmable number of data within a transaction to control SS and CRC		
Programmable data order with MSB-first or LSB-first shifting	X	X		

AN5688 - Rev 2 page 32/50

SPI	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Programmable clock polarity and phase	X	X
Dedicated transmission and reception flags with interrupt capability	X	X
SPI Motorola and TI formats support	X	X
Hardware CRC feature for reliable communication: CRC value can be transmitted as last byte in Tx mode Automatic CRC error checking for last-received byte	X	X
Interrupt events and error detection with interrupt capability	Interrupts: Transmit buffer-empty flag Receive buffer not empty flag Master mode fault event Overrun error CRC error flag TI frame format error	Interrupts: TxFIFO ready to be loaded Data received in RxFIFO Both TXP and RXP active Transmission transfer filled Overrun error Underrun error TI frame format error CRC error Mode fault End of transfer Master mode suspended TxFIFO transmission complete All the interrupt events are capable to wakeup system from Sleep mode at each instance
Configurable behavior at slave- underrun condition	NA	X (support of cascaded circular buffers)
FIFOs	NA	 Two multiply of 8-bit embedded Rx and Tx FIFOs (FIFO size depends on instance) Configurable FIFO thresholds (data packing)
RDY status pin	NA	Optional status pin RDY signalizing the slave device ready to handle the data flow

^{1.} X = available, NA = not available.

5.4.2 Inter-integrated circuit (I2C)

The STM32H573/563 and STM32H562 devices implement the same I2C features than the STM32F427/437 and STM32F429/439 devices but with some enhancements. The main differences are stated in the table below.

AN5688 - Rev 2 page 33/50

Table 29. I2C differences

I2C	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Instances	x3 (I2C1, I2C2, I2C3)	x4(I2C1, I2C2, I2C3, and I2C4)
Features	 7-bit and 10-bit addressing mode SMBus/PMBus Standard mode (up to 100 kbit/s) Fast mode (up to 400 kbit/s) 	
	Single clock source	 Fast-mode plus (up to 1 MHz) I2C bus Wakeup from stop mode only (no autonomous mode) Independent clock

5.4.3 Improved inter-integrated circuit (I3C)

The STM32H573/563 and STM32H562 devices implement a new feature compared to the STM32F427/437 and STM32F429/439 devices, which is the I3C peripherals.

5.4.4 Universal synchronous/asynchronous receiver transmitter (USART)

The STM32H573/563 and STM32H562 devices implement several new features on the U(S)ART compared to the STM32F427/437 and STM32F429/439 devices. The following table shows the U(S)ART differences.

Table 30. U(S)ART features

USART	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
Instances	4 USARTs 4 UARTs	6 USARTs6 UARTsLPUART	
Baud rate	Up to 4x 11.25 Mbit/s	Depends on the frequency (oversampling by 16 or by 8) ⁽¹⁾	
Clock	Single clock domain	Dual clock domain and Wakeup from low-power mode	
Data	Word length: programmable (8 or 9 bits)	 Word length: programmable (7, 8 or 9 bits) Programmable data order with MSB-first or LSB-first shifting 	
Interrupt	10 interrupt sources with flags	23 interrupt sources with flags	
Others features	Hardware flow control (CTS/RTS)	RS232 hardware flow controlRS485 hardware control mode	
	 LIN mode IrDA SIR encoder block Continuous communication using DMA Multiprocessor communications Single-wire half-duplex communication 		
	NA	 Modbus communication: Timeout feature, CR/LF character recognition Two internal FIFOs for transmit and receive data Receiver timeout interrupt (except LPUART) Auto baud rate detection (except LPUART) Driver enable Swappable Tx/Rx pin configuration Wakeup from Stop mode 	
	 Smartcard mode: has to be implemented by software Number of stop bits: 0.5, 1, 1.5, 2 	 Smartcard mode : Support the T=0 and T=1 asynchronous protocols Number of stop bits: 0.5, 1, 1.5, 2 	

^{1.} Refer to the USART section in the reference manual.

AN5688 - Rev 2 page 34/50

5.4.5 Serial audio interface (SAI)

The SAI offers a wide set of audio protocols due to its flexibility and wide range of configurations⁽¹⁾. Many stereo or mono audio applications may be targeted (such as I2S standards, LSB- or MSB-justified, PCM/DSP, TDM, and AC'97 protocols).

Table 31. SAI features

SAI	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Instances	SAI1	SAI1 and SAI2
I2S, LSB or MSB-justified, PCM/DSP, TDM, AC'97	Same features on all available instances	
Mute mode		
Stereo/mono audio frame capability		
16 slots with configurable size		
Data size configurable : 8-, 10-, 16-, 20-, 24-, 32-bit		
FIFO size	8 words	
SPDIF	-	X
PDM	-	Available only on SAI1

^{1. &#}x27;X' = supported, '-' = not supported.

5.4.6 Digital camera interface (DCMI)

The DCMI is available on STM32F427/437, STM32F429/439, and STM32H573/563 and STM32H562 devices.

The DCMI main features are the following:

- 8-, 10-, 12-, or 14-bit parallel interface
- Embedded/external line and frame synchronization
- · Continuous or snapshot mode
- Crop feature

Data formats supported:

- 8-, 10-, 12-, and 14-bit progressive video (either monochrome or raw Bayer)
- YCbCr 4:2:2 progressive video
- RGB 565 progressive video
- Compressed data JPEG

5.4.7 Parallel synchronous slave interface (PSSI)

The PSSI is only available on STM32H573/563 and STM32H562 devices.

DCMI and PSSI use the same circuitry and then, when they are both implemented on a device, they cannot be used at the same time: when using the PSSI, DCMI registers cannot be accessed, and vice-versa. In addition, PSSI and DCMI share the same alternate functions and interrupt vector.

The PSSI peripheral main features are listed below:

- Slave mode operation
- 8- or 16-bit parallel data input or output
- 8-word (32-byte)
- Data enable (PSSI_DE) alternate function input and ready (PSSI_RDY) alternate function output.

5.4.8 Controller area network (CAN)

The main differences related to CAN between STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562 are presented in the table below.

AN5688 - Rev 2 page 35/50

Table 32. CAN features

CAN	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
Instances	x2	x2 FDCAN (only 1x FDCAN on STM32H562)
Features	 Supports CAN protocol version 2.0 A, B Active Bit rates up to 1 Mbit/s Supports the time triggered communication option Tx :3 transmit mailboxes, configurable transmit priority, time stamp on SOF transmission Rx:2 receive FIFOs with three stages, scalable filter banks, identifier list feature, configurable FIFO overrun, time stamp on SOF reception Time-triggered communication option: disable automatic retransmission mode, 16-bit free running timer, time stamp sent in last two data bytes Management: Maskable interrupts Software-efficient mailbox mapping at a unique address space Dual CAN: CAN1: master bxCAN for managing the communication between a slave bxCAN and the 512-byte SRAM memory CAN2: slave bxCAN, with no direct access to the SRAM memory 	 Conform with CAN protocol version 2.0-part A, B and ISO 11898-1: 2015, -4 CAN FD with maximum 64 data bytes supported CAN error logging AUTOSAR and J1939 support Improved acceptance filtering Two receive FIFOs of three payloads each (up to 64 bytes per payload) Separate signaling on reception of high priority messages Configurable transmit FIFO / queue of three payload (up to 64 bytes per payload) Transmit event FIFO Programmable loop-back test mode Maskable module interrupts Two clock domains: APB bus interface and CAN core kernel clock Power down support

5.4.9 Universal serial-bus interface (USB)

The STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562 devices have different USB peripherals:

- The STM32F427/437 and STM32F429/439 devices implement an USB FS only instead of an USB OTG FS
- The STM32H573/563 and STM32H562 devices implement an USB FS and USB Type-C[®] connector/USB power delivery interface (UCPD)

Most features supported by the STM32F427/437 and STM32F429/439 devices are also supported by the STM32H5 Series. The main USB differences between the STM32F427/437 and STM32F429/439 and STM32H573/563 and STM32H562 devices are listed in the table below.

AN5688 - Rev 2 page 36/50

Table 33. USB differences

USB	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562
	Full support for the USB on-the-go (USB OTG FS)	USB FS with clock recovery
General	FS mode: One bidirectional control endpoint Three IN endpoints (bulk, interrupt, isochronous) Three OUT endpoints (bulk, interrupt, isochronous) HS mode: 6 bidirectional endpoints (including EP0) 12 host mode channels	Up to 8 bidirectional endpoints
	USB internal connect/disconnect feature with an internal pull-up resistor on the USB D + (USB_DP) line	USB connect / disconnect capability (controllable embedded pull-up resistor on USB_DP line)
	NA	Battery charging detection (BCD) support for device
		Independent VDDUSB power supply
Buffer memory	FS mode: 1.25-Kbyte data FIFOs Management of up to 4 Tx FIFOs (one for each IN end point) + one Rx FIFO HS mode: 4 Kbytes of total RAM	2048 bytes of dedicated packet buffer memory SRAM
Low-power modes	FS mode: USB suspend and resume HS mode: No LPM supported	USB revision 2.0 including link power management (LPM) support

5.5 Migration of analog peripherals

5.5.1 Analog-to-digital converter (ADC)

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 embed:

- Two ADCs: ADC1 and ADC2 for STM32H573/563 and STM32H562, both consist of a 12-bit successive approximation ADC that are tightly coupled and can operate in dual mode (ADC1 is master).
- Three ADCs: ADC1, ADC2 and ADC3 (12-bit resolution) for STM32F427/437 and STM32F429/439.

AN5688 - Rev 2 page 37/50

Table 34. ADC differences between devices

ADC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
Instances	х3	x2	
Resolution		12-bit	
Number of channels	16 / 24	20 / 20	
Configurable resolution	12	P-bit, 10-bit, 8-bit or 6-bit	
Maximum sampling speed	2.4 MSPS 7.2 MSPS in triple interleaved mode 5 MSPS		
Conversion modes	 Single Continuous Scan Discontinuous Dual mode 		
DMA support	Yes		
Data register		16-bit data register	
Analog watchdog feature	This feature allows the application to de	stect if the input voltage goes outside the user-defined high or low threshold	
ADC input range:	VREF-≤ VIN ≤ VREF+	VSSA ≤ VIN ≤ VREF+	
New features	NA ADC conversion time independent from the AHB clock frequency Manage single-ended or differential inputs Low-power features Three analog watchdogs per ADC Self-calibration Oversampling ratio adjustable from 2 to 256 Programmable data shift up to 8 bits		

5.5.2 Digital-to-analog converter (DAC)

The STM32H573/563 and STM32H562 devices implement some enhanced DAC compared to the STM32F4 Series devices. Refer to the table below for the main DAC differences between them.

Table 35. DAC differences

DAC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
Instances	x2 with one output channel each	x1 with maximum two output channels	
Resolution	12 bits		
Output buffer	Yes		
Dual DAC channel	For independent or simultaneous conversions		
New features	NA	 Double-data DMA Buffer offset calibration Sample and hold mode for low-power operation in Stop mode 	

5.6 Migration of timer peripherals

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices include two advanced-control timers, up to ten general-purpose timers, two basic timers, two watchdog timers and two SysTick timers (one for STM32F427/437 and STM32F429/439).

Furthermore, the STM32H573/563 and STM32H562 devices include six low-power timers.

AN5688 - Rev 2 page 38/50

This section compares the features of the above listed timers and RTC in STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices.

5.6.1 Advanced-control timers (TIM1/TIM8)

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 include two advanced-control timers, TIM1 and TIM8, with almost identical features detailed in the table below.

Table 36. Advanced-control timer (TIM1/8) features

Feature	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562		
Counter resolution and type	16-bit up, down, up/down auto-reload counter			
Prescaler factor		dividing (also "on the fly") the counter clock frequency either by factor between 1 and 65536		
Channels	Up to four independent channels for: Input capture Output compare PWM generation (Edge and Center-aligned mode) One-pulse mode output	out capture thut compare vM generation (Edge and nter-aligned mode) Input capture (channels 5 and 6) Output compare PWM generation (Edge and Center-aligned mode)		
Complementary outputs	Complementary outputs with programmable dead-time			
Synchronization with external signals and general-purpose timers	 Synchronization circuit to control the timer with external signals and to interconnect several timers together The advanced-control (TIM1/TIM8) and general-purpose (TIMy) timers are completely independent, and do not share any resources 			
Repetition counter	Repetition counter to update the timer registers only after a given number of cycles of the counter			
Break inputs	One break input to put the timer's output signals in reset state or in a known state Two break inputs to put the timer's output signals in reset state or in a known state			
	Interrupt/DMA generation on the following events:			
Interrupt/DMA generation	 Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare 			
Encoders and sensors	Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes			
Trigger input	Trigger input for external clock or cycle-by-cycle current management			
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM, complementary PWM with dead-time insertion) 			

5.6.2 GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5)

The GP (general-purpose) timers consist of a 16-bit or 32-bit auto-reload counter driven by a programmable prescaler.

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices include GP timers with up, down or up/down auto-reload counter (TIM2, TIM3, TIM4 and TIM5), with identical features.

AN5688 - Rev 2 page 39/50

Table 37. GP timer (TIM2/3/4/5) features

Feature	STM32F427/437, STM32F429/439 and		
reature	STM32H573/563 and STM32H562		
32-bit resolution	TIM2 and TIM5		
16-bit resolution	TIM3 and TIM4		
Counter resolution and type	16-bit or 32-bit up, down, up/down auto-reload counter		
Prescaler factor	16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535		
Channels	Up to four independent channels for: Input capture Output compare PWM generation (Edge- and Center-aligned modes) One-pulse mode output		
Synchronization with external signals and other timers	Synchronization circuit to control the timer with external signals and to interconnect several timers		
Interrupt/DMA generation	Interrupt/DMA generation on the following events: Update: counter overflow/underflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare		
Encoders and sensors	Supports incremental (quadrature) encoder and hall-sensor circuitry for positioning purposes		
Trigger input	Trigger input for external clock or cycle-by-cycle current management		
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare and PWM) 		

5.6.3 GP timers with auto-reload up-counter

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices include 16-bit resolution GP timers with a 16-bit auto-reload up-counter:

- TIM15/TIM16/TIM17 for STM32H573/563 and STM32H562 devices
- TIM9 to TIM14 for STM32F427/437 and STM32F429/439 devices

AN5688 - Rev 2 page 40/50

Table 38. GP timer (with auto-reload up-counter) features

Feature	STM32F427/437 a	and STM32F429/439	STM32H573/563 ar	nd STM32H562
16-bit resolution	TIM10/TIM11 and TIM13/TIM14	TIM9/TIM12	TIM15	TIM16/TIM17
Counter resolution and type	16-bit auto-reload up-counter			
Prescaler factor	16-bit programmable prescaler used to divide the counter clock frequency by any factor between 1 and 65535			
	Independent channel for:	Up to two indepo	endent channels for:	One channel for:
Channels	Input captureOutput comparePWM generationOne-pulse mode	(Edge-aligned mode) output		
Complementary outputs	NA		Complementary outputs with programmable dead-time (for channel 1 only)	Complementary outputs with programmable dead-time
Break input	NA		Break input to put the timer's output signals in the reset state or a known state	
Synchronization with external circuits and other timers	NA external signals and to		uit to control the timer with interconnect several timers NA ogether	
Repetition counter		NA	Repetition counter to update the timer registers only after a given number of cycles of the counter	
	☐ Interrupt generation	on the following events:	Interrupt/DMA generation of	on the following events:
Interrupt generation	Update: counter overflow, counter initialization (by software) Input capture Output compare	Update: counter overflow, counter initialization (by software or internal trigger) Trigger event (counter start, stop, initialization or count by internal trigger) Input capture Output compare	Update: counter overflow, counter initialization (by software or internal/external trigger) Trigger event (counter start, stop, initialization or count by internal/external trigger) Input capture Output compare Break input (interrupt request)	Update: counter overflow Input capture Output compare Break input
Application examples	 Measuring the pulse lengths of input signals (input capture) Generating output waveforms (output compare, PWM). 			

5.6.4 Basic timers (TIM6/7)

The basic timers TIM6 and TIM7 consist in a 16-bit auto-reload counter driven by a programmable prescaler. These timers are completely independent, and do not share any resources.

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices have the same basic timers features.

AN5688 - Rev 2 page 41/50

Table 39. Basic timers

Feature	STM32F427/437, STM32F429/439 and	
reature	STM32H573/563 and STM32H562	
Counter resolution and type	16-bit auto-reload up-counter	
Prescaler factor	16-bit programmable prescaler used to divide (also "on the fly") the counter clock frequency by any factor between 1 and 65535	
Synchronization signals	Synchronization circuit to trigger the DAC	
Interrupt/DMA generation	Interrupt/DMA generation on the update event: counter overflow	

5.6.5 Low-power timers (LPTIM1/2/3/4)

The LPTIM is a 16-bit timer that benefits from the ultimate developments in power-consumption reduction. This is a new feature in STM32H573/563 and STM32H562, that is not available in STM32F427/437 and STM32F429/439. The next table describes LPTIM features on STM32H573/563 and STM32H562 devices.

Table 40. LPTIM features

Feature	STM32H573/563 and STM32H562	
LPTIMx	LPTIM1, LPTIM2, LPTIM3, LPTIM4, LPTIM5 and LPTIM6	
Counter resolution and type	16 bit up-counter	
Prescaler factor	3-bit prescaler with 8 possible dividing factors (1,2,4,8,16,32,64,128)	
Selectable clock	 Internal clock sources: configurable internal clock source (see RCC section) External clock source over LPTIM input (working with no LP oscillator running, used by pulse counter application) 	
Auto-reload	16 bit ARR auto reload register	
Capture/compare	16 bit capture/compare register	
Continuous mode	Continuous/one-shot mode	
Trigger mode	Selectable software/hardware input trigger	
Glitch filter	Programmable digital glitch filter	
Configurable output	Configurable output: pulse, PWM	
Polarity	Configurable I/O polarity	
Encoder mode	Yes	
Repetition counter	Yes	
Input capture, PWM and one-pulse channels	 Up to two independent channels for: Input capture PWM generation (Edge-aligned mode) One-pulse mode output 	
DMA requests	DMA request generation on the following events: Update event Input capture	

5.6.6 Watchdogs (WWDG/IWDG)

The STM32H573/563 and STM32H562, STM32F427/437 and STM32F429/439 devices embed two watchdogs:

- A system window watchdog (WWDG) with same features
- An independent watchdog (IWDG) with same differences

AN5688 - Rev 2 page 42/50

Table	41.	IDWG	features	

Feature	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
Clock	Clocked from an independent RC oscillator	Independent clock LSI used as IWDG kernel clock (iwdg_ker_ck)	
Window option ⁽¹⁾	-	X	
Early wakeup interrupt generation ⁽¹⁾	- X		
Reset generation ⁽¹⁾	X		
New features ⁽¹⁾		-	

^{1. &}quot;X" = supported, "-" = not supported.

5.6.7 Real-time clock (RTC)

The following table describes the difference of RTC features between STM32F427/437, STM32F429/439 devices and STM32H573/563 and STM32H562 devices. For more information about RTC, refer to the RTC section of the product reference manual.

Table 42. RTC features

RTC	STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562		
	Calendar with subsecond, secon	Calendar with subsecond, seconds, minutes, hours (12 or 24 format), week day, date, month, year		
		Two programmable alarms		
	Reference clock detection: a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision			
	Timestamp function			
	Daylight saving time			
Feature	Automatic wakeup			
	Digital calibration circuit with 0.95 ppm resolution			
	Alarm A, Alarm B, wakeup interrupt, timestamp, tamper detection	Alarm A, alarm B, wakeup Timer and timestamp individual privilege protection		
	NA	 Binary mode with 32-bit free-running counter On-the-fly correction from 1 to 32767 RTC clock pulses RTC TrustZone[®] support 		
Tamper and backup registers	 20x 32-bit backup registers 2x tamper pins/ 2 events Edge or level detection with configurable filtering 	 32x 32-bit backup registers Up to 11 tamper pins for 8 external tamper detection events 13 internal tamper events TrustZone[®] support 		

5.6.8 SysTick timer

The SysTick timer is dedicated to real-time operating systems but can also be used as a standard down-counter.

The STM32H573/563 and STM32H562 Cortex®-M33 with TrustZone® embeds two SysTick timers. When TrustZone® is activated, the two SysTick timers are available, but when TrustZone® is disabled, only one SysTick timer is available.

STM32F427/437 and STM32F429/439 embed a Cortex®-M4 with just one SysTick timer.

AN5688 - Rev 2 page 43/50

5.7 Migration of external memory interface peripherals

5.7.1 Flexible memory controller (FMC)

The following table presents the FSMC interface differences between the STM32F427/437, STM32F429/439 and STM32H573/563 and STM32H562 devices.

Table 43. FMC features

FSMC		STM32F427/437 and STM32F429/439	STM32H573/563 and STM32H562	
External memory interfaces		 SRAM NOR Flash memory/one NAND Flash memory PSRAM 16-bit PC card compatible devices Two banks of NAND Flash memory with ECC hardware to check up to 8 Kbytes of data 	SRAM NOR Flash memory/one NAND Flash memory PSRAM Ferroelectric RAM (FRAM) NAND Flash memory with ECC hardware to check up to 8 Kbytes of data	
Data bus width		8,16 or 32-bit	8 or 16-bit	
	Bank 1 4x 64-Mbyte	NOR/PSRAM/SRAM	NOR/PSRAM/SRAM	
	Bank 2 4x 64-Mbyte	NAND Flash memory	Not used	
FMC Bank memory	Bank 3 4x 64-Mbyte		NAND Flash memory	
mapping	Bank 4 4x 64-Mbyte	PC Ccrd	Not used	
	SDRAM Bank 1 4x 64-Mbyte SDRAM Bank 2 4x 64 Mbyte	SDRAM	SDRAM	

For STM32H573/563 and STM32H562, FSMC registers can be configured as secure through the TZSC controller (refer to the reference manual for more details).

5.7.2 Octo-SPI interface (OCTOSPI)

The OCTOSPI peripheral provides a serial interface that enables communication with external serial memories such as Flash memory, PSRAM, HyperRAM $^{\text{TM}}$, HyperFlash.

The Octo-SPI specialized communication interface targets single-, dual-, quad- or octal-SPI memories, and can be configured in three modes: Indirect, Status-polling and Memory-mapped.

The OCTOSPI peripheral is available on STM32H573/563 and STM32H562, with the following features:

- Functional modes: Indirect, Automatic status-polling, and Memory-mapped
- Read and write support in Memory-mapped mode
- Dual-guad configuration
- SDR (single-data rate) and DTR (double-transfer rate)
- Data strobe (DS, DQS)
- GPDMA interface

Note: OCTOSPI is not supported by STM32F427/437 and STM32F429/439.

AN5688 - Rev 2 page 44/50

Revision history

Table 44. Document revision history

Date	Version	Changes
8-Apr-2023	1	Initial release.
20-Apr-2023	2	Update of the the introduction section with document references. Minor changes applied to the whole document.

AN5688 - Rev 2 page 45/50

Contents

1	Gene	eral info	ormation	2
2	STM	32H573	/563 and STM32H562 MCUs overview	3
	2.1	Main fe	eatures	3
	2.2	System	n architecture	4
3	Hard	ware m	iigration	6
	3.1		ge availability	
	3.2		compatibility	
		3.2.1	LQFP100 package	
		3.2.2	LQFP144 package	
		3.2.3	LQFP176 package	
		3.2.4	UFBGA176 + 25 package	10
		3.2.5	UFBGA169 package	11
4	Boot	mode	compatibility	12
	4.1		node selection	
	4.2		n bootloader	
5		•	nigration	
	5.1		compatibility between STM32 products	
	5.2		on of system peripherals	
	3.2	5.2.1	Embedded flash memory (FLASH)	
		5.2.1	SRAMs	
		5.2.3	System configuration controller	
		5.2.4	Instruction and data caches (ICACHE/DCACHE)	
		5.2.5	Direct memory access controller (DMA)	
		5.2.6	Reset and clock control (RCC)	
		5.2.7	Power (PWR)	
		5.2.8	General-purpose I/Os (GPIO)	
		5.2.9	Extended interrupt and event controller (EXTI)	
		5.2.10	CRC calculation unit	
	5.3	Migrati	on of security peripherals	
		5.3.1	Random number generator (RNG)	
		5.3.2	Hash processor (HASH)	
		5.3.3	On-the-fly decryption engine (OTFDEC)	
		5.3.4	Public key accelerator (PKA)	
		5.3.5	AES and SAES hardware accelerators	
		5.3.6	Global TrustZone controller (GTZC)	32

5.4	Migrat	tion of communication peripherals	32
	5.4.1	Serial peripheral interface (SPI)	32
	5.4.2	Inter-integrated circuit (I2C)	33
	5.4.3	Improved inter-integrated circuit (I3C)	34
	5.4.4	Universal synchronous/asynchronous receiver transmitter (USART)	34
	5.4.5	Serial audio interface (SAI)	35
	5.4.6	Digital camera interface (DCMI)	35
	5.4.7	Parallel synchronous slave interface (PSSI)	35
	5.4.8	Controller area network (CAN)	35
	5.4.9	Universal serial-bus interface (USB)	36
5.5	Migrat	tion of analog peripherals	37
	5.5.1	Analog-to-digital converter (ADC)	37
	5.5.2	Digital-to-analog converter (DAC)	38
5.6	Migrat	tion of timer peripherals	38
	5.6.1	Advanced-control timers (TIM1/TIM8)	39
	5.6.2	GP timers with up, down, up-down auto-reload counter (TIM2/3/4/5)	39
	5.6.3	GP timers with auto-reload up-counter	40
	5.6.4	Basic timers (TIM6/7)	41
	5.6.5	Low-power timers (LPTIM1/2/3/4)	42
	5.6.6	Watchdogs (WWDG/IWDG)	42
	5.6.7	Real-time clock (RTC)	43
	5.6.8	SysTick timer	43
5.7	Migrat	tion of external memory interface peripherals	44
	5.7.1	Flexible memory controller (FMC)	44
	5.7.2	Octo-SPI interface (OCTOSPI)	44
Revision	history	· ·	45
List of ta	bles		48
List of figures			

List of tables

Table 1.	Reference documents	
Table 2.	Memory availability	
Table 3.	Bus matrix	
Table 4.	Packages available	6
Table 5.	LQFP100 pinout differences	7
Table 6.	LQFP144 pinout differences	
Table 7.	LQFP176 pinout differences	
Table 8.	UFBGA176 + 25 ballout differences	
Table 9.	Boot modes for STM32F427/437 and STM32F429/439	. 12
Table 10.	STM32H573 Boot modes when TrustZone® is disabled (TZEN=0xC3)	. 12
Table 11.	STM32H573 Boot modes when TrustZone® is enabled (TZEN=0xB4)	. 13
Table 12.	STM32H563 Boot mode when TrustZone® is disabled (TZEN=0xC3)	. 13
Table 13.	STM32H563 Boot mode when TrustZone® is enabled (TZEN=0xB4)	. 13
Table 14.	Bootloader communication peripherals	
Table 15.	STM32 peripheral compatibility between products	
Table 16.	FLASH features	
Table 17.	SRAM features	
Table 18.	System configuration features	. 19
Table 19.	DMA features	
Table 20.	RCC features	20
Table 21.	Peripherals with different clock sources	. 21
Table 22.	PWR features	23
Table 23.	EXTI features	. 27
Table 24.	EXTI line differences	28
Table 25.	CRC features	29
Table 26.	RNG features	30
Table 27.	HASH features	. 31
Table 28.	SPI features	. 32
Table 29.	I2C differences	34
Table 30.	U(S)ART features	. 34
Table 31.	SAI features	35
Table 32.	CAN features	36
Table 33.	USB differences	. 37
Table 34.	ADC differences between devices	38
Table 35.	DAC differences	38
Table 36.	Advanced-control timer (TIM1/8) features	. 39
Table 37.	GP timer (TIM2/3/4/5) features	40
Table 38.	GP timer (with auto-reload up-counter) features	41
Table 39.	Basic timers	42
Table 40.	LPTIM features	42
Table 41.	IDWG features	43
Table 42.	RTC features	43
Table 43.	FMC features	44
Table 44.	Document revision history	45

List of figures

Figure 1.	STM32F427/437 and STM32F429/439 devices system architecture	. 5
Figure 2.	STM32H573/563 and STM32H562 devices system architecture	. 5
Figure 3.	STM32H573/563 and STM32H562 LQFP100 pinout	. 7
Figure 4.	STM32H573/563 and STM32H562 LQFP144 pinout	. 8
Figure 5.	STM32H573/563 and STM32H562 LQFP176 pinout	. 9
Figure 6.	STM32H573/563 and STM32H562 UFBGA176 + 25 ballout	10
Figure 7.	STM32H573/563 and STM32H562 power supply overview with (a) LDO (b) SMPS	25
Figure 8.	Power supply overview for STM32F42xxx and STM32F43xxx	26
Figure 9.	EXTI block diagram on STM32H573/563 and STM32H562	28

AN5688 - Rev 2 page 49/50

Disclaimer

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics - All rights reserved

AN5688 - Rev 2 page 50/50