


AN4733 Application note

STM32Cube firmware examples for STM32F2 Series

Introduction

The STM32CubeF2 firmware package comes with a rich set of examples running on STMicroelectronics boards. The examples are organized by board and provided with preconfigured projects for the main supported toolchains (see *Figure 1*).

Figure 1. STM32CubeF2 firmware components

Reference documents AN4733

Reference documents

The reference documents are available on www.st.com/stm32cubefw:

- Latest release of STM32CubeF2 firmware package
- Getting started with the STM32CubeF2 firmware package for STM32F2 Series user manual (UM1739)
- STM32Cube USB Device library user manual (UM1734)
- STM32Cube USB host library user manual (UM1720)
- Developing Applications on STM32Cube with FatFs user manual (UM1721)
- Developing Applications on STM32Cube with RTOS user manual (UM1722)
- Developing applications on STM32Cube with LwIP TCP/IP stack user manual (UM1713)
- STM32Cube Ethernet IAP example user manual (UM1709)

The examples are classified depending on the STM32Cube level they apply to. They are named as follows:

• **Examples:** the examples use only the HAL and BSP drivers (middleware not used). Their objective is to demonstrate the product/peripherals features and usage. They are organized per peripheral (one folder per peripheral, for example TIM). Their complexity level ranges from the basic usage of a given peripheral (for example PWM generation using timer) to the integration of several peripherals (for example how to use DAC for signal generation with synchronization from TIM6 and DMA). The usage of the board resources is reduced to the strict minimum.

Examples_LL

These examples use only the LL drivers (HAL drivers and middleware components not used). They offer an optimum implementation of typical use cases of the peripheral features and configuration sequences. The examples are organized per peripheral (one folder for each peripheral, for example TIM) and run exclusively on Nucleo board.

Examples_MIX

These examples use only the HAL, BSP and LL drivers (middleware components not used). They aim at demonstrating how to use both HAL and LL APIs in the same application to combine the advantages of both APIs:

- The HAL offers high-level function-oriented APIs with high portability level by hiding the product/IPs complexity for end users.
- The LL provides low-level APIs at register level with better optimization.

The examples are organized per peripheral (one folder for each peripheral, for example TIM) and run exclusively on Nucleo board.

- Applications: the applications demonstrate the product performance and how to use
 the available middleware stacks. They are organized either by middleware (a folder per
 middleware, for example USB Host) or by product feature that require high-level
 firmware bricks (for example Audio). The integration of applications that use several
 middleware stacks is also supported.
- Demonstrations: the demonstrations aim at integrating and running the maximum number of peripherals and middleware stacks to showcase the product features and performance.
- **Template project:** the template project is provided to allow quickly building a firmware application on a given board.

The examples are located under *STM32Cube_FW_STM32CubeF2_VX.Y.Z\Projects*. They all have the same structure:

- \Inc folder containing all header files
- \Src folder containing the source code
- \EWARM, \MDK-ARM, \SW4STM32 and \TrueSTUDIO folders containing the preconfigured project for each toolchain.
- readme.txt file describing the example behavior and the environment required to run the example.

To run the example, proceed as follows:

- 1. Open the example using the preferred toolchain.
- 2. Rebuild all files and load the image into target memory
- 3. Run the example by following the readme.txt instructions

Note:

Refer to "Development toolchains and compilers" and "Supported devices and evaluation boards" sections of the firmware package release notes to know more about the software/hardware environment used for the firmware development and validation. The correct operation of the provided examples is not guaranteed in other environments, for example when using different compiler or board versions.

The examples can be tailored to run on any compatible hardware: simply update the BSP drivers for your board, provided it has the same hardware functions (LED, LCD display, pushbuttons, etc.). The BSP is based on a modular architecture that can be easily ported to any hardware by implementing the low-level routines.

Table 1 contains the list of examples provided within the STM32CubeF2 firmware package.

The total numbers of templates, templates_LL, examples, examples_LL, examples_MIX applications and demonstrations are highlighted in gray in the table.

Table 1. STM32CubeF2 firmware examples

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
Templates_LL	-	Starter project	This directory provides a reference template through the LL API that can be used to build any firmware application.	х	Х
		To	otal number of templates: 2	1	1
Templates	-	Starter project	This directory provides a reference template project that can be used to build any firmware application.	х	Х
		To	otal number of templates: 2	1	1
	-	BSP	The BSP examples detects the presence of Adafruit 1.8" TFT shield with joystick and uSD.	Х	Х
		ADC_DualModeInterleaved	This example provides a short description of how to use two ADC peripherals to perform conversions in interleaved dual-mode.	-	Х
		ADC_InjectedConversion_Interrupt	This example describes how to use the ADC in interrupt mode to convert data through the HAL API.	-	Х
		ADC_RegularConversion_DMA	This example describes how to use the ADC1 and DMA to transfer continuously converted data from ADC1 to memory.	Х	Х
Examples	ADC	ADC_RegularConversion_Interrupt	This example describes how to use the ADC in interrupt mode to convert data through the HAL API.	Х	Х
		ADC_RegularConversion_Polling	This example describes how to use the ADC in Polling mode to convert data through the HAL API.	-	Х
		ADC_TriggerMode	This example describes how to use the ADC and TIM8 to convert continuously data from ADC channel. Each time an external trigger is generated by TIM2 a new conversion is started by ADC.	-	Х
		ADC_TripleModeInterleaved	This example provides a short description of how to use the ADC peripheral to convert a regular channel in Triple interleaved mode.	-	Х
		CAN_LoopBack	This example provides a description of how to set a communication with the CAN in loopback mode.	-	Х
	CAN	CAN_Networking	This example shows how to configure the CAN peripheral to send and receive CAN frames in the normal mode. The sent frames are used to control LEDs by pressing key pushbutton.	-	Х

DocID028046 Rev 3

Table 1.	STM32CubeF2	firmware examp	oles	(continued)
----------	-------------	----------------	------	-------------

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	CRC	CRC_Example	This example guides the user through the different configuration steps by means of the HAL API. The CRC (Cyclic Redundancy Check) calculation unit computes the CRC code of a given buffer of 32-bit data words, using a fixed generator polynomial (0x4C11DB7).	Х	Х
		CRYP_AESModes	This example provides a short description of how to use the CRYPTO peripheral to encrypt and decrypt data using AES in chaining modes (ECB, CBC, CTR) and all key size (128, 192, 256) algorithm.	-	Х
	CRYP	CRYP_AES_DMA	This example provides a short description of how to use the CRYPTO peripheral to encrypt and decrypt data using AES-128 Algorithm with ECB chaining mode.	-	Х
		CRYP_DESTDESmodes	This example provides a short description of how to use the CRYPTO peripheral to encrypt and decrypt data using DES and TDES in all mode (ECB, CBC) algorithm.	-	Х
		CRYP_TDES_DMA	This example provides a short description of how to use the CRYPTO peripheral to encrypt data using TDES Algorithm.	-	Х
Examples	CORTEX	CORTEXM_MPU	This example presents the MPU feature. The example purpose is to configure a memory region as privileged read only region and tries to perform read and write operation in different mode.	х	Х
		CORTEXM_ModePrivilege	This example shows how to modify Cortex-M3 Thread mode privilege access and stack.	-	Х
		CORTEXM_SysTick	This example shows how to use the default SysTick configuration with a 1 ms timebase to toggle LEDs.	×	Х
	DAC	DAC_SignalsGeneration	This example provides a short description of how to use the DAC peripheral to generate several signals using DMA controller.	-	Х
	DAC	DAC_SimpleConversion	This example provides a short description of how to use the DAC peripheral to do a simple conversion.	-	Х
	DCM	DCMI_CaptureMode	This example provides a short description of how to use the DCMI to interface with camera module and display in continuous mode the picture on LCD.	-	Х
	DCMI	DCMI_SnapshotMode	This example provides a short description of how to use the DCMI to interface with camera module and display in snapshot mode the picture on LCD.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	DMA	DMA_FIFOMode	This example provides a description of how to use a DMA channel to transfer a word data buffer from the FLASH memory to an embedded SRAM memory with FIFO mode enabled through the STM32F2xx HAL API.	-	Х
	DIMA	DMA_FLASHToRAM	This example provides a description of how to use a DMA channel to transfer a word data buffer from the Flash memory to an embedded SRAM memory through the HAL API.	Х	Х
	FLASH	FLASH_EraseProgram	This application describes how to configure and use the FLASH HAL API to erase and program the internal FLASH memory.	х	Х
	FLASH	FLASH_WriteProtection	This example describes how to configure and use the FLASH HAL API to enable and disable the write protection of the internal FLASH memory.	-	Х
	FSMC	FSMC_SRAM	This example describes how to configure the FSMC controller to access the SRAM memory.	-	Х
	FSIVIC	FSMC_SRAM_DataMemory	This example describes how to configure the FSMC controller to access the SRAM memory including heap and stack.	-	Х
Examples		GPIO_EXTI	This example shows how to configure external interrupt lines.	Х	Х
	GPIO	GPIO_IOToggle	This example describes how to configure and use GPIOs through the HAL API.	х	Х
		HAL_TimeBase_RTC_ALARM	This example describes how to customize the HAL time base using the RTC alarm instead of Systick as main source of time base.	х	Х
	HAL	HAL_TimeBase_RTC_WKUP	This example describes how to customize the HAL time base using the RTC wakeup instead of Systick as main source of time base.	х	Х
		HAL_TimeBase_TIM	This example describes how to customize the HAL time base using a general purpose timer instead of Systick as main source of time base.	х	Х
		HASH_HMAC_SHA1MD5	This example provides a short description of how to use the HASH peripheral to hash data using HMAC SHA-1 and HMAC MD5 Algorithms.	-	Х
	HASH	HASH_SHA1MD5	This example provides a short description of how to use the HASH peripheral to hash data using SHA-1 and MD5 Algorithms.	-	Х
		HASH_SHA1MD5_DMA	This example provides a short description of how to use the HASH peripheral to hash data using SHA-1 and MD5 Algorithms.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	I2C	I2C_TwoBoards_AdvComIT	This example describes how to perform I2C data buffer transmission/reception between two boards, using an interrupt.	-	Х
	I2S	I2S_Audio	This example provides a basic implementation of audio features.	-	Х
	IWDG	IWDG_Example	This example describes how to reload the IWDG counter and to simulate a software fault by generating an MCU IWDG reset when a programmed time period has elapsed.	X	х
		PWR_BOR	This example shows how to configure the programmable BOR thresholds using the FLASH option bytes.	-	Х
Examples	PWR	PWR_CurrentConsumption	This example shows how to configure the STM32F2xx system to measure the different Low-power mode current consumption. The Low-power modes are: - Sleep Mode - Stop mode with RTC - Standby mode without RTC and BKPSRAM - Standby mode with RTC - Standby mode with RTC and BKPSRAM. To run this example, the user has to follow this step: 1. Select the Low-power modes to be measured by uncommenting the corresponding line inside the stm32f2xx_lp_modes.h file.	X	Х
	FWK	PWR_PVD	This example shows how to configure the programmable voltage detector using an external interrupt line. In this example, EXTI line 16 is configured to generate an interrupt on each rising or falling edge of the PVD output signal (which indicates that the Vdd voltage is below the PVD threshold).	-	Х
		PWR_STANDBY	This example shows how to enter the system to Standby mode and wake-up from this mode using: external RESET, RTC Alarm A or WKUP pin.	-	Х
		PWR_STOP	This example shows how to enter Stop mode and wake up from this mode by using the RTC Wakeup timer event or an interrupt.	-	Х
	RCC	RCC_ClockConfig	This example describes how to use the RCC HAL API to configure the system clock (SYSCLK) and modify the clock settings on run time.	х	Х
	RNG	RNG_MultiRNG	This example guides the user through the different configuration steps by means of the HAL API to ensure RNG random 32-bit numbers generation.	-	Х

	Table 1. STM	M32CubeF2 firmware examples (continue
١		

	_	Table 1. S	STM32CubeF2 firmware examples (continued)		
Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		RTC_Alarm	This example guides the user through the different configuration steps by means of the HAL API to ensure Alarm configuration and generation using the RTC peripheral.	-	Х
	RTC	RTC_Calendar	This example guides the user through the different configuration steps by means of the HAL API to ensure Calendar configuration using the RTC peripheral.	х	Х
	RIC	RTC_Tamper	This example guides the user through the different configuration steps by means of the RTC HAL API to write/read data to/from RTC Backup registers and demonstrate the Tamper detection feature.	х	Х
		RTC_TimeStamp	This example guides the user through the different configuration steps by means of the HAL API to ensure Time Stamp configuration using the RTC peripheral.	-	Х
Examples	SMARTCA RD	SMARTCARD_T0	This example describes a firmware Smartcard Interface based on the USART peripheral. The main purpose of this firmware example is to provide resources facilitating the development of an application using the USART peripheral in smartcard mode.	-	х
		SPI_FullDuplex_AdvComIT	This example guides the user through the different configuration steps by means of the HAL API to ensure the SPI Data buffer transmission and reception using Interrupt, in an advance communication mode: the Master board is always sending a command to the slave before any transmission and the slave board is sending an acknowledge before going further.	-	Х
	SPI	SPI_FullDuplex_ComDMA	This example shows how to perform the SPI data buffer transmission/reception between two boards via DMA.	-	Х
		SPI_FullDuplex_ComIT	This example shows how to ensure SPI data buffer transmission/reception between two boards by using an interrupt.	-	Х
		SPI_FullDuplex_ComPolling	This example shows how to ensure SPI data buffer transmission/reception in Polling mode between two boards.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		TIM_6Steps	This example shows how to configure the TIM1 peripheral to generate 6 Steps.	-	Х
		TIM_7PWMOutput	This example shows how to configure the TIM1 peripheral to generate 7 PWM signals with 4 different duty cycles (50%, 37.5%, 25% and 12.5%).	-	Х
		TIM_CascadeSynchro	This example shows how to synchronize the TIM peripherals in cascade mode.	-	Х
		TIM_ComplementarySignals	This example shows how to configure the TIM1 peripheral to generate three complementary TIM1 signals, to insert a defined dead time value, to use the break feature and to lock the desired parameters.	-	Х
	TIM	TIM_DMA	This example provides a description of how to use DMA with TIMER update request to transfer data from memory to TIMER Capture Compare Register 3 (CCR3).	Х	Х
Examples		TIM_DMABurst	This example shows how to update the TIM1 channel1 period and the duty cycle using the TIM1 DMA burst feature.	-	Х
		TIM_Encoder	This example shows how to configure the TIM1 peripheral in encoder mode to determinate the rotation direction.	-	Х
		TIM_ExtTriggerSynchro	This example shows how to synchronize the TIM peripheral in cascade mode with an external trigger.	-	Х
		TIM_InputCapture	This example shows how to use the TIM peripheral to measure the frequency of an external signal.	х	Х
		TIM_OCActive	This example shows how to configure the TIM peripheral in Output Compare Active mode (when the counter matches the capture/compare register, the concerned output pin is set to its active state).	Х	Х
		TIM_OCInactive	This example shows how to configure the TIM peripheral in Output Compare Inactive mode with the corresponding Interrupt requests for each channel.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		TIM_OCToggle	This example shows how to configure the TIM peripheral to generate four different signals with four different frequencies.	×	Х
		TIM_OnePulse	This example shows how to use the TIM peripheral to generate a One pulse Mode after a rising edge of an external signal is received in timer input pin.	х	Х
		TIM_PWMInput	This example shows how to use the TIM peripheral to measure the frequency and duty cycle of an external signal.	х	Х
	TIM	TIM_PWMOutput	This example shows how to configure the TIM peripheral in PWM (Pulse Width Modulation) mode.	х	Х
		TIM_ParallelSynchro	This example shows how to synchronize TIM2 and the timers (TIM3 and TIM4) in parallel mode.	-	Х
		TIM_Synchronization	This example shows how to synchronize TIM1 and the timers (TIM3 and TIM4) in parallel mode.	-	Х
Examples		TIM_TimeBase	This example shows how to configure the TIM peripheral to generate a time base of one second with the corresponding interrupt request.	-	Х
		UART_Hyperterminal_DMA	This example describes an UART transmission (transmit/receive) in DMA mode between a board and an Hyperterminal PC application.	-	Х
	UART	UART_Hyperterminal_IT	This example describes an UART transmission (transmit/receive) between a board and an Hyperterminal PC application by using an interrupt.	-	Х
		UART_Printf	This example shows how to reroute the C library printf function to the UART. It outputs a message sent by the UART on the HyperTerminal.	×	Х
	WWDG	WWDG_Example	This example guides the user through the different configuration steps by means of the HAL API to perform periodic WWDG counter update and simulate a software fault that generates an MCU WWDG reset when a predefined time period has elapsed.	Х	Х
			Total number of examples: 104	27	77

Table 1	. STM32CubeF2	firmware exam	ples	(continued)	1
---------	---------------	---------------	------	-------------	---

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL	
		ADC_AnalogWatchdog	This example describes how to use a ADC peripheral with the ADC analog watchdog to monitor a channel and detect when the corresponding conversion data is out of window thresholds. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary service functions for optimization purpose (performance and size).	X	-	
		ADC_ContinuousConversion_Trigg erSW	This example describes how to use a ADC peripheral to perform continuous ADC conversions of a channel, from a SW start. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary service functions for optimization purpose (performance and size).	Х	-	
		ADC_ContinuousConversion_Trigg erSW_Init	This example describes how to use a ADC peripheral to perform continuous ADC conversions of a channel, from a SW start. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary service functions for optimization purpose (performance and size).	Х	-	
Examples_LL	ADC	ADC_GroupsRegularInjected	This example describes how to use a ADC peripheral with both ADC groups (ADC group regular and ADC group injected) in their intended use case. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-	
		ADC_MultiChannelSingleConversion	This example describes how to use a ADC peripheral to convert several channels, ADC conversions are performed successively in a scan sequence. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-	
			ADC_MultimodeDualInterleaved	This example describes how to use several ADC peripherals in multimode, mode interleaved. This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-
		ADC_SingleConversion_TriggerSW	This example describes how to use a ADC peripheral to perform a single ADC conversion of a channel, at each software start. The example is using the programming model: polling (for programming models interrupt or DMA transfer, refer to other examples). This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-	

1	

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		ADC_SingleConversion_TriggerSW _DMA	This example describes how to use a ADC peripheral to perform a single ADC conversion of a channel, at each software start. The example is using the programming model: DMA transfer (for programming models polling or interrupt, refer to other examples). This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		ADC_SingleConversion_TriggerSW _IT	This example describes how to use a ADC peripheral to perform a single ADC conversion of a channel, at each software start. The example is using the programming model: interrupt (for programming models polling or DMA transfer, refer to other examples). This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Examples_LL	ADC	ADC_SingleConversion_TriggerTim er_DMA	This example describes how to use a ADC peripheral to perform a single ADC conversion of a channel, at each trigger event from timer. The conversion data are transferred by DMA into a table, indefinitely (circular mode). This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		ADC_TemperatureSensor	This example describes how to use a ADC peripheral to perform a single ADC conversion of the internal temperature sensor and to calculate the temperature in Celsius degrees. The example is using the programming model: polling (for programming models interrupt or DMA transfer, refer to other examples). This example is based on the STM32F2xx ADC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	CORTEX	CORTEX_MPU	This example presents the MPU feature. Its purpose is to configure a memory area as privileged read-only area and attempt to perform read and write operations in different modes.	х	-
	CRC	CRC_CalculateAndCheck	This example shows how to configure the CRC calculation unit to get a CRC code of a given data buffer, based on a fixed generator polynomial (default value 0x4C11DB7). The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		DAC_GenerateConstantSignal_Trig gerSW	This example describes how to use the DAC peripheral to generate a constant voltage signal; This example is based on the STM32F2xx DAC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	DAC	DAC_GenerateWaveform_TriggerH W	This example describes how to use the DAC peripheral to generate a waveform voltage from digital data stream transfered by DMA. This example is based on the STM32F2xx DAC LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
		DAC_GenerateWaveform_TriggerH W_Init	This example describes how to use the DAC peripheral to generate a waveform voltage from digital data stream transfered by DMA. This example is based on the STM32F2xx DAC LL API. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-
Examples_LL	DMA	DMA_CopyFromFlashToMemory	This example describes how to use a DMA to transfer a word data buffer from the Flash memory to embedded SRAM. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		DMA_CopyFromFlashToMemory_I nit	This example describes how to use a DMA to transfer a word data buffer from the Flash memory to embedded SRAM. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-
	EXTI	EXTI_ToggleLedOnIT	This example describes how to configure the EXTI and use GPIOs to toggle the user LEDs available on the board when a user button is pressed. It is based on the STM32F2xx LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
	EXII	EXTI_ToggleLedOnIT_Init	This example describes how to configure the EXTI and use GPIOs to toggle the user LEDs available on the board when a user button is pressed. This example is based on the STM32F2xx LL API. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-

4	
	١

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	GPIO	GPIO_InfiniteLedToggling	This example describes how to configure and use GPIOs to toggle every 250 ms the user LEDs available on the board. This example is based on the STM32F2xx LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
	GPIO	GPIO_InfiniteLedToggling_Init	This example describes how to configure and use GPIOs to toggle every 250 ms the user LEDs available on the board. This example is based on the STM32F2xx LL API. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-
		I2C_OneBoard_AdvCommunicatio n_DMAAndIT	This example describes how to exchange data between an I2C Master device in DMA mode and an I2C Slave device in Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Examples_LL		I2C_OneBoard_Communication_D MAAndIT	This example describes how to transmit data bytes from an I2C Master device using DMA mode to an I2C Slave device using Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Examples_LL	I2C	I2C_OneBoard_Communication_IT	This example describes how to receive one data byte from an I2C Slave device to an I2C Master device. Both devices operate in interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X X	-
	120	I2C_OneBoard_Communication_IT _Init	This example describes how to receive one data byte from an I2C Slave device to an I2C Master device. Both devices operate in Interrupt mode. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	х	-
		I2C_OneBoard_Communication_P ollingAndIT	This example describes how to transmit data bytes from an I2C Master device using Polling mode to an I2C Slave device using Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		I2C_TwoBoards_MasterRx_SlaveT x_IT	This example describes how to receive one data byte from an I2C Slave device to an I2C Master device. Both devices operate in Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	I2C	I2C_TwoBoards_MasterTx_SlaveR x	This example describes how to transmit data bytes from an I2C Master device using Polling mode to an I2C Slave device using Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	120	I2C_TwoBoards_MasterTx_SlaveR x_DMA	This example describes how to transmit data bytes from an I2C Master device using DMA mode to an I2C Slave device using DMA mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	IWDG	IWDG_RefreshUntilUserEvent	This example describes how to configure the IWDG to ensure period counter update and generate an MCU IWDG reset when a user button is pressed. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Francisco III	PWR	PWR_EnterStandbyMode	This example shows how to enter the system in Standby mode and wake up from this mode using external RESET or wakeup interrupt.	Х	-
Examples_LL		PWR_EnterStopMode	This example shows how to enter the system in STOP_MAINREGU mode.	X	-
		RCC_OutputSystemClockOnMCO	This example describes how to configure MCO pins (PA8 and PC9) to output the system clock.	Х	-
	RCC	RCC_UseHSEasSystemClock	This example describes how to use the RCC LL API how to start the HSE and use it as system clock.	×	-
		RCC_UseHSI_PLLasSystemClock	This example shows how to modify the PLL parameters in run time.	Х	-
		RNG_GenerateRandomNumbers	This example shows how to configure RNG peripheral to allow generation of 32-bit long Random Numbers. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	RNG	RNG_GenerateRandomNumbers_I T	This example shows how to configure the RNG peripheral to allow generation of 32-bit long Random Numbers, using interrupts. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-

167	
	7

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		RTC_Alarm	This example guides the user through the different configuration steps by means of LL API to ensure Alarm configuration and generation using the RTC peripheral. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
		RTC_Alarm_Init	This example guides the user through the different configuration steps by means of LL API to ensure Alarm configuration and generation using the RTC peripheral. the peripheral initialization is done using LL initialization function to demonstrate LL init usage.	х	-
	RTC	RTC_Calendar	This example guides the user through the different configuration steps by means of HAL API to configure the RTC calendar. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	RIC	RTC_ExitStandbyWithWakeUpTime	This example shows how to configure the RTC in order to wake up from Standby mode using RTC wakeup Timer. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Examples_LL		RTC_Tamper	This example guides the user through the different configuration steps by mean of LL API to ensure Tamper configuration using the RTC peripheral. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
		RTC_TimeStamp	This example guides the user through the different configuration steps by means of LL API to ensure Time Stamp configuration using the RTC peripheral. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
	CDI	SPI_OneBoard_HalfDuplex_DMA	This example shows how to configure GPIO and SPI peripherals for transmitting bytes from an SPI Master device to an SPI Slave device by using the DMA mode through the STM32F2xx SPI LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-
	SPI	SPI_OneBoard_HalfDuplex_DMA_I nit	This example shows how to configure GPIO and SPI peripherals for transmitting bytes from an SPI Master device to an SPI Slave device by using the DMA mode through the STM32F2xx SPI LL API. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	х	-

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		SPI_OneBoard_HalfDuplex_IT	This example shows how to configure GPIO and SPI peripherals for transmitting bytes from an SPI Master device to an SPI Slave device by using IT mode through the STM32F2xx SPI LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	×	-
	SPI	SPI_TwoBoards_FullDuplex_DMA	This example shows how to ensure the SPI data buffer transmission and reception in DMA mode. The example is based on the STM32F2xx SPI LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		SPI_TwoBoards_FullDuplex_IT	This example shows how to ensure the SPI Data buffer transmission and reception in Interrupt mode. The example is based on the STM32F2xx SPI LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
Examples_LL		TIM_BreakAndDeadtime	This example shows how to configure the Timer to perform the following: to generate three center-aligned PWM and complementary PWM signals, to insert a defined dead time value, to use the break feature, to lock the desired parameters. This example is based on the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	TIM	TIM_DMA	This example provides a description of how to use the DMA with TIMER update request to transfer Data from the memory to the TIMER Capture Compare Register 3 (TIMx_CCR3). The example is using the STM3F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-
		TIM_InputCapture	This example shows how to use the TIM peripheral to measure the frequency of a periodic signal provided either by an external signal generator or by another timer instance. The example is using the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		TIM_OnePulse	This example shows how to configure a timer to generate a positive pulse in output compare mode with a length of tPULSE and after a delay of tDELAY. This example is based on the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-

5	١
1	
-	l

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
		TIM_OutputCompare	This example shows how to configure the TIM peripheral to generate an output waveform in different output compare modes. The example is using the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	TIM	TIM_PWMOutput	This example describes how to use a timer peripheral to generate a PWM output signal and update the PWM duty cycle. The example is using the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	TIIVI	TIM_PWMOutput_Init	This example describes how to use a timer peripheral to generate a PWM output signal and update the PWM duty cycle. The example is using the STM32F2xx TIM LL API. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-
Examples_LL		TIM_TimeBase	This example shows how to configure the TIM peripheral to generate a time base. The example is using the STM32F2xx TIM LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X X X X X X X X X X X X X X X X X X X	-
		USART_Communication_Rx_IT	This example shows how to configure the GPIO and USART peripherals for receiving characters from HyperTerminal (PC) in Asynchronous mode using Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
	USART	LISABT Communication By IT C continuously receiving characters from HyperTerminal (PC) in	Asynchronous mode using Interrupt mode. The peripheral initialization is done using LL unitary services functions for optimization purpose	×	-
		USART_Communication_Rx_IT_Init	This example shows how to configure the GPIO and USART peripherals for receiving characters from HyperTerminal (PC) in Asynchronous mode using Interrupt mode. The peripheral initialization is done using LL initialization function to demonstrate LL init usage.	Х	-

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL							
									USART_Communication_Tx	This example shows how to configure the GPIO and USART peripherals to send characters asynchronously to an HyperTerminal (PC) in Polling mode. If the transfer could not be completed within the allocated time, a timeout allows to exit from the sequence with a Timeout error code. This example is based on STM32F2xx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-
		USART_Communication_TxRx_D MA	This example shows how to configure the GPIO and USART peripherals to send characters asynchronously to/from an HyperTerminal (PC) in DMA mode. This example is based on STM32F2xx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-							
Examples LL	USART	USART_Communication_Tx_IT	This example shows how to configure the GPIO and USART peripherals to send characters asynchronously to HyperTerminal (PC) in Interrupt mode. This example is based on STM32F2xx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-							
Lxamples_LL	USAIN	USART_HardwareFlowControl	This example shows how to configure the GPIO and USART peripherals to receive characters asynchronously from HyperTerminal (PC) in Interrupt mode with Hardware Flow Control feature enabled. This example is based on STM32F2xx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	х	-							
		USART_SyncCommunication_Full Duplex_DMA	This example shows how to configure the GPIO, USART, DMA and SPI peripherals for transmitting bytes from/to an USART peripheral to/from an SPI peripheral (in slave mode) by using DMA mode through the STM32F2xx USART LL API. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	X	-							
		USART_SyncCommunication_Full Duplex_IT	This example shows how to configure the GPIO, USART, DMA and SPI peripherals for transmitting bytes from/to an USART peripheral to/from an SPI peripheral (in slave mode) by using Interrupt mode through the STM32F2xx USART LL API (SPI is using DMA for receving/transmitting characters sent from/received by USART). The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	-							

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	UTILS	UTILS_ConfigureSystemClock	This example describes how to use UTILS LL API to configure the system clock using PLL with HSI as source clock. The user application just needs to calculate PLL parameters using STM32CubeMX and to call the UTILS LL API.	Х	-
Examples_LL		UTILS_ReadDeviceInfo	This example describes how to read UID, Device ID and Revision ID and save them into a global information buffer.	×	-
	WWDG	WWDG_RefreshUntilUserEvent	This example describes how to configure the WWDG, periodically update the counter, and generate an MCU WWDG reset when a user button is pressed. The peripheral initialization is done using LL unitary services functions for optimization purpose (performance and size).	Х	- - 0
		69	0		
	ADC	ADC_SingleConversion_TriggerSW _IT	This example describes how to use the ADC to perform a single ADC channel conversion, at each software start. This example uses the interrupt programming model (for programming models in Polling or DMA mode, refer to other examples). This example is based on the STM32F2xx ADC HAL and LL API (LL API usage for performance improvement).	X	-
Evamples MIV	CRC	CRC_CalculateAndCheck	This example provides a description of how to use the CRC peripheral through the STM32F2xx CRC HAL and LL API (LL API used for performance improvement). The fixed generator polynomial used in CRC IP is CRC-32 (Ethernet) polynomial: 0x4C11DB7.	х	-
Examples_MIX	DMA	DMA_FLASHToRAM	This example provides a description of how to use a DMA to transfer a word data buffer from Flash memory to embedded SRAM through the STM32F2xx DMA HAL and LL API (LL API used for performance improvement).	Х	-
	I2C	I2C_OneBoard_ComSlave7_10bits _IT	This example describes how to perform I2C data buffer transmission/reception between one master and 2 slaves with different address sizes (7-bit or 10-bit) and different Max speed support (400Khz or 100 KHz). This example uses the STM32F2xx I2C HAL and LL API (LL API usage for performance improvement) and an interrupt.	X	-

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	PWR	PWR_STANDBY_RTC	This example shows how to enter Standby mode and wake up from this mode using an external RESET or the RTC wakeup Timer through the STM32F2xx RTC and RCC HAL and LL API (LL API usage for performance improvement).	Х	-
		PWR_STOP	This example shows how to enter the system in STOP with Low-power regulator mode and wake up from this mode using external RESET or wakeup interrupt (all the RCC functions calls use RCC LL API for footprint and performance improvements).	Х	-
		SPI_FullDuplex_ComPolling	This example shows how to ensure SPI data buffer transmission/reception in Polling mode between two boards.	х	-
	SPI	SPI_HalfDuplex_ComPollingIT	This example shows how to ensure SPI data buffer transmission/reception between two boards by using Polling (LL Driver) an interrupt mode (HAL Driver).	Х	-
Examples_MIX	TIM	TIM_6Steps	This example shows how to configure the TIM1 peripheral to generate 6 Steps PWM signal. The STM32F2xx TIM1 peripheral offers the possibility to program in advance the configuration for the next TIM1 outputs behavior (or step) and to change the configuration of all the channels at the same time. This operation is possible when the COM (commutation) event is used. This example is based on the STM32F2xx TIM HAL and LL API (LL API used for performance improvement).	X	-
		TIM_PWMInput	This example shows how to use the TIM peripheral to measure the frequency and duty cycle of an external signal.	х	-
	UART	UART_HyperTerminal_IT	This example describes how to use an UART to transmit data (transmit/receive) between a board and an HyperTerminal PC application in Interrupt mode. This example provides a description of how to use USART peripheral through the STM32F2xx UART HAL and LL API (LL API used for performance improvement).	Х	-
		UART_HyperTerminal_TxPolling_R xIT	This example describes how to use an UART to transmit data (transmit/receive) between a board and an HyperTerminal PC application both in Polling and Interrupt modes. This example provides a description of how to use USART peripheral through the STM32F2xx UART HAL and LL API (LL API used for performance improvement).	X	-
	Total number of examples_mix: 12				0

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	Camera Display	Camera_To_USBDisk	This application provides a short description of how to use the DCMI to interface with camera module and display in continuous mode the picture on LCD and to save a picture in USB device.	-	Х
		LCD_Paint	This application describes how to configure LCD touch screen and attribute an action related to configured touch zone and how to save BMP picture in SD Card.	-	Х
	EEPROM	EEPROM_Emulation	This application describes the software solution for substituting a standalone EEPROM by emulating the EEPROM mechanism using the on-chip Flash of STM32F207xx devices.	Х	-
	FatFs	FatFs_MultiDrives	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, in order to develop an application exploiting FatFs offered features with multidrive (RAMDisk, uSD) configuration.	-	X
Applications		FatFs_RAMDisk	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, in order to develop an application exploiting FatFs offered features with RAM disk (SRAM) drive configuration.	-	х
		FatFs_RAMDisk_RTOS	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, in order to develop an application exploiting FatFs offered features with RAM disk (SRAM) drive in RTOS mode configuration.	-	Х
		FatFs_USBDisk	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module and STM32 USB On-The-Go (OTG) host library, in High Speed (HS) modes (configured in FS), in order to develop an application exploiting FatFs offered features with USB disk drive configuration.	×	Х
		FatFs_USBDisk_MultipleAccess_ RTOS	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, FreeRTOS as an RTOS module based on using CMSIS-OS wrapping layer common APIs, and also STM32 USB On-The-Go (OTG) host library, in both Full Speed (FS) and High Speed (HS) modes, in order to develop an application exploiting FatFs offered features with USB disk drive in RTOS mode configuration.	-	х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	FatFs	FatFs_USBDisk_RTOS	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, FreeRTOS as an RTOS module based on using CMSIS-OS wrapping layer common APIs, and also STM32 USB On-The-Go (OTG) host library, in both Full Speed (FS) and High Speed (HS) modes, in order to develop an application exploiting FatFs offered features with USB disk drive in RTOS mode configuration.	-	X
		FatFs_uSD	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, in order to develop an application exploiting FatFs offered features with micro SD drive configuration.	-	X
		FatFs_uSD_RTOS	This application provides a description on how to use STM32Cube firmware with FatFs middleware component as a generic FAT file system module, in order to develop an application exploiting FatFs offered features with micro SD drive in RTOS mode configuration.	-	х
Applications	FreeRTOS	FreeRTOS_LowPower	This directory contains a set of source files that implement an application that uses message queues with CMSIS RTOS API. This application creates two threads.	-	Х
		FreeRTOS_Mutexes	This directory contains a set of source files that implement an application that uses mutexes with CMSIS RTOS API. This application creates three threads with different priorities and an access at the same mutex MutexHighPriorityThread() which has the highest priority, so executed first, then it grabs the mutex and sleeps for a short period to let the lower priority threads execution. When it has completed its demonstration functionality, it gives the mutex back before suspending itself.	-	Х
		FreeRTOS_Queues	This directory contains a set of source files that implement an application that uses message queues with CMSIS RTOS API. This application creates two threads that send and receive an incrementing number to/from a queue.	-	Х
		FreeRTOS_Semaphore	This directory contains a set of source files that implement an application that uses semaphores with CMSIS RTOS API. This application creates two threads that toggle LEDs through a shared semaphore.	-	Х
		FreeRTOS_SemaphoreFromISR	This directory contains a set of source files that implement an application that uses semaphore from ISR with CMSIS RTOS API. This application creates a thread that toggles LED through semaphore given from ISR.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	FreeRTOS	FreeRTOS_ThreadCreation	This directory contains a set of source files that implement a thread creation application using CMSIS RTOS API. This application creates two threads with the same priority, which executes in a periodic cycle of 15 seconds.	-	Х
		FreeRTOS_Timers	This directory contains a set of source files that implement an application that uses timers of CMSIS RTOS API This application creates a thread that toggles LED2 every 400 ms, and a periodic timer that calls a callback function every 200 ms to toggle the LED1.	-	х
		LibJPEG_Decoding	This application demonstrates how to read a jpeg file from the SDCard memory, decode it and display the final BMP image on the LCD.	-	Х
	LibJPEG	LibJPEG_Encoding	This application demonstrates how to read BMP file from the micro SD, encode it, save the jpeg file in uSD Card then decode the jpeg file and display the final BMP image on the LCD.	-	Х
	LwIP	LwIP_HTTP_Server_Netconn_ RTOS	This application guides STM32Cube HAL API users to run a http server application based on Netconn API of LwIP TCP/IP stack. The communication is done with a web browser application in a remote PC.	Х	Х
Applications		LwIP_HTTP_Server_Raw	This application guides STM32Cube HAL API users to run a http server application based on Raw API of LwIP TCP/IP stack. The communication is done with a web browser application in a remote PC.	-	Х
		LwIP_HTTP_Server_Socket_RTOS	This application guides STM32Cube HAL API users to run a http server application based on Socket API of LwIP TCP/IP stack. The communication is done with a web browser application in a remote PC.	-	Х
		LwIP_IAP	This application guides STM32Cube HAL API users to run In-Application Programming (IAP) over Ethernet.	-	Х
		LwIP_TCP_Echo_Client	This application guides STM32Cube HAL API users to run TCP Echo Client application based on Raw API of LwIP TCP/IP stack. To run this application, on the remote PC, open a command prompt window.	-	Х
		LwIP_TCP_Echo_Server	This application guides STM32Cube HAL API users to run TCP Echo Server application based on Raw API of LwIP TCP/IP stack. To run this application, on the remote PC, open a command prompt window.	-	Х
		LwIP_TFTP_Server	This application guides STM32Cube HAL API users to run a tftp server demonstration for STM32F2xx devices.	-	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	LwiP	LwIP_UDPTCP_Echo_Server_ Netconn_RTOS	This application guides STM32Cube HAL API users to run a UDP/TCP Echo Server application based on Netconn API of LwIP TCP/IP stack. To run this application, on the remote PC, open a command prompt window.	-	Х
		LwIP_UDP_Echo_Client	This application guides STM32Cube HAL API users to run a UDP Echo Client application based on Raw API of LwIP TCP/IP stack. To run this application, on the remote PC, open a command prompt window.	-	Х
		LwIP_UDP_Echo_Server	This application guides STM32Cube HAL API users to run UDP Echo Server application based on Raw API of LwIP TCP/IP stack. To run this application, on the remote PC, open a command prompt window.	-	Х
	STemWin	STemWin_HelloWorld	This directory contains a set of source files that implements a simple "Hello World" application based on STemWin for STM32F2xx devices.	-	Х
		STemWin_SampleDemo	This directory contains a set of source files that implements a sample demonstration application allowing to show some of the STemWin Library capabilities on STM32F2xx devices.	-	Х
Applications	USB_ Device	AUDIO_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use the USB device application based on the AUDIO class implementation of an audio streaming (Out: Speaker/Headset) capability on the STM32F2xx devices.	-	х
		CDC_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use the USB device application based on the Device Communication class (CDC) following the PSTN sub protocol in the STM32F2xx devices using the OTG-USB and UART peripherals.	-	Х
		CustomHID_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use USB device application based on the Custom HID Class on the STM32F2xx devices.	-	Х
		DFU_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use the USB device application based on the Device Firmware Upgrade (DFU) on the STM32F2xx devices.	Х	Х

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL	
	USB_Host	DualCore_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use USB device application based on the STM32F2xx multi core support feature integrating Mass Storage (MSC) and Human Interface (HID) in the same project.	-	Х	
		HID_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use the USB device application based on the Human Interface (HID) on the STM32F2xx devices.	х	Х	
		MSC_Standalone	This application is a part of the USB Device Library package using STM32Cube firmware. It describes how to use the USB device application based on the Mass Storage Class (MSC) on the STM32F2xx devices.	-	Х	
		AUDIO_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Audio OUT class on the STM32F2xx devices.	-	Х	
Applications		Applications USB_Host	CDC_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Communication Class (CDC) on the STM32F2xx devices.	-	Х
		DualCore_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the STM32F2xx multi core support feature integrating Mass Storage (MSC) and Human Interface (HID) in the same project.	-	Х	
		DynamicSwitch_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use dynamically a switch, on the same port, between available USB host applications on the STM32F2xx devices.	-	Х	
		FWupgrade_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the In-Application programming (IAP) on the STM32F2xx devices.	-	Х	

Table 1. STM32CubeF2 firmware examples (continued)

Level	Module Name	Project Name	Description	STM32F207ZG -Nucleo	STM322xG -EVAL
	USB_Host	HID_RTOS	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Human Interface Class (HID) on the STM32F2xx devices.	-	Х
		HID_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Human Interface Class (HID) on the STM32F2xx devices.	Х	Х
Applications		MSC_RTOS	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Mass Storage Class (MSC) on the STM32F2xx devices in RTOS mode configuration.	-	Х
		MSC_Standalone	This application is a part of the USB Host Library package using STM32Cube firmware. It describes how to use the USB host application based on the Mass Storage Class (MSC) on the STM32F2xx devices.	х	Х
	mbedTLS	SSL_Client	This application describes how to run an SSL client application based on mbedTLS crypto library and LwIP TCP/IP stack on STM32F2 family.	-	Х
		SSL_Server	This application guides STM32Cube HAL API users to run an SSL Server application based on mbedTLS crypto library and LwIP TCP/IP stack.	-	Х
		Total number of applications: 56		7	49
Demonstration	-	Demo	The provided demonstration firmware based on STM32Cube helps the user to discover STM32 Cortex-M devices that can be plugged on a STM32 Nucleo board.	Х	-
	Total number of demonstration: 1			1	0
Total number of projects: 246					128

AN4733 Revision history

Revision history

Table 2. Document revision history

Date	Revision	Changes
23-Jul-2015	1	Initial release.
26-Nov-2015	2	Updated <i>Table 1: STM32CubeF2 firmware examples</i> adding the list of examples and applications provided with the STM32F207ZG-Nucleo board.
16-Mar-2017	3	Updated Figure 1: STM32CubeF2 firmware components. Updated STM32CubeF2 examples adding examples_LL and examples_MIX.
		Updated <i>Table 1:</i> STM32CubeF2 firmware examples adding the list of examples, examples_LL, examples_MIX provided with the STM32F207ZG-Nucleo and the STM322xG-EVAL boards.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2017 STMicroelectronics – All rights reserved

