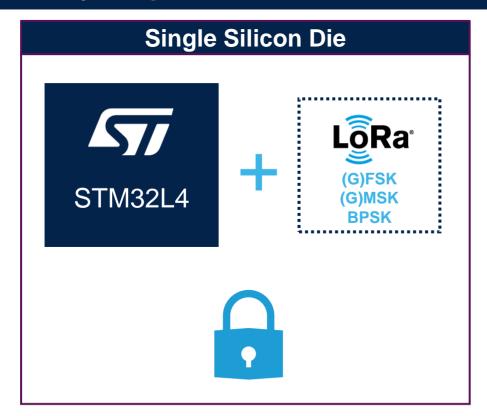


STM32WL series MCU long-range wireless system-on-chip



System-on-chip made for versatility

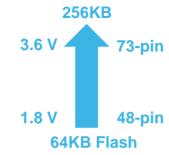
A Long-Range Wireless Microcontroller: one die, many IoT possibilities

World First!

Make the choice of STM32WL series

The 7 key points that will make the difference

Massive integration Cost saving

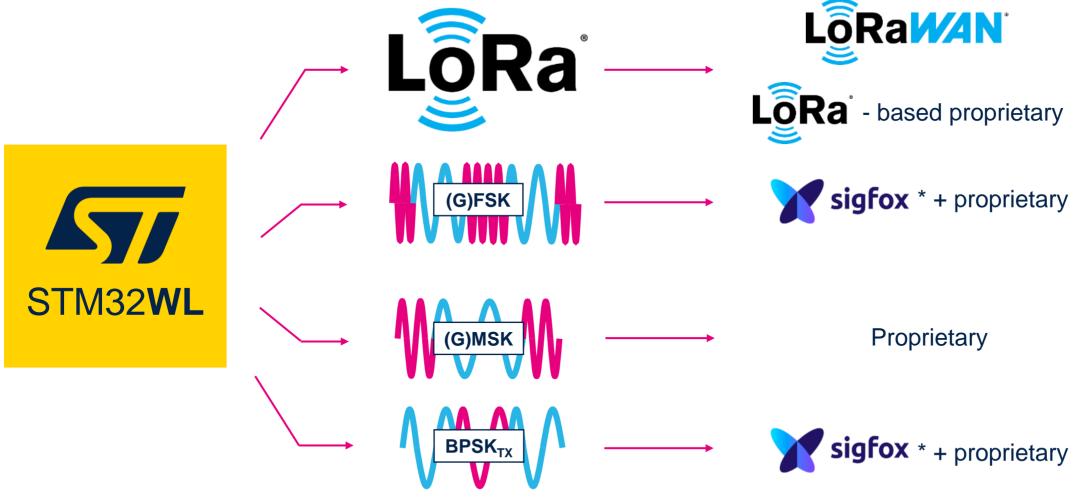

Open platform

Ultra-low-power

STM32 Security

A large offer is coming

No matter what!



Deep integration wide purposes

4 modulations - many protocols

* Coming soon

STM32WL - a rich feature set

- Key features
- Arm® Cortex®-M4 DSP up to 48 MHz
- Up to 256 KB Flash and 64 KB SRAM
- Sub-GHz Radio Multi-modulations
 - LoRa, (G)FSK, (G)MSK, BPSK
 - 2 embedded power amplifiers:
 - 1 output up to +15 dBm
 - 1 output up to +22 dBm
 - LoRa RX sensitivity: -148 dBm (SF12, BW=10.4kHz)
 - RX: 5.4mA and TX: 15mA (at 10dBm) / 87mA (at 20dBm) [3.3V]
- Peripherals
 - 3xl2C, 2xUSART, 1xLP-UART, 2xSPI
- 7x timers + 2x ULP Comparators
- 1.8 to 3.6V voltage range (DC/DC, LDO)
- -40 to up to +105°C temperature range
 - Power consumption
 - < 71µA/MHz Active mode (3V RF OFF)
 - 1 μA Stop2 mode with RAM retention
 - 390 nA Standby mode with RTC
 - 31 nA Shutdown mode

life.augmented

Control

Power supply
1.8 to 3.6 V
w/ DCDC+ LD0
POR/PDR/PVD/BOR

Crystal oscillators 32 MHz (Radio + HSE) 32.768 KHz (LSE)

Internal RC oscillators 32,768 KHz + 16 MHz + 48 MHz ± 1% acc. over V and T(°C)

RTC/AWU/CSS

PLL/FLL

SysTick timer

2 watchdogs (WWDG/IWDG)

43 GPI0s

Cyclic redundancy check

Voltage scaling (2 modes)

Arm® Cortex®-M4 DSP 48 MHz

Nested vector interrupt controller (NVIC)

Memory protected unit (MPU)

JTAG/SW debug

ART Accelerator™

AHB Bus matrix

2x DMA 7 channels

Radio

LoRa®, (G)FSK, (G)MSK, BPSK

+15dBm & +22dBm Power Outputs -148 dBm sensitivity (LoRa)

150 MHz to 960 MHz

Security

256-bit AES/PKA

TRNG + PCROP

Memory

Up to 256-Kbyte Flash

Up to 64-Kbyte SRAM

Boot ROM

Boot loader

Timers

1 x 32-bit timer

3x 16-bit timers 3x ULP 16-bit timers

Analog

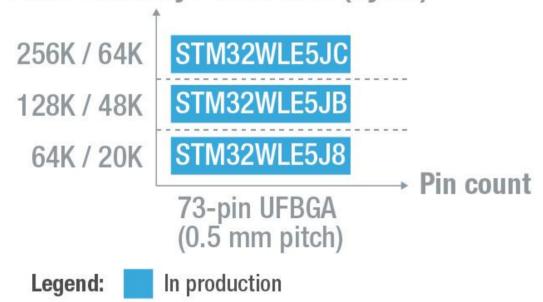
1x 12-bit ADC SAR 2.5 Msps

12-bit DAC

2x ULP comparators

Temperature sensor

Connectivity


2x SPI, 3x I2C

2x USART LIN, smartcard, IrDA, Modem control

1x ULP UART

STM32WL Sub-GHz - portfolio

Flash memory / RAM size (bytes)

Up to 43 GPIOs for full flexibility
+
Tiny package footprint

Best suited for many LPWAN market

- Worldwide compatibility 150 MHz to 960 MHz Linear Range
- Multi-protocol capable
- ST Longevity commitment: 10 years life time

- Up to +22 dBm output power for wide coverage
- -148 dBm sensitivity with LoRa: Robust RF Link
- Reduced BOM cost



- Up to 105 °C MCU capable
- Only 5 µs wakeup time for best latencies
- Only 5.4 mA as LoRa RX consumption for battery optimization

- Link Budget > 160 dB = Very long ranges
- Excellent battery lifetime: Only 15 mA for LoRa TX consumption @ 10 dBm
- PCROP, ECC, TRNG, PKA, for best design robustness

- Unique-IDs for enhanced traceability
- Down to 390 nA mode with RTC and 32KB of RAM for extended Battery lifetime
- Small form factor with UFBGA 5x5 package

Logistics

Smart Home

- Down to 71 μA/MHz in Run mode for efficient action
- < 1 μA Stop mode with full RAM for battery life optimization
- 12-bit ADC & DAC for mixed applicative use cases

Flexible power scheme

Flexible power scheme flexpowercontrol

Typ with LDO @ $V_{DD} = 3 V @ 25 °C$

RUN (Range1) at 48 MHz 71* / 115 µA / MHz Wake-up **RUN (Range2) at 16 MHz** 100* / 115 μA / MHz time to RUN **SLEEP at 48 MHz** 28* / 35 μA / MHz 6 cycles **STOP 1 (full retention)** 4.55 μΑ** 5 µs **STOP 2 (full retention)** 1 μΑ** 5.5 µs STANDBY + 32 KB RAM 390 nA** 29 µs **STANDBY** 71 nA* 29 µs **SHUTDOWN** 31****/ 267 µs 175 nA** 5**** / 200 nA** V_{BAT}

RF Capable

Benchmark Scores

- High Efficiency
 - → CoreMark score = 162¹
- Ultra Low-Power Platform
 - → ULPBbench score ≈ 2041

^{*} Typical values with SMPS, RF OFF

^{**} with RTC on LSE Bypass

^{***} Able to maintain RF context

^{****} All OFF

Flexible power scheme matching your application needs

LPWANs made easy through Ultra-Low-Power tradeoffs

Seamless toolbox (I²C, SPI, USART, ADC/DAC, Timers, Comparators etc.)

Power mode	Arm® Cortex®-M4	Peripherals	RAM Retention	RF		
Run	✓	√	Yes	\		
Sleep	X	✓	Yes	✓		
Stop 0 Stop 1 Stop 2	X X X	√ √ Subset	Yes Yes Yes	✓ ✓ ✓		
Standby	X	X	Yes	✓		
Shutdown	X	X	X	X		

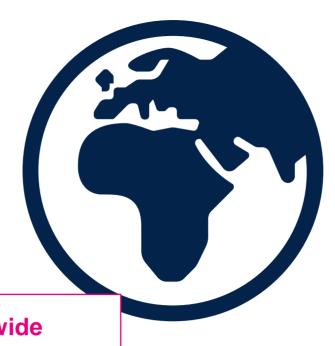
RF available
In all power modes

Back-up registers are always available

Efficient power management STOP modes comparison

Flexible peripherals power mapping

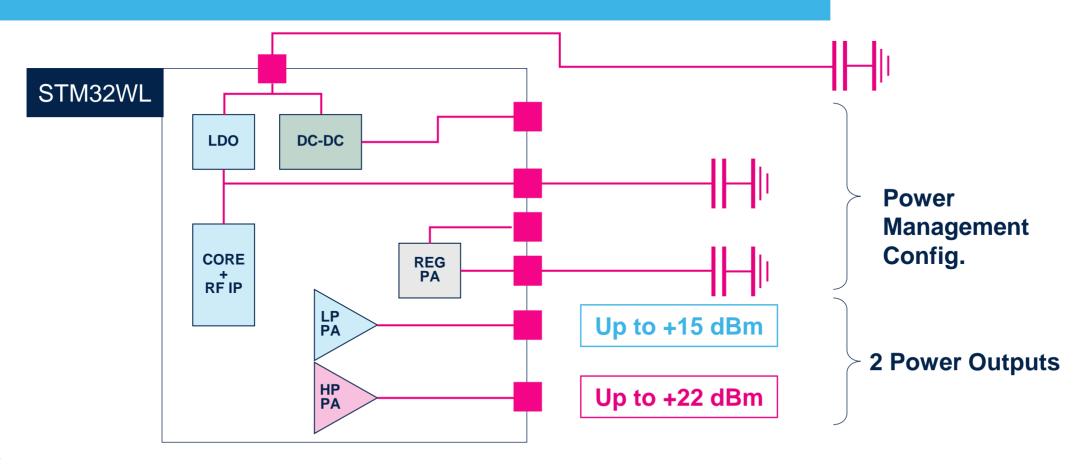
		STOP0	STOP1	STOP2				
Consumption (without Real Time Clock)		Typ, 25 °C, 3 V, LDO						
		400 µA	4.55 µA	1 μΑ				
Wakeup time to	Flash	2.2 µs	5 µs	5.5 µs				
48 MHz	Hz RAM 2.2 μs keup clock		5.1 µs	5.5 µs				
Wakeup clock		≤ 48 MHz						
Regulator		Main or Lo	ow-Power lator	Low-power regulator				
Periphera	ıls	All	All	CSS, RTC, 3 Tamper Pins, 1x LPUART, 1x I ² C, VREFBUF 2x COMP, 1x LPTIM, Dual-WDG, CRC, EXTI				


No impact on wakeup time from embedded DCDC

Ultra-low power & IoT ready for worldwide applications

Best LoRa-enabled IP on the market

Transmission									
Parameter	Settings	Value							
TX	+10 dBm 868/915 MHz	15 mA DCDC							
TX	+20 dBm 868/915 MHz	87 mA DCDC							


Worldwide Compatibility

Reception									
Parameter	Settings	Value							
LoRa Sensitivity	BW_L = 10.4 kHz SF = 12	-148 dBm							
2-FSK Sensitivity	BR_F = 0.6 kb/s FDA = 0.8 kHz BW_F = 4 kHz	-125 dBm							
RX	FSK 4.8kb/s buck 100mA max	5 mA DCDC 8.7 mA LDO							
RX	LoRa® 125 kHz	5.4 mA DCDC 9.45 mA LDO							

Flexible power implementation

Tailor STM32WL to your IoT needs

Advanced features and ecosystem

STM32WL - safety and security

Secure you application with embedded safety & security

- · Back-up clock circuitry
- Supply monitoring
- · Dual watchdog
- Flash memory with ECC (address status register)
- SRAM Parity check
- Cyclic Redundancy Check
- Brown-out reset in all modes
- Clock Security System
- Backup byte registers

Security

- Anti-Tamper detection
- Boot Lock
- Read & Write protection
- Memory Protection Unit (MPU)
- Software IP Protection
- True Random Number Generator
- Private Key Accelerator
- Unique IDs (64- and 96-bit)

Chips & stacks delivery model

Open chips, takeaway stacks

Arm Cortex-M4 Application Firmware + Peripherals + Radio stack

- Open Platform
- Open stack

Certified LoRaWAN stack

A higher level of integration

MCU + Radio 2-in-1 solution

Arm Cortex-M4 Application Firmware + Peripherals + Radio stack

VS

Standalone MCU

Standalone transceiver

- SoC solution (1 single die)
- · All-in-1 solution cost saving
- Simplified development helps speeding up time to market

- 2 standalone chips, or dice (SiP)
- Bigger final PCB (increased cost)
- Wired communication more exposed

STM32WL – introductory ecosystem

Fully integrated into the rich and market-proven STM32 ecosystem

STM32 Nucleo-64

Flexible prototyping

Dev tools

STM32CubeMX for pinout and clock configuration
STM32CubeProg

Partners IDE

Stacks

LoRaWAN Sigfox¹

¹ Coming soon

Please contact your nearest ST Sales Office for more information

OIARSYSTEMS

Save on your application cost

Integrated functionalities helps you drop the BOM down

Optimization of the silicon cost

- Deep integration factor
- Less external components
- Single 32 MHz crystal for CPU
 & embedded radio
- 32 kHz master clock output available

Optimization of the ecosystem cost

- LoRaWAN stack: free of charge
- STM32CubeMX: free of charge
- STM32CubeProg: free of charge
- System-on-chip avoids to use a second radio

STM32 rolling longevity commitment

Longevity commitment is renewed every year

Starting in 2020

STM32F1 (launched in 2007)STM32L1 (launched in 2009)

• STM32F2 (launched in 2010)

• ...

• STM32WB (launched in 2018)

• **STM32G0** (launched in **2018**)

• **STM32G4** (launched in **2019**)

STM32WL (launched in 2020)

22 years of commitment

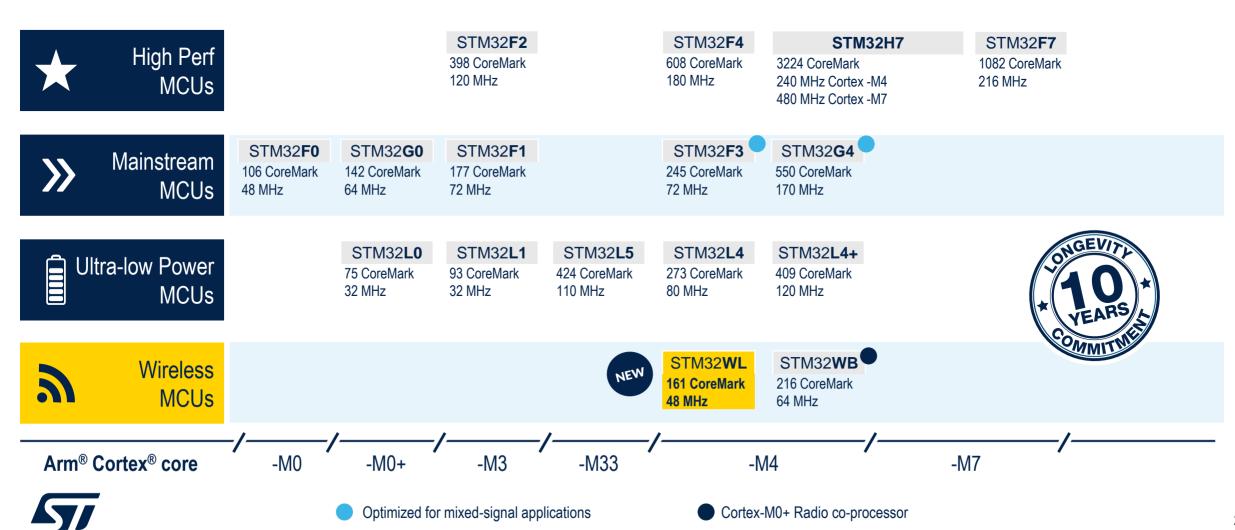
20 years of commitment

19 years of commitment

11 years of commitment

11 years of commitment

10 years of commitment


10 years of commitment

life.augmented

STM32 MCU "wireless" series

Releasing your creativity

/STM32

@ST_World

community.st.com

www.st.com/STM32WL

Power consumption compare L073 – L431

MX Seque	ence loaded: (C:\Users\Erik H	HEIMEN\Docun	nents\IDE-TES	TING\STM32	L073-LORA.pcs								_		\times
						MCU	Settings / F	Results Sum	mary —							
MCU			STM32L073CZTx Se			Sequence Time / Ta Max 3					3,601 s / 103.84 °C					
V_{DD}				3.0 V			Average Consumption 2.41 µA									
Datashee	et			027096_Re	6_Rev3			Average DMIPS				40.0 DMIPS				
Battery				Battery not	found			Battery Life	Estimation			No battery	set!			
							- Sequen	ce Table —								
Step	Mode	Vdd	Range/Sc.	Memory	CPU/Bus	Clock Co	Src Freq	Peripherals	Add. Curr	. Step Curr	. Duration	DMIPS	Voltage	S Ta Ma	x Categ	jory
1	RUN	3.0	Range1	FLASH	32 MHz	HSEBYP	16 MHz	I2C1 SPI1	0 mA	7.13 mA	1 s	30.4	Battery	103.84	In DS 1	
t 2	STOP	3.0	NoRange	n/a	0 Hz	ALL CLO	0 Hz		0 mA	430 nA	3600 s	0.0	Battery	105	In DS 1	Table
tiery				Бацегу пос	iouriu			Бапету Е	iie Laumau	ווע		ט טעו	attery sets			
							Sequ	ence Table								
Step	Mode	Vdd	Range/Scale	Memory	CPU/Bus .	Clock Conf	ig Src Free	Peripher	als Add. Cu	ırrent Step C	urrent Dur	ation D	MIPS \	oltage S	Ta Max	Ca
	RUN	3.0	Range1-Hi	FLASH	32 MHz	HSE BYP	32 MHz	I2C1 SPI	1 0 mA	4.76 m	A 1s	0.0	В	attery 1	104.19	In DS
	STOP2	3.0	NoRange	n/a	0 Hz	ALL CLO	0 Hz		0 mA	1.06 µA	3600	s 0.0	В	attery 1	105	In DS

Thank you

ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to www.st.com/trademarks.

All other product or service names are the property of their respective owners.

